Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3922230 A
Publication typeGrant
Publication dateNov 25, 1975
Filing dateApr 15, 1974
Priority dateAug 4, 1971
Publication numberUS 3922230 A, US 3922230A, US-A-3922230, US3922230 A, US3922230A
InventorsLamberti Vincent, Willis Chester R
Original AssigneeLever Brothers Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Oligomeric polyacrylates as builders in detergent compositions
US 3922230 A
Abstract
The present invention relates to a novel class of oligomeric builders for use in detergent compositions. More particularly, the present invention relates to a biodegradable, oligomeric polyacrylate having a molecular weight of greater than about 500 and less than about 10,000, preferably less than about 5000. In the most desirable embodiments at least one end of the oligomer chain is terminated with either a sulfur containing moiety or an hydroxy containing moiety. Preferred cations are alkali metals, ammonium and substituted ammonium.
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Lamberti et al.

[451 Nov. 25, 1975 OLIGOMERIC POLYACRYLATES AS BUILDERS IN DETERGENT COMPOSITIONS Inventors: Vincent Lamberti, Upper Saddle River; Chester R. Willis, Mapleshade, both of NJ.

Assignee: Lever Brothers Company, New

York, N.Y.

Filed: Apr. 15, 1974 Appl. No.: 461,060

Related U.S. Application Data Continuation of Ser. No. 169,101, Aug. 4, 1971, abandoned.

U.S. Cl. 252/89; 252/135; 252/531', 252/535; 252/539; 252/550; 252/554; 252/558; 252/DIG. 2

Int. Cl. CllD 3/37 Field of Search 252/89, 135, 531, 535, 252/539, 550, 554, 558; 260/535 P, 535 S References Cited UNITED STATES PATENTS 6/1972 Dannals 260/465.4

Martin et al. 252/156 Altenschopfer et al. 252/99 FOREIGN PATENTS OR APPLICATIONS 702,995 11/1970 South Africa Primary ExaminerBenjamin R. Padgett Assistant Examiner-E. Suzanne Parr Attorney, Agent, or Firm-Arnold Grant, Esq.

[57] ABSTRACT 9 Claims, N0 Drawings OLIGOMERIC POLYACRYLATES AS BUILDERS IN DETERGENT COMPOSITIONS This is a continuation of application Ser. No. 169,101, filed Aug. 4, 1971, now abandoned.

BACKGROUNDIOF THE INVENTION 1. Field of the Invention Non-phosphorus oligomeric' biodegradable builders for detergent compositions."

2. Description of the Prior Art 1 In recent years the problems of eutrophication, which can be defined as a slow rate, natural process of enrichment of waters with nutrients, such as phosphorus and nitrogen has received much notoriety. Uncontrolled or pronounced eutrophication has'been found to cause increased algal growth and algal scums which not only are unaesthetic, odorous, distasteful and clog filters or treatment plants but also creates disproportionate demands on the available oxygen in the water. It has been postulated that in several bodies of water various human activities have contributed to acceleration of the process through such factors as inordinate enrichment of natural runoff, ground water and agricultural drainage, sewage and waste effluents. It has also been suggested that the phosphorus-containing builders present in detergent compositions can be a contributing factor in eutrophication, and therefore any substitutes which do not contain phosphorus may decrease to some extent the eutrophication problem. Thus, those skilled in the art have expended a great deal of time and money to solve this problem and find suitable materials to reduce or replace the existing phosphate builders in detergent compositions. This work is still continuing since most of the builders discovered to date have been deemed unsatisfactory for a variety of reasons and are most often less efficient than the existing phosphate builders.

High molecular weight acrylate polymers have been known in the art for many years, finding significant use as molding resins, films and fibers. Particular species of the higher molecular weight acrylate polymers, such as sodium polyacrylates in British Pat. No. 1,090,809 and alpha halogen substituted polyacrylates such as polyalpha chloracrylic acid, polyalpha fluoracrylic acid and copolymers thereof with other polymerizable organic compounds, in U.S. Pat. No. 2,327,302 have been suggested as capable of functioning as detergent assistants. These compounds, however, create as much, if not more, of a problem than they ostensibly solve since at the molecular weight of the polymers believed contemplated by these patents, the molecules would not be biodegradable.

A large proportion of the sanitary treatment performed in this country is done aerobically. 1f the bacteria in the degradation system cannot consume and degrade a molecule it may pass through the tank'and flow into the surrounding area, ultimately mixing with the surface water and eventually becoming part of the human water supply. It has been found that, bacteria either cannot or have extreme difficulty in degrading long chain polymers and branched polymers of the type disclosed in the above patents. Since so little is known about the effects of so many chemicals, particularly from a carcinogenic and birth defects standpoint, when 2 or it is dropped from furthervconsideration. As such, the compounds of British Pat. No. 1,090,809 and of U.S. Pat. No. 2,327,302, as well as'other relatively high molecular weight polyacrylates would be deemed unacceptable for use in a detergent formulation.

sUM AxY oF THE INVENTION It is therefore an object of the present invention to provide novel biodegradable builder compounds which are free of phosphorus and can be incorporated into detergent compositions.

,The compositions of the invention necessarily include both a synthetic builder anda water-soluble organic detergent compound; such as the anionic (soap and non-soap), nonionic, zwitterionic and ampholytic detergent compounds. The chemical nature of these detergent compounds is not an essential feature of the present invention, since these are well known to those skilled in the detergent art and the literature is replete with disclosures of such compounds. Typical of such literature are Surface Active Agents by Schwartz and Perry and Surface Active Agents and Detergents by Schwartz, Perry and Berch, both of which are published by Interscience Publishers, Inc., New York, N.Y., the disclosures of which are incorporated herein by reference.

DETAILED DESCRIPTION OF THE INVENTION As discussed above the search for a phosphorus-free detergent builder composition has engendered a great deal of effort and expense on the part of the detergent industry. Basically, the criteria that a new builder must meet, aside from being free of phosphorus, are, first,

that when incorporated into a detergent formulation, the resultant detergent efficiency of the formulationis equal to or closely approximates that of a similarly formulated, phosphorus built detergent; and, second, that the builder be biodegradable. As to the first requirement, it is axiomatic that a replacement for an established product must be at least as good as the established product if it is to gain any consumer acceptance. The second requirement is a result of the large proportion of aerobic sanitary treatment facilities in this country. Any possibility that a compound will pass through a treatment system, into the surrounding surface water and become part of the available water supply without substantial bacteriological degradation necessitates rejection of that compound for use in a detergent formulation.

The present invention meets both of these criteria and provides a biodegradable detergent builder which when incorporated into a formulation results in excellent detergent efficiency. As will now be described, the present invention is the discovery that certain acrylate polymers have unique and excellent detergent building properties. The particular acrylate polymers found useful are those having an average molecular weight of between about 500 and'about 10,000, preferably less than 5000 and in the most preferred form, less than about 3000. At these levels the acrylate is more properly re- 3 ferred to as an oligomer rather than a polymer and will be so referred to hereinafter.

Experimentation with these compounds has shown that the chain terminating moiety plays an important part in both the building ability of the polyacrylate and in the relative ease of biodegradability. Although any chain terminating or chain transfer agent which will reasonably function with polyacrylate and does not impair biodegradability of the molecule may be used, such as alkyls, substituted alkyls, hydrogen and the residue from a free radical initiator, the preferred embodiments utilize compounds which will terminate at least one end of the chain with a sulfur containing moiety or an hydroxy containing moiety.

Examples of the type of compounds which can terminate a polyacrylate chain with either an hydroxy and/or a sulfur containing group include, but are not limited to, alkanols, preferably having from one to six carbon atoms, glycols, glycol esters, glycolic acids and salts thereof, thiols having from one to twenty carbon atoms, thio carboxylic acids having at least one carboxylic group and salts thereof, thio alkanols and hydroxy substituted thiols. Although the mechanism and reasons are not completely understood, hydroxy and sulfur containing moietys, particularly sulfur containing moietys at the ends of the oligomeric polyacrylates of the present invention, enables use of lower concentrations of the detergent formulation in the wash solution than does an otherwise terminated acrylate without any impairment of detergent efficiency. In addition, these terminating groups are preferred because they permit use of lower weight and, therefore, more biodegradable oligomers than do other end caps to obtain the same relative building ability in the detergent formulation.

Preferred cations for the acrylate salts are the alkali metals, ammonium and substituted ammonium such as morpholinium, alkyl ammonium, mono-, di-, and trialkanol ammonium and tetra alkyl ammonium. It should be understood that the term polyacrylates, as used herein, includes within the defination, as an integral part thereof, polyalkylacrylates of from 1 to 6 carbon atoms; these also being considered efficacious as detergent builders. In this regard, the lower members of the group, i.e., methyl, ethyl and propyl acrylates are the most responsive to the needs of a detergent formulation. It should also be understood at this juncture that the term polyacrylates refers to acrylate homopolymers, acrylate copolymers and terpolymers, etc. wherein the acrylate moiety comprises at least 45 mole percent of the molecule.

The unique compounds found suitable for the present invention may thus be summerized by the general formula:

wherein n is a series of whole number integers such that the average molecular weight is less than about 10,000 preferably less than about 5000; R and R are moieties which do not impair biodegradability of the molecule such as, for example, alkyls, substituted alkyls, hydrogen, the residue from a free radical initiator, alkanols preferably having 1 to 6 carbon atoms, glycols, glycol esters, glycolic acids and salts thereof, thiols having from 1 to 12 carbon atoms, thio carboxylic acids having at least one carboxylic group and salts thereof, thio alkanols and hydroxy substituted thiols; R is selected from the group consisting of hydrogen and alkyls having from 1 to 6 carbon atoms; and, M is selected from the group consisting of alkali metals, ammonium and substituted ammonium cations.

The weight ratio of the builder compounds of the present invention to detergent compound when used in laundering and hand dishwashing compositions, ranges generally from about 1:20 to about 20:1. When the novel builders are used in mechanical dishwashing compositions, the ratio of builder to detergent compound is from about 10:] to about 50:1.

Builder compounds of the present invention can be used either as the sole builder or where desired can be used in conjunction with other builders, examples of which include the alkali metal salts of carboxymethyloxysuccinic acid and oxydiacetic acid, tetrasodium and tetrapotassium pyrophosphate, pentasodium and pentapotassium tripolyphosphates, ether polycarboxylates, citrates, starch or cellulose derived polycarboxylates, and the like. Other materials which may be present in the detergent compositions of the invention are those conventionally present therein. Typical examples thereof include soil suspending agents, hydrotropes, corrosion inhibitors, dyes, perfumes, fillers, abrasives, optical brighteners, enzymes, suds boosters, suds depressants, germicides, anti-tarnishing agents, cationic detergents, softeners, chlorine releasing agents, buffers and the like. The balance of the detergent compositions is water.

The detergent compositions of the present invention may be in any of the usual physical forms for such compositions, such as powders, beads, flakes, bars, tablets, noodles, liquids, pastes, and the like. The detergent compositions are prepared and utilized in the conventional manner.

When using the detergent compositions of the invention to wash clothes, the wash solutions should have a pl-I'from about 7 to about 12, preferably from about 9 to 11. Therefore, the presence of a buffer in the detergent composition is usually desirable. Examples of such buffers are sodium silicate, carbonate or bicarbonate.

When the pH value of the wash solution is below about 8.6 some of the salts of the builder compounds will be present in the acid salt form and some in the normal salt form.

It should also be noted that when the compounds of the present invention are employed as the free acids or as partly neutralized salts, the compounds have utility in metal cleaning compositions under pH conditions of about 2 to about 5.

The following examples demonstrate without limiting the present invention preparation of low molecular weight polyacrylates suitable for use in detergent formulations, demonstrates their efficacy as detergent builders and their biodegradability.

EXAMPLE I A screw cap flask is charged with g. water, 20g. isopropanol, 1.7g of 30% hydrogen peroxide and 10g. of glacial acrylic acid. The reaction solution is then heated at 83C for 67 hours. After cooling the remaining peroxide is destroyed using Pt foil as a catalyst. After evaporation of the solvents the polymeric residue is purified by dissolving in ethanol and precipitating with 2-butanone. The filtered product is then dried in a high vacuum drying pistol. A molecular weight determination using Vapor Phase Osmometry gives a value of -10,270.

EXAMPLE II The preparation described for Example I is repeated except that the reacting solution contains 70g. of water, 30g. isopropanol, 2.3g. of 30% hydrogen peroxide and 10g. of glacial acrylic acid. The average molecular weight of the oligomer obtained is -3000.

EXAMPLE III The preparation described for Example II is repeated except that 30g. of ethyl glycolate is used in place of the isopropanol as the chain transfer agent and the reaction time is 19 hours. The molecular weight of the purified oligomer is -2000 as determined by Vapor Phase Osmometry.

EXAMPLE IV A solution of 300 ml. of isopropanol containing 10g. of acrylic acid is heated to reflux. Then, 0.75g.-of azobis-isobutyronitrile (AIBN) is added and the resulting solution, refluxed for 1 hour. The reaction mixture is then added to 800 ml of benzene and the resulting solution concentrated to 200 ml. The precipitated polymer is separated by centrifuging and dried in a vacuum oven at 55C in the presence of P the yield is 5.1g. The average molecular weight of the product as determined by Vapor Phase Osmometry is -1050.

EXAMPLE V The sodium salts of the above oligomeric polyacrylic acids are prepared by dissolving the oligomer in water and neutralizing with dilute solium hydroxide to pH 8.6. The solution is then evaporated to dryness to recover the dry solid sodium salt.

EXAMPLE VI A solution of acrylic acid, AIBN and n-dodecyl mercaptan in 300ml of methanol is refluxed for 2 hours. The reaction mixture is then concentrated to about 50 ml by evaporation in vacuo. Benzene, 100 ml, is then added whereby a lower oily layer is separated. After decanting the upper benzene layer, the lower layer is dissolved in 20 m1 of methanol and treated again with ben- 6 Phase Osmometry. Using the above procedure the following olig'omeric polyacrylic acids end-capped with dodecyl mercaptan have been prepared:

The sodium salts of the above oligometric polyacrylic acids are readily prepared by dissolving the oligomer in water and neutralizing to pH 8.6 with dilute sodium hydroxide. The resulting solution is then evaporated to dryness to recover the soild sodium salt.

EXAMPLES XI XXIV Detergent formulations were prepared utilizing weight percent of the sodium salts of the above prepared polyacrylic acids in combination with 18 weight percent LAS, an anionic surfactant which is sodium linear secondary alkyl (C -C benzene sulfonate, 10 weight percent of RU silicate solids, a sodium silicate having an SiO :N O ratio of 2.421 and 22 weight percent water. A control formulation was prepared, for 0 purposes of comparison, of 18 weight percent LAS, 50 weight percent of pentasodium tripolyphosphate as the builder, 10 weight percent RU silicate solids and 22 weight percent water.

Detergency building properties were measured with a Terg-O-Tometer test using a Dacron-35% cotton cloth soiled with vacuum cleaner dust. The wash solution contained 180 ppm, 2:1 Ca-H-/Mg-H-, had an initial pH of 10, adjusted with dilute sodium hydroxide, and was maintained at a temperature of 120F. Test concentrations of detergent formulations in the wash solution were 0.1 and 0.2 percent. The average detergency units (DU) of the formulations is the final reflectance of the washed cloth minus the initial reflectance of the soiled cloth (the average of two runs), the reflectance being measured on a Gardner automatic color difference meter, Model AC-3. Table I summerizes the results:

TABLE I Detergency Unites (DU) Efl'lciency Preparation Average Molecular Formulation Experimental Control Experimental DU X I Example Example Weight Concentration Formulation Fonnulation Control DU XI I 10,270 0.1 25.5 25.5 100 XII I 10.270 0.2 28.7 29.0 99 XIII ll 3,000 0.1 24.2 25.3 XIV 11 3,000 0.2 26.5 27.4 97 XV III 2,000 0.1 22.8 24.1 95 XVI III 2.000 0.2 26.7 26.6 XVII IV 1,050 0.1 19.5 27.1 72 XVIII IV 1,050 0.2 28.7 29.1 98 XIX Vll 1,113 0.1 25.5 26.7 96 XX VII 1,113 0.2 28.3 29.3 97 XXI VIII 2,250 0.1 24.9 26.7 93 XXII VIII 2,250 0.2 27.4 29.3 94 XXIII IX 2,520 0.1 25.1 26.7 94 XXIV IX 2,520 0.2 28.0 29.3 96

zene to separate a lower layer containing the oligomer.

As can be seen from the data of Table I, the oligo- After repeating the purification steponce more, the 65 meric polyacrylate built detergents according to the oily layer is evaporated in vacuo and the residue dried in a vacuum oven (50C) over P 0 The average molecular weight of the product is determined by Vapor present invention compare quite favorably with the phosphate built detergent control. The test results clearly show that within the most preferred range of the present invention, i.e., an average molecular weight of between about 500 and 3000, thiol end-capped polyacrylate can be successfully used as a phosphate replacement at both the 0.1 and 0.2 percent wash solution concentrations; hydroxy end-capped polyacrylate also performs very well at the 0.1 and 0.2 percent concentrations at average molecular weight of 2000 and 3000 but begins to show signs of strain at the 0.1 percent concentration for the 1050 molecular weight. Note should be taken, however, that the 0.2 percent concentration of 1050 molecular weight polyacrylate built detergent resulted in 98 percent efficiency which can be considered as excellent. Further testing with the very low molecular weight 1050 builders of the present invention at 0.1 percent concentrations determined that when the presence of the anionic surfactant was boosted from 18 to 36 percent, the amount of builder and RU silicate remaining constant, the efficiency increased to a very acceptable 93 percent.

Table II summarizes results obtained at formulation concentrations in wash solution of 0.15 percent with various detergent compositions. In all cases the sodium salt of the polyacrylic acid was used and the same Terg- O-Tometer conditions of test material and hardness, temperature and pH as in the above examples, were observed. STPP is pentasodium tripolyphosphate; RU silicate solids is a sodium silicate having an SiO :Na O ratio of 2.4:1; Tergitol l-S-7 is an adduct of seven moles of ethylene oxide per mole of a random secondary alcohol derived from C normal parafins; C I-IAMT is an ampholytic surfactant which is sodium -N-2 hydroxy C alkyl-N-methyltaurate; and, Sulfobetaine DCI-l is a zwitterionic surfactant which is cocodimethylsulfopropylbetaine.

The above FIGURES clearly indicate that the novel polyacrylate oligomers of the present invention have noticeably improved biodegradability over 5 days and excellent biodegradability over 21 days relative to the higher molecular weight polymers. Careful note should be taken that the product of Preparation Example I having a molecular weight of 10,270 had a very poor biodegradability over 5 days and, in fact, would be classified as non-degradable. For purposes of further comparison, a commercially available polyacrylate, Acrysol A-l marketed by Rohm & I-Iass, having an average molecular weight of less than 50,000 was tested as above for 5 days and 21 days. The BOD as a percentage of COD for 5 days was between about 0 and about 13 percent and for 21 days was 16.4 percent, which would also classify this material as non-degradable.

TABLE 11 Examples XXV XXXII, Percentages by Weight XXV XXVI XXVII XXVIII XXIX XXX XXI XXXII 1. Preparation Example V11 '50 2. Preparation Example V111 3. Preparation Example 1X 50 4. Preparation Example X 50 5. STPP 50 0 0 0 6. RU Silicate Solids 10 10 10 10 10 10 10 10 7. Sodium c 01. 18 18 sulfonate 8. Tergitol l5-S-7 10 10 9. C HAMT 18 18 10. Sulfobetaine DCH 18 -18 11. Water 4-- balance to 100% Detergency, DU's 24.5 27.4 27.7 28.8 26.7 28.4 29.0 29.9 Efficiency compared to control formulation (i.e., XXV vs. XXVI, XXVII vs. XXVIII, 90 97 I 94 97 XXIX vs. xxx. XXVI vs. xxu) As can be seen from the data in Table 11, particularly Thus, it can be readily appreciated from each of the the comparisons in the last line between the detergents foregoing tables that this discovery of a novel class of built according to the present invention and the similarly constituted but phosphate built detergent controls, the efficiency is at least 90 percent and reaches as high as 97 percent which can be considered as very favorable. Thus, at the 0.15'percent wash concentrations, which is the level normally practiced in this country, the detergents built according to the present invention are adjudged to be excellent phosphate replacements. Several of the oligomeric polyacrylates prepared in the aboveExample were than tested for biodegradability using either five day or twenty-one day BOD testing. Table III shows this data as well as chemical oxygen demand (COD) and the BOD as a percentage of COD.

polyacrylates which have both high biodegradability and excellent detergent building properties answers a long felt need in the art for a phosphorus free oligomeric builder.

As this invention may be embodied in several forms without departing from the spirit or essential character thereof, the present embodiments are illustrative and not restrictive. The scope of the invention is defined by the appended claims rather than by the description preceding them and all embodiments and formulations which fall within the meaning and range of equivalency of the claims are, therefore, intended to be embraced by those claims.

We claim:

1. A detergent composition comprising a water soluble detergent compound selected from the group consisting of anionic, nonionic, zwitterionic, ampholytic detergent compounds and mixtures thereof; and a builder salt comprising an oligomeric polyacrylate having a molecular weight of greater than about 500 and less than about 10,000 represented by the formula wherein n is a whole number integer, R and R are moieties which do not impair biodegradability of the molecule and are selected from the group consisting of biodegradable sulfur containing moieties and biodegradable hydroxy containing moieties, R is selected from the group consisting of hydrogen and alkyl groups having one to six carbon atoms and M is selected from the group consisting of alkali metal, ammonium and substituted ammonium cations; the weight ratio of the builder salt to detergent compounds ranging from 1:20 to about 20:1.

2. A detergent composition as defined in claim 1 wherein at least one end of the oligomer chain is terminated with a sulfur containing moiety.

3. A detergent composition as defined in claim 1 wherein at least one end of the oligomer chain is terminated with an hydroxy containing moiety.

4. A detergent composition as defined in claim 1 wherein the polyacrylate has a molecular weight of greater than about 500 and less than about 5000.

5. A detergent composition as defined in claim 1 wherein the oligomeric polyacrylate has an average molecular weight of greater than about 500 and less than about 5000.

6. A detergent composition as defined in claim 5 wherein the repeating acrylate moiety represents at least 45 mole percent of the polyacrylate chain.

7. A detergent composition as defined in claim 8 wherein R, and R are selected from the group consisting of biodegradable alkyls, substituted alkyls, hydrogen and the residue from free radical initiators.

8. A detergent composition as defined in claim 5 wherein R is selected from the group consisting of alkyl groups having from 1 to 3 carbon atoms.

9. A detergent composition as defined in claim 5 wherein the oligomeric polyacrylate has an average molecular weight of greater than about 500 and less than about 3000.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3668230 *Nov 19, 1968Jun 6, 1972Uniroyal IncAlkyl-sulfoxide and alkyl-sulfone terminated oligomers
US3706672 *Dec 8, 1970Dec 19, 1972Celanese CorpDetergent polyelectrolyte builders
US3825498 *Jan 13, 1972Jul 23, 1974DegussaDishwashing detergent composition for use in dishwashing machines
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4031022 *Mar 2, 1976Jun 21, 1977Hoechst AktiengesellschaftBuilders for detergent and cleaning compositions
US4203858 *Oct 17, 1977May 20, 1980Gaf CorporationPhosphate-free machine dishwashing composition
US4490271 *Jun 30, 1983Dec 25, 1984The Procter & Gamble CompanyDetergent compositions containing polyethylene glycol and polyacrylate
US4579676 *Dec 17, 1984Apr 1, 1986Economics Laboratory, Inc.Low-phosphate liquid cleaning composition
US4597889 *Aug 30, 1984Jul 1, 1986Fmc CorporationHomogeneous laundry detergent slurries containing polymeric acrylic stabilizers
US4606842 *Jul 19, 1985Aug 19, 1986Drackett CompanyCleaning composition for glass and similar hard surfaces
US4657693 *Dec 23, 1985Apr 14, 1987The Procter & Gamble CompanySpray-dried granular detergent compositions containing tripolyphosphate detergent builder, polyethylene glycol and polyacrylate
US4676921 *Dec 23, 1982Jun 30, 1987The Procter & Gamble CompanyDetergent compositions containing ethoxylated amine polymers having clay soil removal/anti-redeposition properties
US4931203 *Mar 27, 1989Jun 5, 1990Colgate-Palmolive CompanyMethod for making an automatic dishwashing detergent powder by spraying drying and post-adding nonionic detergent
US4983317 *Apr 8, 1988Jan 8, 1991The Drackett CompanyAll purpose cleaner concentrate composition
US5126068 *Feb 13, 1991Jun 30, 1992Burke John JHard surface cleaning composition containing polyacrylate copolymers as performance boosters
US5126069 *Oct 12, 1990Jun 30, 1992Basf AktiengesellschaftWater-soluble or -dispersible, oxidized polymer detergent additives
US5409629 *Jul 19, 1991Apr 25, 1995Rohm And Haas CompanyUse of acrylic acid/ethyl acrylate copolymers for enhanced clay soil removal in liquid laundry detergents
US5489397 *Mar 4, 1994Feb 6, 1996National Starch And Chemical Investment Holding CorporationAqueous lamellar detergent compositions with hydrophobically terminated hydrophilic polymer
US5538671 *Mar 3, 1994Jul 23, 1996The Procter & Gamble CompanyDetergent compositions with builder system comprising aluminosilicates and polyaspartate
US5599784 *Mar 14, 1994Feb 4, 1997National Starch And Chemical Investment Holding CorporationAqueous lamellar detergent compositions with hydrophobically capped hydrophilic polymers
US5698511 *Apr 23, 1996Dec 16, 1997Colgate-Palmolive CompanyGranular detergent compositions containing deflocculating polymers and process for preparing such compositions
US5703175 *Jun 7, 1995Dec 30, 1997Diversey Lever, Inc.Caustic-stable modified polycarboxylate compound and method of making the same
US5714450 *Mar 15, 1996Feb 3, 1998Amway CorporationDetergent composition containing discrete whitening agent particles
US5714451 *Mar 15, 1996Feb 3, 1998Amway CorporationPowder detergent composition and method of making
US5723427 *Sep 18, 1995Mar 3, 1998Colgate-Palmolive CompanyGranular detergent compositions containing deflocculating polymers and processes for their preparation
US5770548 *May 14, 1996Jun 23, 1998S. C. Johnson & Son, Inc.Rinseable hard surface cleaner comprising silicate and hydrophobic acrylic polymer
US5868964 *Oct 16, 1991Feb 9, 1999Diversey CorporationCaustic-stable modified polycarboxylate compound and method of making the same
US5990068 *Mar 10, 1998Nov 23, 1999Amway CorporationPowder detergent composition having improved solubility
US5998351 *Mar 10, 1998Dec 7, 1999Amway CorporationDiscrete whitening agent particles method of making, and powder detergent containing same
US6008174 *Oct 23, 1997Dec 28, 1999Amway CorporationPowder detergent composition having improved solubility
US6080711 *Mar 10, 1998Jun 27, 2000Amway CorporationPowder detergent composition and method of making
US6090762 *Mar 10, 1998Jul 18, 2000Albright & Wilson Uk LimitedAqueous based surfactant compositions
US6177396Jul 17, 1996Jan 23, 2001Albright & Wilson Uk LimitedAqueous based surfactant compositions
US6177397Mar 10, 1997Jan 23, 2001Amway CorporationFree-flowing agglomerated nonionic surfactant detergent composition and process for making same
US6630440Aug 3, 1999Oct 7, 2003The Procter & Gamble CompanyRinse-aid formulation
US9279097Aug 14, 2014Mar 8, 2016Ecolab USA, Inc.Polymers for industrial laundry detergents
US20080318832 *Jun 19, 2007Dec 25, 2008Robb Richard GardnerLiquid detergent compositions with low polydispersity polyacrylic acid based polymers
CN1049607C *May 7, 1994Feb 23, 2000奥尔布赖特-威尔逊英国有限公司Concentrated aqueous based surfactant compositions
DE3443963A1 *Dec 1, 1984Jun 20, 1985Sandoz AgPhosphate-free liquid detergents
EP0130640A1 *Jun 18, 1984Jan 9, 1985THE PROCTER & GAMBLE COMPANYDetergents containing polyacrylate polymer
EP0132792A1 *Jul 19, 1984Feb 13, 1985DISPO-Kommerz AGWater soluble powdery cleaning agent for hard surfaces
EP0245987A2Apr 27, 1987Nov 19, 1987Rohm And Haas CompanyStable rinse aid formulation and method of forming same
EP0623670A2 *May 9, 1994Nov 9, 1994ALBRIGHT & WILSON UK LIMITEDAqueous based surfactant compositions
Classifications
U.S. Classification510/476, 510/361, 510/357
International ClassificationC11D3/00, C11D3/37
Cooperative ClassificationC11D3/3761
European ClassificationC11D3/37C6B