US3922747A - Magnetic window cleaning apparatus with improved cleaning material - Google Patents

Magnetic window cleaning apparatus with improved cleaning material Download PDF

Info

Publication number
US3922747A
US3922747A US381539A US38153973A US3922747A US 3922747 A US3922747 A US 3922747A US 381539 A US381539 A US 381539A US 38153973 A US38153973 A US 38153973A US 3922747 A US3922747 A US 3922747A
Authority
US
United States
Prior art keywords
window
paper
unit
chips
cleaning material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US381539A
Inventor
John A Kaftan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US807524A priority Critical patent/US3609793A/en
Priority to US00090900A priority patent/US3751750A/en
Application filed by Individual filed Critical Individual
Priority to US381539A priority patent/US3922747A/en
Application granted granted Critical
Publication of US3922747A publication Critical patent/US3922747A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/16Cloths; Pads; Sponges
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/06Hand implements
    • A47L1/12Hand implements for cleaning both sides simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Definitions

  • a 10- cator is provided for holding the slave unit in position until the master unit can be brought in position opposite the slave unit.
  • the locator is formed of magnetically-attracted material and has a suction cup for tem' porary mounting on the window.
  • the cleaning material is formed from a layer of absorbent paper having a discontinuous layer of polyethylene thereon. By being discontinuous, portions of the paper are exposed so that it can perform its absorption function.
  • the plastic also reduces the friction between the cleaning material and window, while each magnet has a rubber surface to provide maximum friction between it and the cleaning material. In this manner the cleaning material stays in place without an external fastener.
  • the cleaning material is made by spreading polyethylene chips on absorbent paper, heating the paper and chips to soften the chips, and passing the paper and chips between two rollers to press the chips into the paper to provide a discontinuous surface of plastic on the paper.
  • the invention pertains to window-cleaners and more particularly to a window cleaner which utilizes magnetic attraction.
  • Apparatus of this general type is useful for cleaning hard to-reach portions of a window and is particularly handy in cleaning the outside of a window from the inside.
  • Various devices of this general type have been previously suggested; for example see US. Pat. No. 3,296,645, issued Jan. 10, 1967 to Melvin Shore.
  • prior devices have included a pair of units positioned on opposite sides of a window, and having a magnetic member in each unit to provide a magnetic circuit to hold the units contiguous to the window.
  • the master unit could be moved over the window and the slave unit would follow.
  • the prior art has recognized the desirability to reduce the area of contact between the units and the win dow to reduce friction. In doing so, many moved the magnets away from the window and thereby reduced their effectiveness. It is desirable to have the magnets as close to the window as possible and still reduce the area of contact between the window and the cleaning material.
  • the present invention relates generally to cleaning apparatus, and more particularly to a magnetic window cleaning apparatus.
  • Another object is to provide a magnetic window cleaning apparatus which utilizes friction to hold the cleaning material in position.
  • Still another object is to provide a magnetic window cleaning apparatus which includes means for reducing the friction between the cleaning material and the window.
  • Yet another object is to provide a magnetic window cleaning apparatus having a new cleaning material including a layer of absorbent paper and a discontinuous layer of plastic.
  • FIG. 1 is a partially exploded perspective view of a preferred embodiment of the present invention with the master unit being illustrated in its operating position adjacent one surface of the window, and the slave unit being shown on the other side of the window and generally opposite the master unit, but positioned away from the window for better illustration of its structure;
  • FIG. 2 is a vertical sectional view through the apparatus of FIG. 1 and illustrating the master and slave units in operative position on opposite sides of a window;
  • FIG. 3 is a vertical sectional view through the master and slave units and the locator and illustrating the locator temporarily holding the slave unit in position with the master being moved into operative position;
  • FIG. 4 is an elevation of 'the locator as seen from the window-facing side
  • FIG. 5 is a bottom view of the locator
  • FIG. 6 is a generally diagrammatic view of the magnetic members and illustrating the pattern of the polar- "y;
  • FIGS. 7 and 7A are small scale views of one magnetic member of two different embodiments and indicating the direction of tests of the tracking strength of each;
  • FIGS. 8 and 8A are small scale views of one magnetic member of two different embodiments and indicating the direction of tests of the tracking strength of each;
  • FIG. 9 is a diagrammatic view of one apparatus for making the cleaning material.
  • FIG. 10 is a diagrammatic, cross-sectional view on a greatly enlarged scale through the cleaning material.
  • the magnetic window cleaning apparatus includes a master unit, generally designated 10, and a slave unit, generally designated 12. These units are adapted to be positioned on either side of a window 14 opposite one another.
  • the master unit 10 includes a one-piece magnetic member 20 which is polarized in a plurality of regions as hereinafter more particularly set forth.
  • the magnetic member 20 is disposed in a housing 22 to which is affixed a handle 24 by means of a reduced neck 26.
  • the handle, neck, and housing are advantageously molded of plastic in one or two pieces.
  • the handle 24 may have a label 27 for advertising or the like.
  • the elements of the master unit 10 find counterparts in the slave unit 12 and the counterparts are indicated by the same numeral followed by the postscript prime Accordingly, a general description of the slave unit is deemed unnecessary. Differences, however, will be noted.
  • the master unit 10 preferably has a shunting plate 28 at the rear side of magnetic member 20.
  • the master unit has a thin layer of rubber 29 on its window-facing side. Its purpose will hereafter be explained.
  • the polarity of the magnetic members is generally opposite, but of identical patterns as will now be explained.
  • FIG. 6 there is diagrammatically illustrated the magnetic members 20 and 20'.
  • the magnetic members 20 and 20' Preferably,
  • these members are one-piece and are made of ferrite material.
  • the magnetic member 20 is made of barium ferrite.
  • the magnetic member 20 of the slave unit can be similarly constructed and with a rubber cover, or it can be made of a rubber impregnated magnetic material. It is to be understood that these are equivalents.
  • These materials can be permanently polarized and, as indicated, it is possible to polarize a single large sheet of material in a plurality of regions on its face to provide the preferred structure.
  • the one-piece construction is generally self-shunting at the side away from the window and no shunting plate is required; however, the shunting plate 28 can be used to increase the strength of the magnetic elements by eliminating stray field at the back side.
  • One suitable commercially available material is an oriented ferrite sold under the trademark Indox 5 by Indiana General Corporation. This material may be magnetized in a magnetizing jig suitably arranged to provide the multiple polarity in the alternating pattern shown in FIG. 6. It can be seen that there are eight poles of equal size on the window-facing side of each member and 20. In this manner, the number of north and south poles are equal and this balance makes the magnet more elflcient. It can also be seen that the pattern at the window-facing side of magnetic member 20 is identical to that at the window-facing side of member 20f. Production is thereby simplified as only one pattern is required and one magnetizing jig can be utilized for both members. It can also be seen that magnetic members 20 and 20 are arranged with the eight poles in a generally triangular shape. This shape presents lines of opposite polarity along the diagonals of the members and results in improved tracking ability.
  • FIGS. 7 and 7A there will be described tests which illustrate this improved result.
  • the tests were performed on a clean, dry, glass window of one-eighth inch thickness.
  • the rectangular arrangement (FIG. 7A) and the triangular arrangement (FIG. 7) are identical except for the pattern of the polarity.
  • Both sets of magnetic members are formed of oriented ceramic material 3 X 4 inches X inch in size, with /s inch polyether foam on the window-facing side thereof.
  • a cleaning paper was used along with the fasteners described in the above-mentioned parent application.
  • Shunting plates, of 20-gauge material, were used in both arrangements of these tests.
  • a master unit and slave unit of each arrangement was placed on the window with a spring gauge attached to the slave unit.
  • the master unit was moved in each direction indicated by arrows x, y, and z, with the spring gauge on the slave unit resisting the movement. These directions represent the width, length and diagonal, respectively, of the magnetic members. Readings were taken on the spring gauge at the maximum tension when the units separated with the following results:
  • the triangular pattern is more efficient because there are more direct lines of opposing force. In other words, there are edges of poles lying crosswise of the direction of movement. This is advantageous when the master unit is moved in a circular pattern the way windows are often cleaned.
  • Square units also have improved tracking ability over circular units.
  • FIGS. 8 and 8A there will be described tests which illustrate this.
  • the tests utilized A inch thick ferrite magnetic material.
  • Two circular units were made having a 3 inch outer diameter and a /2 inch opening at the center as in FIG. 8A.
  • Two units were made as in FIG. 8 with a dimension of 3 X 3 inches and provided with a /2 inch opening at the center to make the units as close as possible to the circular units disclosed in the above-mentioned US. Pat. No. 3,296,645. All four units were magnetized by the same fixture or jig so that they had the same pattern. All four units were provided with back plates made from 18 gauge cold rolled steel.
  • the test was performed on a 0.090 inch thick piece of plate glass, with one magnetic member on each side of the glass.
  • a sheet of cleaning Direction Triangular Pattern Circular Pattern x r 3.6 2.7 Y 3 .6 2.7# 2 4.2 2.7#
  • the triangular pattern is superior in all tests; however, in the X and Y direction the improvement appears to result directly from the greater area of material in the triangular pattern. In the Z direction, however, the triangular pattern is over more effective than the circular pattern and it is believed that the improvement results from greater efficiency of the tracking forces in the comers.
  • the use of the triangular pattern in a rectangular unit thus gives more efficient utilization of the face area of the unit, increases the strength in the X and Y direction due to the increase in area, and increases the strength in the Z direction due to the increased tracking force along the diagonals.
  • This application is also particularly directed to a locator 50 (see FIGS. 3-5), a new cleaning material (best shown in FIG. 10), a method of making the cleaning material as by the apparatus of FIG. 9, and structure of the units which allows the cleaning material to be used without any fastener.
  • the locator 50 allows placement of the slave unit 12 on the window 14 without the master unit 10 holding the slave unit in place. This allows use of the apparatus on windows that do not open or at the front panel of a showcase, for example.
  • the locator 50 includes a body portion 51, and a laterally offset neck portion 52 connected thereto by an intermediate portion 53. These portions are made of magnetically attracted material, such as steel.
  • a plurality of ribs 54 extend outwardly from the master unit facing side of the body 51 to prevent the master unit from coming in full contact with the body 51.
  • a suction cup 55 is mounted on the neck 52 for attaching the locator to the window as shown in FIG. 3. Reinforcing ribs 56 are provided on the neck 52 to stiffen the same and prevent bending when the suction cup 55 is removed from the window.
  • the locator 50 is attached to a window 14 adjacent a lower frame 14a thereof.
  • the slave unit 12 is positioned directly opposite the locator and preferably rests on the frame 14a.
  • the slave unit will attract the locator and be held in position by the attraction.
  • the master unit 10 is brought into position as shown in FIG. 3 directly opposite the slave unit.
  • the suction cup 55 is detached and the locator slid upwardly from between the two units while the master unit assumes the position of FIG. 2. The procedure is reversed for removal of the units.
  • the new cleaning material 60 comprises a layer of absorbent paper 62 and a discontinuous layer of plastic 64 (see FIG. 10).
  • the paper is paper toweling purchased from Scott Paper Co., Marinette, Wisconsin.
  • the paper is about 0.005 inch thick.
  • the plastic is preferably polyethylene chips of 35 mesh size. This works best for reducing friction at the window.
  • PEP 750 sold by Union Carbide Co., Chicago, lliinois.
  • the layer of plastic rises about 0.005 inch above the surface of the paper.
  • FIG. 9 illustrates one suitable apparatus for making the new cleaning material.
  • a sheet of paper 71 is taken from a roll 72. The sheet passes over rollers 73 and 74 and then under a spreader 75 where the chips are spread on the paper at a rate of about twice the weight of the paper. This gives a coverage of about half of the surface of the paper, but when the manufacturing process is complete, somewhat less than half of the area is exposed. A visual inspection shows about three-quarter coverage by the discontinuous layer of plastic 64.
  • the sheet 71 is then passed through an infrared oven 76 having six 1000 watt units 77 therein. This melts the plastic chips.
  • the plastic chips are pressed into the paper by means of rolls '78, 79 which are spaced 0.01 inch apart. Roll 78 should be allowed to get hot for this operation and the heat from the heated paper and plastic is sufficient.
  • the cleaning material is passed over idle rollers 8i-83 for cooling and then between feed rollers 84, 85.
  • a rotary cutter 86 cuts the cleaning material to size.
  • the plastic 64 is discontinuous and this allows the paper 62 to perform its absorbent function.
  • the plastic also reduces the friction at the window-facing side and thereby aids in the tracking function. There is also some scouring performed by the plastic chips.
  • the magnetic element presents a continuous face for contacting the cleaning material.
  • a rubber layer 29 or the magnetic element is rubber impregnated as described above. This increases the friction between it and the back side of the cleaning material and thereby causes 6 the cleaning material to stay in position without any external fastener.
  • housing 22 of the slave unit 12 is made of steel and also serves as a shunting plate.
  • a magnetic window cleaning apparatus of the type having a pair of units adapted to be positioned on either side of a window opposite each other, each unit having a window-facing side and magnet means for attracting the opposite unit,- one unit being a master unit adapted to be moved over one side of the window, and the other unit being a slave unit adapted to follow the master unit, wherein the improvement comprises: the windowfacing side of each unit being substantially flat over its entire area; a sheet of cleaning material overlying the window-facing side of each unit and comprising a layer of absorbent paper of preselected thickness having polyethylene chips of 35 mesh size on only the windowfacing side of the paper; the polyethylene being about 0.005 inch thick and in a discontinuous layer so that about 50% of the area of the paper is exposed for its absorption function; the polyethylene providing a reduced friction between the cleaning material and the window; and the window-facing side of each unit being formed at least partly of rubber to provide a high-friction surface for engaging the paper at the back side of the cleaning material so that the cleaning material will adhere
  • a magnetic window cleaning apparatus including: a pair of units adapted to be positioned on either side of a window opposite each other; each unit having a window-facing side which is substantially planar over at least a major portion of its area; each unit having magnet means for attracting the opposite unit; one unit being a master unit adapted to be moved over one side of the window, and the other unit being a slave unit adapted to follow the master unit; a sheet of cleaning material overlying the window-facing side of each unit and comprising a layer of absorbent paper having plastic material only on the window-facing side of the paper; the plastic material being a discontinuous layer of polyethylene chips arranged so that about 50% of the area of the paper is exposed for its absorption function; and the polyethylene chips rising above the surface of the paper a distance approximating the thickness of the paper and providing a reduced friction between the cleaning material and the window.

Abstract

Master and slave units are provided and each has a one-piece, plural-polarized permanent magnet. A locator is provided for holding the slave unit in position until the master unit can be brought in position opposite the slave unit. The locator is formed of magnetically-attracted material and has a suction cup for temporary mounting on the window. The cleaning material is formed from a layer of absorbent paper having a discontinuous layer of polyethylene thereon. By being discontinuous, portions of the paper are exposed so that it can perform its absorption function. The plastic also reduces the friction between the cleaning material and window, while each magnet has a rubber surface to provide maximum friction between it and the cleaning material. In this manner the cleaning material stays in place without an external fastener. The cleaning material is made by spreading polyethylene chips on absorbent paper, heating the paper and chips to soften the chips, and passing the paper and chips between two rollers to press the chips into the paper to provide a discontinuous surface of plastic on the paper.

Description

United States Patent 1 1 Kaftan 1 1 MAGNETIC WINDOW CLEANING APPARATUS WITH IMPROVED CLEANING MATERIAL [76] Inventor: John A. Kaftan, 324 N. Roosevelt,
Green Bay, Wis. 54301 [22] Filed: July 23, I973 [21] Appl. No.: 381,539
Related US. Application Data [60] Division of Ser. No. 90900, Nov. 19, 1970, Pat. No. 3,751,750, which is a continuation-in-part of Ser. No. 807,524, March 17, 1969, Pat. Nov 3,609,793.
[52] US. Cl. 15/220 A; 161/89 [51] Int. Cl. A47L l/08 [58] Field of Search 15/220, 218, 219, 220 A, 15/104.93;161/89,113; 117/21 [56] References Cited UNITED STATES PATENTS 2,908,028 10/1959 Runton 15/245 3,444,579 5/1969 Thomford 161/39 FOREIGN PATENTS OR APPLICATIONS 888,344 l/l962 United Kingdom 15/220 A ram lasts Primary Examinerllarvey C. Hornsby Assistant ExaminerJames A. Niegowski [57] ABSTRACT Master and slave units are provided and each has a one-piece, plural-polarized permanent magnet. A 10- cator is provided for holding the slave unit in position until the master unit can be brought in position opposite the slave unit. The locator is formed of magnetically-attracted material and has a suction cup for tem' porary mounting on the window. The cleaning material is formed from a layer of absorbent paper having a discontinuous layer of polyethylene thereon. By being discontinuous, portions of the paper are exposed so that it can perform its absorption function. The plastic also reduces the friction between the cleaning material and window, while each magnet has a rubber surface to provide maximum friction between it and the cleaning material. In this manner the cleaning material stays in place without an external fastener.
The cleaning material is made by spreading polyethylene chips on absorbent paper, heating the paper and chips to soften the chips, and passing the paper and chips between two rollers to press the chips into the paper to provide a discontinuous surface of plastic on the paper.
6 Claims, 12 Drawing Figures Shet 1 of 3 3,922,747
U.S. Patent Dec. 2, 1975 US. Patent Dec. 2, 1975 shw 2 of3 3,922,747
Sheet 3 of3 3,922,747
U.S. Patent Dec. 2, 1975 MAGNETIC WINDOW CLEANING APPARATUS WITH IMPROVED CLEANING MATERIAL CROSS-REFERENCE This is a division of application Ser. No. 90,900, filed Nov. 19, 1970; now US. Pat. No. 3,751,750; which, in turn, was a continuation-impart application of application Ser. No. 807,524, filed Mar. 17, 1969, and now US. Pat. No. 3,609,793.
BACKGROUND The invention pertains to window-cleaners and more particularly to a window cleaner which utilizes magnetic attraction.
Apparatus of this general type is useful for cleaning hard to-reach portions of a window and is particularly handy in cleaning the outside of a window from the inside. Various devices of this general type have been previously suggested; for example see US. Pat. No. 3,296,645, issued Jan. 10, 1967 to Melvin Shore. In general, prior devices have included a pair of units positioned on opposite sides of a window, and having a magnetic member in each unit to provide a magnetic circuit to hold the units contiguous to the window. In theory, the master unit could be moved over the window and the slave unit would follow.
The prior art has recognized the desirability to reduce the area of contact between the units and the win dow to reduce friction. In doing so, many moved the magnets away from the window and thereby reduced their effectiveness. It is desirable to have the magnets as close to the window as possible and still reduce the area of contact between the window and the cleaning material.
SUMMARY The present invention relates generally to cleaning apparatus, and more particularly to a magnetic window cleaning apparatus.
It is an object of the present invention to provide a magnetic window cleaning apparatus in which the cleaning material is held in position without any fastener.
Another object is to provide a magnetic window cleaning apparatus which utilizes friction to hold the cleaning material in position.
Still another object is to provide a magnetic window cleaning apparatus which includes means for reducing the friction between the cleaning material and the window.
Yet another object is to provide a magnetic window cleaning apparatus having a new cleaning material including a layer of absorbent paper and a discontinuous layer of plastic.
It is another object to provide a method of making a cleaning material as set forth in the foregoing object.
It is another object to provide a magnetic window cleaning apparatus with improved tracking characteristics.
These and other objects and advantages of the present invention will become apparent as the same becomes better understood from the following detailed description when taken in conjunction with the accompanying drawings.
DRAWING FIG. 1 is a partially exploded perspective view of a preferred embodiment of the present invention with the master unit being illustrated in its operating position adjacent one surface of the window, and the slave unit being shown on the other side of the window and generally opposite the master unit, but positioned away from the window for better illustration of its structure;
FIG. 2 is a vertical sectional view through the apparatus of FIG. 1 and illustrating the master and slave units in operative position on opposite sides of a window;
FIG. 3 is a vertical sectional view through the master and slave units and the locator and illustrating the locator temporarily holding the slave unit in position with the master being moved into operative position;
FIG. 4 is an elevation of 'the locator as seen from the window-facing side;
FIG. 5 is a bottom view of the locator;
FIG. 6 is a generally diagrammatic view of the magnetic members and illustrating the pattern of the polar- "y;
FIGS. 7 and 7A are small scale views of one magnetic member of two different embodiments and indicating the direction of tests of the tracking strength of each;
FIGS. 8 and 8A are small scale views of one magnetic member of two different embodiments and indicating the direction of tests of the tracking strength of each;
FIG. 9 is a diagrammatic view of one apparatus for making the cleaning material; and
FIG. 10 is a diagrammatic, cross-sectional view on a greatly enlarged scale through the cleaning material.
DESCRIPTION Reference is now made more particularly to the drawings wherein similar reference characters indicate the same parts throughout the several views.
The magnetic window cleaning apparatus includes a master unit, generally designated 10, and a slave unit, generally designated 12. These units are adapted to be positioned on either side of a window 14 opposite one another.
The master unit 10 includes a one-piece magnetic member 20 which is polarized in a plurality of regions as hereinafter more particularly set forth. The magnetic member 20 is disposed in a housing 22 to which is affixed a handle 24 by means of a reduced neck 26. The handle, neck, and housing are advantageously molded of plastic in one or two pieces. The handle 24 may have a label 27 for advertising or the like.
As thus far described, the elements of the master unit 10 find counterparts in the slave unit 12 and the counterparts are indicated by the same numeral followed by the postscript prime Accordingly, a general description of the slave unit is deemed unnecessary. Differences, however, will be noted. First, there is no handle on the slave unit but rather the housing 22' is provided with an eye 23 through which a chain or string can be passed as a safety measure in utilizing the slave unit. Secondly, the master unit 10 preferably has a shunting plate 28 at the rear side of magnetic member 20. Thirdly, the master unit has a thin layer of rubber 29 on its window-facing side. Its purpose will hereafter be explained. Lastly, it will be noted that the polarity of the magnetic members is generally opposite, but of identical patterns as will now be explained.
Referring to FIG. 6, there is diagrammatically illustrated the magnetic members 20 and 20'. Preferably,
these members are one-piece and are made of ferrite material. As shown in FIGS. 2 and 3, the magnetic member 20 is made of barium ferrite. The magnetic member 20 of the slave unit can be similarly constructed and with a rubber cover, or it can be made of a rubber impregnated magnetic material. It is to be understood that these are equivalents. These materials can be permanently polarized and, as indicated, it is possible to polarize a single large sheet of material in a plurality of regions on its face to provide the preferred structure. In operation, the one-piece construction is generally self-shunting at the side away from the window and no shunting plate is required; however, the shunting plate 28 can be used to increase the strength of the magnetic elements by eliminating stray field at the back side. One suitable commercially available material is an oriented ferrite sold under the trademark Indox 5 by Indiana General Corporation. This material may be magnetized in a magnetizing jig suitably arranged to provide the multiple polarity in the alternating pattern shown in FIG. 6. It can be seen that there are eight poles of equal size on the window-facing side of each member and 20. In this manner, the number of north and south poles are equal and this balance makes the magnet more elflcient. It can also be seen that the pattern at the window-facing side of magnetic member 20 is identical to that at the window-facing side of member 20f. Production is thereby simplified as only one pattern is required and one magnetizing jig can be utilized for both members. It can also be seen that magnetic members 20 and 20 are arranged with the eight poles in a generally triangular shape. This shape presents lines of opposite polarity along the diagonals of the members and results in improved tracking ability.
Referring now to FIGS. 7 and 7A, there will be described tests which illustrate this improved result. The tests were performed on a clean, dry, glass window of one-eighth inch thickness. The rectangular arrangement (FIG. 7A) and the triangular arrangement (FIG. 7) are identical except for the pattern of the polarity. Both sets of magnetic members are formed of oriented ceramic material 3 X 4 inches X inch in size, with /s inch polyether foam on the window-facing side thereof. A cleaning paper was used along with the fasteners described in the above-mentioned parent application. Shunting plates, of 20-gauge material, were used in both arrangements of these tests.
A master unit and slave unit of each arrangement was placed on the window with a spring gauge attached to the slave unit. The master unit was moved in each direction indicated by arrows x, y, and z, with the spring gauge on the slave unit resisting the movement. These directions represent the width, length and diagonal, respectively, of the magnetic members. Readings were taken on the spring gauge at the maximum tension when the units separated with the following results:
It can be seen that the triangular pattern (8 pole) was superior in all tests. It is believed that the balance of north and south poles aids in this result. Also, where the corners of several poles meet, there is effectively no magnetism. The rectangular pattern has four such areas, while the triangular pattern has only one such area.
In the diagonal direction z, the triangular pattern is more efficient because there are more direct lines of opposing force. In other words, there are edges of poles lying crosswise of the direction of movement. This is advantageous when the master unit is moved in a circular pattern the way windows are often cleaned.
Square units also have improved tracking ability over circular units. Referring now to FIGS. 8 and 8A, there will be described tests which illustrate this. The tests utilized A inch thick ferrite magnetic material. Two circular units were made having a 3 inch outer diameter and a /2 inch opening at the center as in FIG. 8A. Two units were made as in FIG. 8 with a dimension of 3 X 3 inches and provided with a /2 inch opening at the center to make the units as close as possible to the circular units disclosed in the above-mentioned US. Pat. No. 3,296,645. All four units were magnetized by the same fixture or jig so that they had the same pattern. All four units were provided with back plates made from 18 gauge cold rolled steel. The test was performed on a 0.090 inch thick piece of plate glass, with one magnetic member on each side of the glass. A sheet of cleaning Direction Triangular Pattern Circular Pattern x r 3.6 2.7 Y 3 .6 2.7# 2 4.2 2.7#
The triangular pattern is superior in all tests; however, in the X and Y direction the improvement appears to result directly from the greater area of material in the triangular pattern. In the Z direction, however, the triangular pattern is over more effective than the circular pattern and it is believed that the improvement results from greater efficiency of the tracking forces in the comers. The use of the triangular pattern in a rectangular unit thus gives more efficient utilization of the face area of the unit, increases the strength in the X and Y direction due to the increase in area, and increases the strength in the Z direction due to the increased tracking force along the diagonals.
This application is also particularly directed to a locator 50 (see FIGS. 3-5), a new cleaning material (best shown in FIG. 10), a method of making the cleaning material as by the apparatus of FIG. 9, and structure of the units which allows the cleaning material to be used without any fastener.
The locator 50 allows placement of the slave unit 12 on the window 14 without the master unit 10 holding the slave unit in place. This allows use of the apparatus on windows that do not open or at the front panel of a showcase, for example.
As shown in FIGS. 3-5, the locator 50 includes a body portion 51, and a laterally offset neck portion 52 connected thereto by an intermediate portion 53. These portions are made of magnetically attracted material, such as steel. A plurality of ribs 54 extend outwardly from the master unit facing side of the body 51 to prevent the master unit from coming in full contact with the body 51. A suction cup 55 is mounted on the neck 52 for attaching the locator to the window as shown in FIG. 3. Reinforcing ribs 56 are provided on the neck 52 to stiffen the same and prevent bending when the suction cup 55 is removed from the window.
In use, the locator 50 is attached to a window 14 adjacent a lower frame 14a thereof. The slave unit 12 is positioned directly opposite the locator and preferably rests on the frame 14a. The slave unit will attract the locator and be held in position by the attraction. The master unit 10 is brought into position as shown in FIG. 3 directly opposite the slave unit. The suction cup 55 is detached and the locator slid upwardly from between the two units while the master unit assumes the position of FIG. 2. The procedure is reversed for removal of the units.
The new cleaning material 60 comprises a layer of absorbent paper 62 and a discontinuous layer of plastic 64 (see FIG. 10). The paper is paper toweling purchased from Scott Paper Co., Marinette, Wisconsin. The paper is about 0.005 inch thick. The plastic is preferably polyethylene chips of 35 mesh size. This works best for reducing friction at the window. One suitable type is PEP 750 sold by Union Carbide Co., Chicago, lliinois. The layer of plastic rises about 0.005 inch above the surface of the paper.
FIG. 9 illustrates one suitable apparatus for making the new cleaning material. A sheet of paper 71 is taken from a roll 72. The sheet passes over rollers 73 and 74 and then under a spreader 75 where the chips are spread on the paper at a rate of about twice the weight of the paper. This gives a coverage of about half of the surface of the paper, but when the manufacturing process is complete, somewhat less than half of the area is exposed. A visual inspection shows about three-quarter coverage by the discontinuous layer of plastic 64. The sheet 71 is then passed through an infrared oven 76 having six 1000 watt units 77 therein. This melts the plastic chips. As the hot paper and plastic emerges from the oven, the plastic chips are pressed into the paper by means of rolls '78, 79 which are spaced 0.01 inch apart. Roll 78 should be allowed to get hot for this operation and the heat from the heated paper and plastic is sufficient. The cleaning material is passed over idle rollers 8i-83 for cooling and then between feed rollers 84, 85. A rotary cutter 86 cuts the cleaning material to size.
As indicated above, the plastic 64 is discontinuous and this allows the paper 62 to perform its absorbent function. The plastic also reduces the friction at the window-facing side and thereby aids in the tracking function. There is also some scouring performed by the plastic chips.
Although the friction is reduced at the Window-facing side, there is no reduction at the side facing the magnetic element. Preferably the magnetic element presents a continuous face for contacting the cleaning material. Also there is either a rubber layer 29 or the magnetic element is rubber impregnated as described above. This increases the friction between it and the back side of the cleaning material and thereby causes 6 the cleaning material to stay in position without any external fastener.
In the specific embodiment illustrated, housing 22 of the slave unit 12 is made of steel and also serves as a shunting plate.
It is now deemed obvious that there has been disclosed a magnetic window cleaning apparatus with an improved paper and locator.
I claim:
1. A magnetic window cleaning apparatus of the type having a pair of units adapted to be positioned on either side of a window opposite each other, each unit having a window-facing side and magnet means for attracting the opposite unit,- one unit being a master unit adapted to be moved over one side of the window, and the other unit being a slave unit adapted to follow the master unit, wherein the improvement comprises: the windowfacing side of each unit being substantially flat over its entire area; a sheet of cleaning material overlying the window-facing side of each unit and comprising a layer of absorbent paper of preselected thickness having polyethylene chips of 35 mesh size on only the windowfacing side of the paper; the polyethylene being about 0.005 inch thick and in a discontinuous layer so that about 50% of the area of the paper is exposed for its absorption function; the polyethylene providing a reduced friction between the cleaning material and the window; and the window-facing side of each unit being formed at least partly of rubber to provide a high-friction surface for engaging the paper at the back side of the cleaning material so that the cleaning material will adhere to the rubber surface without additional fastening means as the unit is moved over the window.
2. The combination of claim 1 wherein the thickness of the polyethylene is approximately the thickness of the paper, and the polyethylene chips have a weight about twice the weight of the paper alone.
3. A magnetic window cleaning apparatus including: a pair of units adapted to be positioned on either side of a window opposite each other; each unit having a window-facing side which is substantially planar over at least a major portion of its area; each unit having magnet means for attracting the opposite unit; one unit being a master unit adapted to be moved over one side of the window, and the other unit being a slave unit adapted to follow the master unit; a sheet of cleaning material overlying the window-facing side of each unit and comprising a layer of absorbent paper having plastic material only on the window-facing side of the paper; the plastic material being a discontinuous layer of polyethylene chips arranged so that about 50% of the area of the paper is exposed for its absorption function; and the polyethylene chips rising above the surface of the paper a distance approximating the thickness of the paper and providing a reduced friction between the cleaning material and the window.
4. The combination of claim 3 wherein the polyethylene chips have a weight about twice the weight of the paper alone.
5. The combination of claim 4 wherein the polyethylene chips are about a 35 mesh size.
6. The combination of claim 5 wherein the paper is about 0.005 inch thick, and the polyethylene chips rise about 0.005 inch above the surface of the paper.

Claims (6)

1. A MAGNETIC WINDOWN CLEANING APPARATUS OF THE TYPE HAVING A PAIR OF UNITS ADAPTED TO BE POSITIONED ON EITHER SIDE OF A WINDOW OPPOSITE EACH OTHER, EACH UNIT HAVING A WINDOW-FACING SIDE AND MAGNET MEANS FOR ATTRACTING THE OPPOSITE UNIT, ONE UNIT BEING A MASTER NIT ADAPTED TO BE MOVED OVER ONE SIDE OF THE WINDOW, AND THE OTHER UNIT BEING A SLAVE UNIT ADAPTED TO FOLLOW THE MASTER UNIT, WHEREIN THE IMPROVEMENT COMPRISES: THE WINDOW-FACING SIDE OF EACH UNIT BEING SUBSTANTIALLY FLAT OVER ITS ENTIRE AREA; A SHEET OF CLEANING MATERIAL OVERLYING THE WINDOW-FACING SIDE OF EACH UNIT AND COMPRISING A LAYER OF ABSROBENT PAPER OF PRESELECTED THICKNESS HAVING POLYETHYLENE CHIPS OF 35 MESH SIZE ON ONLY THE WINDOW-FACING SIDE OF THE PAPER; THE POLYETHYLENE BEING ABOUT 0.005 INCH THICK AND IN A DISCONTINUOUS LAYER SO THAT ABOUT 50% OF THE
2. The combination of claim 1 wherein the thickness of the polyethylene is approximately the thickness of the paper, and the polyethylene chips have a weight about twice the weight of the paper alone.
3. A magnetic window cleaning apparatus including: a pair of units adapted to be positioned on either side of a window opposite each other; each unit having a window-facing side which is substantially planar over at least a major portion of its area; each unit having magnet means for attracting the opposite unit; one unit being a master unit adapted to be moved over one side of the window, and the other unit being a slave unit adapted to follow the master unit; a sheet of cleaning material overlying the window-facing side of each unit and comprising a layer of absorbent paper having plastic material only on the window-facing side of the paper; the plastic material being a discontinuous layer of polyethylene chips arranged so that about 50% of the area of the paper is exposed for its absorption function; and the polyethylene chips rising above the surface of the paper a distance approximating the thickness of the paper and providing a reduced friction between the cleaning material and the window.
4. The combination of claim 3 wherein the polyethylene chips have a weight about twice the weight of the paper alone.
5. The combination of claim 4 wherein the polyethylene chips are about a 35 mesh size.
6. The combination of claim 5 wherein the paper is about 0.005 inch thick, and the polyethylene chips rise about 0.005 inch above the surface of the paper.
US381539A 1969-03-17 1973-07-23 Magnetic window cleaning apparatus with improved cleaning material Expired - Lifetime US3922747A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US807524A US3609793A (en) 1969-03-17 1969-03-17 Magnetic window cleaning apparatus
US00090900A US3751750A (en) 1969-03-17 1970-11-19 Magnetic window cleaning apparatus with improved cleaning material and locator
US381539A US3922747A (en) 1969-03-17 1973-07-23 Magnetic window cleaning apparatus with improved cleaning material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US80752469A 1969-03-17 1969-03-17
US9090070A 1970-11-19 1970-11-19
US381539A US3922747A (en) 1969-03-17 1973-07-23 Magnetic window cleaning apparatus with improved cleaning material

Publications (1)

Publication Number Publication Date
US3922747A true US3922747A (en) 1975-12-02

Family

ID=27376686

Family Applications (3)

Application Number Title Priority Date Filing Date
US807524A Expired - Lifetime US3609793A (en) 1969-03-17 1969-03-17 Magnetic window cleaning apparatus
US00090900A Expired - Lifetime US3751750A (en) 1969-03-17 1970-11-19 Magnetic window cleaning apparatus with improved cleaning material and locator
US381539A Expired - Lifetime US3922747A (en) 1969-03-17 1973-07-23 Magnetic window cleaning apparatus with improved cleaning material

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US807524A Expired - Lifetime US3609793A (en) 1969-03-17 1969-03-17 Magnetic window cleaning apparatus
US00090900A Expired - Lifetime US3751750A (en) 1969-03-17 1970-11-19 Magnetic window cleaning apparatus with improved cleaning material and locator

Country Status (1)

Country Link
US (3) US3609793A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480680A1 (en) * 1980-04-21 1981-10-23 Levy Daniel MAGNETIC PRESSURE ERASER BLOCK, MAKING A MARKER
WO1986007271A1 (en) * 1985-06-13 1986-12-18 Michael Chase Magnetic occluding device
DE3903040A1 (en) * 1988-08-22 1990-03-01 Andreas Hohlbauch Method and device for the internal cleaning of insulating-glass panes
US4977637A (en) * 1990-02-16 1990-12-18 Demers Rodney C Magnetic window cleaning apparatus
US5515570A (en) * 1994-12-16 1996-05-14 Muscroft; Robert Manually operated magnetic window wiper
US6221170B1 (en) 1999-12-02 2001-04-24 Caren Marzban Magnetic apparatus and method for wiping fog in a diving mask
DE102006022932A1 (en) * 2006-05-04 2007-11-08 Bakker Holding Son B.V. Aquarium device for cleaning aquaria glass panes, especially their inner side, has inner and outer elements mutually attracted via a magnetic force
US20090211533A1 (en) * 2008-02-14 2009-08-27 Julian Sprung Magnetic cleaning device and methods of making and using such a cleaning device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759621A (en) * 1971-10-07 1973-09-18 Carlo J De Window cleaning apparatus
US4006512A (en) * 1974-07-12 1977-02-08 Saulson Saul S Magnetic bumper and pickup device
US4144091A (en) * 1977-12-01 1979-03-13 Tran Nguon T Window wipe
US6238205B1 (en) * 2000-05-13 2001-05-29 Optimus International Ab Burner assembly
US6634052B2 (en) * 2001-02-21 2003-10-21 Bakker Holding Son B.V. Apparatus for remotely cleaning interior walls of tanks from the tank exterior
US20040049872A1 (en) * 2002-09-13 2004-03-18 Mcloughlin John E. Mechanical cleaning system
US6731439B1 (en) 2002-10-16 2004-05-04 Thomas Peachee Environment viewing enabling system and method
US20070176849A1 (en) * 2006-01-27 2007-08-02 Aspen Pet Products, Inc. Magnifying viewing apparatus
US8151401B2 (en) * 2007-10-25 2012-04-10 Brian Cheyne Variable strength magnetic window cleaning device
US20120204803A1 (en) * 2008-02-14 2012-08-16 Julian Sprung Magnetic cleaning device
US20110214753A1 (en) * 2010-03-05 2011-09-08 Julian Sprung Magnetic device and method of using such device to clean the inner surface of a tube, and methods and devices for siphoning fluid
KR101081927B1 (en) * 2010-05-15 2011-11-09 주식회사 일심글로발 Window cleaning apparatus and method for controlling the apparatus's moving
US8528149B2 (en) * 2010-08-18 2013-09-10 Daniel J Statkus Magnet-assisted moisture removal device
CN102846269B (en) * 2011-07-01 2015-12-16 科沃斯机器人有限公司 Window cleaning system and method for operating thereof
CN102949143B (en) 2011-08-29 2016-02-10 科沃斯机器人有限公司 Glass cleaning device and control method thereof
CN103271698A (en) * 2013-05-23 2013-09-04 吴江市董鑫塑料包装厂 Glass wiping device
USD745235S1 (en) * 2014-08-29 2015-12-08 Erik Hagenstad Magnetic glass vessel cleaner
USD745236S1 (en) * 2014-08-29 2015-12-08 Erik Hagenstad Magnetic glass vessel cleaner
US10384651B2 (en) 2015-02-19 2019-08-20 Joseph E. Kovarik System and method for removing light scattering film from the interior of a windshield
US10306872B2 (en) 2017-01-10 2019-06-04 Pier Aquarium, Inc. Aquarium cleaning device
KR101789739B1 (en) * 2017-06-07 2017-10-25 강희영 Cleaning Assembly
USD930929S1 (en) * 2018-11-08 2021-09-14 Tyroler Ltd. Adjustable magnetic window cleaner
TWM593140U (en) * 2019-12-17 2020-04-11 彰洋材料股份有限公司 Feeding device for pets
USD922709S1 (en) * 2020-12-29 2021-06-15 Zhouchi Xiao Dual sided window cleaner
US11779185B2 (en) * 2021-02-16 2023-10-10 Munchkin, Inc. Magnetic sponge assembly
USD998274S1 (en) * 2021-05-23 2023-09-05 Kunming Ruigu Technology Co., Ltd. Aquarium magnetic brush

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908028A (en) * 1957-08-22 1959-10-13 Russell Mfg Co Windshield wiper or the like
US3444579A (en) * 1967-05-17 1969-05-20 Conwed Corp Reversible,disposable chalkboard eraser pad and holder therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2603575A (en) * 1949-11-17 1952-07-15 Jr August F Schramm Method of making a stiffened permeable resin coated fibrous sheet
GB888344A (en) * 1959-09-17 1962-01-31 Qasam Ali Abdulrasul Allidina Apparatus and method for wiping panels
US3393417A (en) * 1966-01-25 1968-07-23 Fort Howard Paper Co Windshield towels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908028A (en) * 1957-08-22 1959-10-13 Russell Mfg Co Windshield wiper or the like
US3444579A (en) * 1967-05-17 1969-05-20 Conwed Corp Reversible,disposable chalkboard eraser pad and holder therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2480680A1 (en) * 1980-04-21 1981-10-23 Levy Daniel MAGNETIC PRESSURE ERASER BLOCK, MAKING A MARKER
WO1986007271A1 (en) * 1985-06-13 1986-12-18 Michael Chase Magnetic occluding device
US4642257A (en) * 1985-06-13 1987-02-10 Michael Chase Magnetic occluding device
DE3903040A1 (en) * 1988-08-22 1990-03-01 Andreas Hohlbauch Method and device for the internal cleaning of insulating-glass panes
US4977637A (en) * 1990-02-16 1990-12-18 Demers Rodney C Magnetic window cleaning apparatus
US5515570A (en) * 1994-12-16 1996-05-14 Muscroft; Robert Manually operated magnetic window wiper
US6221170B1 (en) 1999-12-02 2001-04-24 Caren Marzban Magnetic apparatus and method for wiping fog in a diving mask
DE102006022932A1 (en) * 2006-05-04 2007-11-08 Bakker Holding Son B.V. Aquarium device for cleaning aquaria glass panes, especially their inner side, has inner and outer elements mutually attracted via a magnetic force
US20100024739A1 (en) * 2006-05-04 2010-02-04 Geert-Jan Bakker Device for Cleaning Aquarium Windows
US20090211533A1 (en) * 2008-02-14 2009-08-27 Julian Sprung Magnetic cleaning device and methods of making and using such a cleaning device
US8161909B2 (en) * 2008-02-14 2012-04-24 Julian Sprung Magnetic cleaning device and methods of making and using such a cleaning device

Also Published As

Publication number Publication date
US3609793A (en) 1971-10-05
US3751750A (en) 1973-08-14

Similar Documents

Publication Publication Date Title
US3922747A (en) Magnetic window cleaning apparatus with improved cleaning material
US3553873A (en) Magnetic keeper for picture frames
IT8068279A0 (en) ROLLERS COATED WITH ELASTOMERIC MATERIAL PARTICULARLY FOR THE MANUFACTURING OF PAPER AND FABRICS AND PROCEDURE FOR THEIR MANUFACTURING
BR8506014A (en) NON-WOVEN SCRUB TEXTURE, COMPUTER DISK DISPLAY SHEET MATERIAL AND PERFECT COMPUTER DISK DISPLAY
EP0436022A4 (en) Bed mat
JPS6212632Y2 (en)
US3296645A (en) Apparatus for cleaning windows
JPS6478432A (en) Device for cleaning magnetic tape
BR8006922A (en) LAMINATING PROCESS IN THE CROSS DIRECTION LAMINATED MATERIAL AND APPLIANCE FOR ITS REALIZATION
MX149385A (en) IMPROVEMENTS IN ELECTRODYNAMIC TRANSDUCER AND METHOD TO PREPARE THE SAME
CA2277402A1 (en) A holding device for workpieces in the form of even metal sheets
US2540907A (en) Picture frame
AT376116B (en) PROCESSING ROLLER FOR CARPET WET AND DRY CLEANING DEVICES
EP0370592A3 (en) Magnetically supported display
IT1072277B (en) METHOD AND DEVICE FOR PRINTING ON MATERIALS OR FABRICS IN THE SHAPE OF RIBBONS, PIECES, SHEETS OR SIMILAR
BR7801666A (en) APPLIANCE FOR USE IN THE INVERSION OF SHEET OR SIMILAR PLATES, OF FERROMAGNETIC MATERIAL
IT1130512B (en) RELEASE COATING FOR PAPER AND OTHER SHEET SUBSTRATES AND METHODS FOR THEIR PREPARATION
GB459921A (en) Improvements relating to floor-polishing or -cleaning devices
JP3041792U (en) Protective pad that is detachably attached to the wall
TH3597S (en) Functional sensitive knob cover for circuit breaker
IT1087304B (en) SELF ADAPTABLE AND ADJUSTABLE BRUSH FOR MACHINE FOR THE PROCESSING OF LEATHER, LEATHER, RUBBER, FABRICS, PLASTIC, SHEET MATERIAL AND FLAT SURFACES IN GENERAL
SE8008178L (en) PLAT measuring device
JPS544113A (en) Magnetic sheet cleaning device
IT1029347B (en) RIBBED SHEET IN FLEXIBLE PLASTIC MATERIAL FOR SEATS OR BACKS OF ARMCHAIRS OR SIMILAR
Kazakov et al. Domain Stability With Regard to Applied Magnetic Fields in Films With Planar Anisotropy