Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3923183 A
Publication typeGrant
Publication dateDec 2, 1975
Filing dateMar 7, 1973
Priority dateMar 7, 1973
Also published asCA1008805A1, DE2402080A1
Publication numberUS 3923183 A, US 3923183A, US-A-3923183, US3923183 A, US3923183A
InventorsPradip V Choksi, Roy B Steidley
Original AssigneeAmerican Hospital Supply Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Container for medical liquid with separable outer and inner closures
US 3923183 A
Abstract
A thermoplastic bottle for sterile medical liquids with a dispensing outlet closed off by an inner closure. An outer closure in the form of a thermoplastic cap overlies the inner closure. During steam sterilization at 240 DEG to 260 DEG F (116 DEG to 127 DEG C) the outer cap deflects inwardly against the inner cap to force the inner cap into a tighter seal against the bottle. This outer cap includes external left-handed threads and has a lateral frangible brim fused to the thermoplastic bottle. A threaded jacking ring is screwed onto the outer cap and with a counterclockwise motion acts to (1) fracture the cap's external brim and (2) separate the outer cap from the sealed inner cap.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

'United States Patent 91 Choksi et al.

[ Dec. 2, 1975 1 1 CONTAINER FOR MEDICAL LIQUID WITH SEPARABLE OUTER AND INNER CLOSURES [75] Inventors: Pradip V. Choksi, North Hollywood;

[52] US. Cl 215/251; 215/1 C; 215/D1G. 3 [51] Int. Cl B65d 41/ 62; B65d 51/18 [58] Field of Search 215/42, 46A, 1 C, DIG. 3,

[56] References Cited UNITED STATES PATENTS 3,394,831 7/1968 Battrish 215/38 R 3,443,711 5/1969 Olson 215/7 3,517,847 6/1970 Guala 215/42 3,591,031 7/1971 Komendowski.. 215/46 A 3,597,793 8/1971 Wciler ct a1. 215/DIG. 3 3,640,417 2/1972 Sakurai 3,730,372 5/1973 Komcndowski 215/32 Primary ExaminerHerbert F. Ross Attorney, Agent, or Firm-Larry N. Barger; Robert T. Merrick [57] ABSTRACT A thermoplastic bottle for sterile medical liquids with a dispensing outlet closed off by an inner closure. An outer closure in the form of a thermoplastic cap overlies the inner closure. During steam sterilization at 240 to 26091 (1 16 to 127 C) the outer cap deflects inwardly against the inner cap to force the inner cap into a tighter seal against the bottle. This outer cap includes external left-handed threads and has a lateral frangible brim fused to the thermoplastic bottle. A threaded jacking ring is screwed onto the outer cap and with a counterclockwise motion acts to (1) fracture the caps external brim and (2) separate the outer cap from the sealed inner cap.

10 Claims, 11 Drawing Figures U.S. Patent Dec. 2, 1975 Sheet 1 of3 3,923,183

2 IIIIINIHIIIHHIIHH US. Patent Dec. 2, 1975 Sheet 3 of3 3,923,183

111mm x CONTAINER FOR MEDICAL 'IJQUID WITH SEPARABLE OUTER AND INNER CLOSURES BACKGROUND It has been proposed-in the past to use double closure systems in which an outer closure fits over and protects a sterile inner closure of the container. In some situations it is desirable to separately remove the outer clo sure from the inner closure. Then in a subsequent step all or part of the sterile inner closure can be removed to dispense the sterile medical liquid from the container.

Sometimes the inner closure is replaceableor reclos-- able when only a portion of the-bottles contents are dispensed.

While these previous double closuresystems with an outer closure separable from the inner closure performed the primary function of protecting the sterility of the dispensing outlet, they were often hard to open. This was because the outer closure required some unusual hand movements and an unusual sequence of steps that the nurse or physician had to remember.

SUMMARY OF THE INVENTION This invention provides an improved double closure system with a separately removable outer cap that fits over an inner cap. When steam sterilized the outer cap deflects inwardly to urge the inner cap into a tighter seal with the bottle. The closure both protects the sterility of the dispensing outlet, and is also easy to open. A counterclockwise motion of a special jacking ring fractures the outer cap at a frangible brim which is hermetically sealed to the bottle. The combined jacking ring and outer cap are then removed from the inner closure. To a nurse or physician, this is an extremely simple motion. They are accustomed tothis motion because it is commonly used for opening various household containers such as toothpaste, jars of food, etc. No special series of pushing, pulling sliding steps, etc., need be remembered. I

The special double 'closuresysterrt with separable outer cap is better understood with reference to the attached drawings. U

THE DRAWINGS FIG. 1 is a front elevational view ofthe coiitain'er and first embodiment of the closure system of our invention as it is sealed and stored at a hospital 'readyfor use;

FIG. 2 is an exploded perspective view of the various elements of the closure system of the first embodiment tion of the outer Capbefor' fracturing;

view of the pouring 2 FIG. 5 is an enlarged sectional view similar to-FIG14 but showing the frangible brim after fracture;

FIG. 5a is an enlarged sectional view of-a right side portionof another embodiment of the invention showing the jacking ring having a closed top;

FIG. 6 is 'an enlarged exploded perspective view of a second embodiment of the doubleclosure system of I this invention showing'an inner closure adapted to connect'with an intravenous administration set; and

.FIGS.7 to 10 illustrate the sequence of steps of open-. ing the pouring container illustrated in FIG. 3.

v DE AI ED DESCRIPTION 'With. referenceto these drawings, FIG. I shows a -blowmolded thermoplastic bottle 1 with a closure system generally .indicated at 2 at its upper end. At its lower end is a supportingbase 3 with'an indented center portion 4. A hinged hanger 5 fits within indented portion 4 for suspending the container upside down if desired. Anindentedwaist section 6 provides a convenient grippable portion of the bottle.

The closure system-of the bottle is shown in much greater detail in FIG. 2. Here'the bottle 1 is shownwith a threaded tubular neck 7 surrounded by a pouring lip 8. In this first embodimentof the invention, the container is generally referred to as a pouring container." The sterile medical liquid contained within the bottle 1 is simply poured into a surgical wound for flushing, etc. Since the pouring lip 8 becomes touched by liquid poured from the bottle, it is extremely important to have a very reliable closure system.

The closure system fitting onto the tubular neck includesv two caps. Onecap is an internally threaded screw'cap 9 :that is received on threaded neck 7 and forms an annular inner hermetic seal with this neck. The other is an outer cap 10 that fits over the inner cap and includes a top wall 11 and a depending skirt 12 with external threads 13. At a lower end of outer cap 10 is a laterally extending frangible brim 14. This brim is .005 to .050 inch (0.13 to 1.3 millimeters) thick, and is fused to a flange 15 of the bottle. The fusion joint between the frangible brim l4 and flange 15 forms an annular outer hermetic seal. Thus, there are two annular hermetic seals in this closure system.

The uppermost element in FIG. 2 is a threaded jacking ring-l6. This jacking ring includes a knurled orgrooved outer surface 17 for easy gripping. Internally of theannular jacking ring 16 are integral left-handed threads 18. When the closure of FIG. 2 is assembled,

the threads l8 interrnesh with the left-handed threads 13 of the outer cap. Thus, counterclockwise rotation of the jacking ring 16 relative to the outer cap screws the jacking ring downwardly on the outer cap.

FIG. 3 is an enlarged sectional view showing the jacking ring 16,.the outer cap 10 and the inner cap 9-assembled on the dispensing neck 7. Here the inner cap 9, with a top wall and a depending skirt 2!, has internal righthanded threads 22- that engage right-handed 23of the dispensing neck. At a top of the. dispensing neck 7 is a pouring lip 8. The top wall 20 of the inner cap 9 includes an integral deformable rib 25 that compressingly engages this pouring lip'8. This forms the annular inner hermetic seal. Even if the bottle is turned upside down, the sterile liquid confined within bottle I will not seep past this inner hermetic seal.

To maintain this inner hermetic seal it is very importantthat rib 25 be very tightly squeezed against lip 8 of the container neck. The screw threads 22 of the inner cap exert this squeezing pressure. It has also been found that additional downward pressure on the inner cap makes an even tighter seal at rib 25. This can be done by including a top 27 on the jacking ring that pushes downwardly on the outer caps top wall which in turn pushes on the inner caps top wall to increase the pressure at rib 25. FIG. 5a illustrates this.

The added pressure on rib 25 can also be accomplished in a steam autoclave. When a bottle closure such as shown in FIG. 3 is steam autoclaved the pressure in the autoclave forces top wall 1 I of the outer closure to deflect downwardly and firmly press on the inner cap. This increases the sealing force at rib 25 during autoclaving. Thus, the added pressure on rib 25 can be applied with a jacking ring that has no closed top.

The outer closure with its top wall 11 and depending skirt 12 has integral external threads 13 and a frangible brim 14. This frangible brim 14 is at a lower end of the outer cap and externally protrudes in a plane generally perpendicular to a common longitudinal axis 29 through dispensing neck 7 and outer cap 10. The frangible brim has an outer annular portion 30 that is fusion bonded to a top surface of lateral flange on the bottle. The top surface of this flange l5 lies in a plane generally perpendicular to longitudinal axis 29.

FIG. 4 shows an enlarged fragmentary sectional view of the annular fused zone 30 along an outer portion of frangible brim 14. There is also an inner annular band 31 that remains unfused to the flange 15. This unfused portion 31 joins the fused portion 30 at a weakened fracturable line 32 extending around the frangible brim. As rotated counterclockwise a lower end surface 33 of the jacking ring contacts the frangible brim. The jacking ring has a sharp inner edge of its bottom surface that helps concentrate the downward forces adjacent fracturable line 32. Further clockwise movement of the jacking ring 16 as shown in FIG. 5 pulls the outer cap upwardly until the frangible brim l4 fractures at fracturable line 32. When this happens the combined jacking ring 17 and outer closure 10 can be removed from the inner cap. This is because there is a slight annular space between inner cap skirt 21 and outer cap skirt 12 so there is no substantial frictional engagement between the outer cap and the inner cap. Therefore if the outer cap is further rotated after the fracture at 32, then the outer cap will not loosen the inner cap.

Once the outer cap has been fractured with the jacking ring and lifted therefrom, the inner cap can be unscrewed in a separate step with a counterclockwise rotational movement. This inner cap can then be replaced on the threaded neck of the container if desired.

In FIG. 6 there is shown a second embodiment of our invention. Here a container 40 is shown with a neck 41 surrounded by a flange 42. There is no threaded screw cap on neck 41. Instead, in this embodiment there is a transverse wall member 43 permanently sealed to neck 41. If desired, wall member 43 can include a depending skirt 44 that is fused or otherwise bonded to neck 41.

This transverse wall 43 has an openable portion for gaining access to its sterile liquid contents. The openable portion can be a puncturable diaphragm 45, adapted to be broken by a pointed spike of a sterile intravenous administration set. Internally the puncturable diaphragm 45 is a tubular gripping member (not shown) for hermetically sealing against such a spike. A puncturable resealable rubber diaphragm 45 for adding additional medicaments can be secured to the wall member 43.

Fitting over the inner closure of the second embodiment of FIG. 6 is an outer cap 48. This cap includes a skirt with left-handed threads 49 and a frangible brim 50 that is bonded to flange 42 of the bottle. The outer cap structure is similar to the outer cap in the first embodiment of FIG. 3. There is also a threaded jacking ring 51 with internal left-handed threads 52 as in the first embodiment.

FIGS. 7 to 10 show the method of opening the double closure system of this invention. In these figures, the first embodiment is shown. In FIG. 7 the first step is to rotate the annular jacking ring 16 counterclockwise to tighten it down against the frangible brim 14 that has been bonded to flange 15. Usually the jacking ring is closely spaced to frangible brim 14 so the downward motion is imperceptible to the nurse or physician. To them, they are simply unscrewing the cap in a normal manner.

In FIG. 8 continued counterclockwise movement of the jacking ring 16 causes a strain at the frangible brim. This fractures the frangible brim at an annular fracture line. When this happens, the combined jacking ring and outer cap are lifted from the inner cap 9 as shown in FIG. 9. Since the inner cap 9 and outer cap 10 have a slight space therebetween, rotation of the outer cap does not loosen the inner cap. In a separate step the inner cap 9 is removed by a counterclockwise unscrewing motion. Then the container in FIG. 10 is ready for pouring.

The procedure as shown above in FIGS. 7 through 9 is identical for the second embodiment container. However, with the second embodiment container the inner cap is not unscrewed. Instead, an intravenous administration set is connected to the inner cap.

In opening procedures for both of these containers the manual motions are extremely simple. The nurse or physician is accustomed to turning a cap by turning it in a counterclockwise direction. The operator need not be concerned with the inner workings, the fracturing stresses, etc., that are created by this simple motion. Thus, this invention creates a closure system that is both easy to open and provides a separately removable outer cap and an inner cap that form double sterility protecting closures.

In the two embodiments shown, very good results have been obtained when the bottle is blow-molded of a polyallomer thermoplastic that is a propylene-ethylene copolymer, and the outer caps of both embodiments are injection-molded of the same propyleneethylene copolymer material. Such a material is marketed by Eastman Chemical Company under the name of Tenite. Using the same material for both the outer cap and the bottle aids inthe heat fusion joint at the frangible brim. The inner cap of the first embodiment, the inner cap of the second embodiment, and the jacking ring of either embodiment can be made of suitable thermoplastic material.

I In the foregoing specification and drawings specific embodiments have been used to describe the invention. However, it is understood by those skilled in the art that certain modifications can be made to these embodiments without departing from the spirit and scope of the invention.

We claim:

1. A container and double closure system for storing and dispensing sterile liquids, which includes a blow molded thermoplastic container with a dispensing outlet, an inner closure, an outer cap, and a jacking ring,

the container and outer cap forming a unit having a transverse abutment means surrounding the outlet wherein the improvement comprises:

an said inner closure being secured to the container to close off the outlet and form a hermetically sealed unit but is openable for dispensing; said outer cap being a separately formed injection molded thermoplastic outer cap with a longitudinal axis, said outer cap having both a thin frangible section and externally exposed threads, and said outer cap is sealed to the container proximate the abutment means with an annular bacteria-tight bond with the threads of the outer cap being in axial alignment with the abutment means, said jacking ring being internally threaded and threadingly disposed on the outer cap to guide it toward the abutment means for exerting a pressure against the abutment means to axially pry the outer cap apart at its frangible section.

2. The combination as set forth in claim 1, wherein the outer cap has an integral external brim that is heat fused to the thermoplastic container.

3. The combination as set forth in claim 1 wherein the external threads on the outer cap are left-handed.

4. The combination as set forth in claim 1 wherein the inner closure includes a transverse wall permanently sealed to the container, said transverse wall including openable means for connecting to an intrave nous administration set.

5. The combination as set forth in claim 4 wherein the openable means includes a thin pierceable diaphragm.

6. The combination as set forth in claim 4 wherein the transverse wall includes a puncturable resealable section for injecting additive medications.

7. The combination as set forth in claim 6 wherein the puncturable resealable section includes a rubber diaphragm.

8. The combination as set forth in claim 1, wherein the abutment means is a flange on the container and the outer cap has a frangible brim with an outer annular I ethylene copolymer thermoplastic material.

10. A container and double closure system for storing and dispensing sterile medical liquids, which includes a thermoplastic bottle that has a tubular neck with a longitudinal axis, a dispensing outlet, and an integral external flange on the bottle neck, wherein the improvement comprises:

an inner closure secured to the bottle to close off the outlet and form a hermetically sealed unit, said inner closure having at least a portion that is openable for dispensing; said bottle s neck flange having a top sealing surface lying in a plane generally perpendicular to the necks longitudinal axis; a separately formed thermoplastic outer cap with a longitudinal axis and including a top wall, a depending skirt andv a thin frangible brim integrally formed with a lower end portion of this skirt, said brim having a thickness of between .005 inch and .050 inch, said frangible brim being heat fused to the top sealing surface of the bottles neck flange at an annular fusion joint along an outer portion of the frangible brim, said brim having an annular inner portion that is unfused to the flange to provide a weakened fracture line between the fused and unfused annular portions; external left-handed threads on the outer cap, which threads are in a predetermined alignment with said flange; and a rigid annular jacking ring having internal left-handed threads which threadingly intermesh with the threads of the outer cap, said'annular jacking ring adapted to rotate in a counterclockwise direction for both fracturing the outer cap at said weakened line and thereafter removing the combined jacking ring and outer cap from the sealed inner closure and bottle combination with a rotational lifting motion.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3394831 *Jun 13, 1966Jul 30, 1968American Hospital Supply CorpApparatus for storing and handling parenteral liquids and method for opening same
US3443711 *Aug 29, 1967May 13, 1969Abbott LabVacuum-indicating two-part tamper-proof closure and combination
US3517847 *Nov 25, 1968Jun 30, 1970Guala AngeloFrangible bottle closure
US3591031 *Aug 7, 1969Jul 6, 1971Automatic Liquid PackagingBottle opener
US3597793 *May 28, 1969Aug 10, 1971Automatic Liquid PackagingBottles and the method and apparatus for forming them
US3640417 *Mar 12, 1970Feb 8, 1972Gilbreth International CorpHeat-shrinkable sleeve for closing a receptacle
US3730372 *Nov 19, 1971May 1, 1973Automatic Liquid PackagingPlastic container
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4091949 *Mar 14, 1977May 30, 1978Baxter Travenol Laboratories, Inc.Antibackoff threaded ring closure using ratchet means
US4093093 *Mar 14, 1977Jun 6, 1978Baxter Travenol Laboratories, Inc.Antibackoff closure
US4236646 *Oct 19, 1979Dec 2, 1980Baxter Travenol Laboratories, Inc.Closure for pharmaceutical containers
US4757911 *Dec 9, 1985Jul 19, 1988Abbott LaboratoriesContainer and closure construction
US4901873 *Apr 17, 1989Feb 20, 1990Automatic Liquid Packaging, Inc.Container with insert having a fully or partially encapsulating seal with a frangible web formed against said insert
US5573046 *Aug 11, 1995Nov 12, 1996Ciba Corning Diagnostics Corp.Value housing for a fluid delivery system
US5586590 *Aug 11, 1995Dec 24, 1996Ciba Corning Diagnostics Corp.Coupler for fluid delivery system
US5586673 *Aug 11, 1995Dec 24, 1996Ciba Corning Diagnostics Corp.Cap assembly for fluid delivery system
US5755269 *Dec 9, 1993May 26, 1998Ciba Corning Diagnostics Corp.Fluid delivery system
US5762215 *Jul 29, 1992Jun 9, 1998Glaxo WellcomeCap for a container
US6102064 *Sep 10, 1998Aug 15, 2000Robinson; RobertTheft resistant valve cap
US6176255Nov 29, 1999Jan 23, 2001Robert R. RobinsonKeyed theft resistant valve cap
US6279600 *Aug 14, 2000Aug 28, 2001Robert RobinsonMethod for securing a valve cap
US6655553Jun 25, 2002Dec 2, 2003Seaquist Closures Foreign, Inc.Dispensing closure with tamper-evident sleeve
US7644902May 31, 2003Jan 12, 2010Rexam Medical Packaging Inc.Apparatus for producing a retort thermal processed container with a peelable seal
US7766178Jan 29, 2007Aug 3, 2010Rexam Medical Packaging Inc.Closure for a retort processed container having a peelable seal
US7780024Jan 25, 2006Aug 24, 2010Rexam Closures And Containers Inc.Self peel flick-it seal for an opening in a container neck
US7798359Jul 28, 2005Sep 21, 2010Momar Industries LLCHeat-sealed, peelable lidding membrane for retort packaging
US8100277Dec 19, 2006Jan 24, 2012Rexam Closures And Containers Inc.Peelable seal for an opening in a container neck
US8251236Nov 2, 2007Aug 28, 2012Berry Plastics CorporationClosure with lifting mechanism
US8650839May 19, 2008Feb 18, 2014Berry Plastics CorporationClosure with lifting mechanism
US20080141454 *Nov 5, 2007Jun 19, 2008Joel BlometIndividual portable device for eye bath
Classifications
U.S. Classification215/251, 215/384, 215/45, 215/399, 215/DIG.300, 215/46, 215/901, 215/48
International ClassificationA61J1/00, B65D51/18, B65D1/02, A61J1/05
Cooperative ClassificationB65D2203/04, B65D2251/0015, B65D2501/0081, Y10S215/03, B65D51/18, B65D2251/0078, A61J1/05, Y10S215/901
European ClassificationA61J1/05, B65D51/18
Legal Events
DateCodeEventDescription
May 26, 1992ASAssignment
Owner name: MCGAW, INC. A CORP. OF DELAWARE
Free format text: SECURITY INTEREST;ASSIGNOR:WELLS FARGO BANK, N.A.;REEL/FRAME:006139/0057
Effective date: 19920401
Apr 10, 1992ASAssignment
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, A NEW YORK C
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MCGAW, INC., A DELAWARE CORP.;REEL/FRAME:006073/0600
Effective date: 19920401
Mar 25, 1991ASAssignment
Owner name: MCGAW, INC., MORAINE, MONTGOMERY COUNTY, A CORP. O
Free format text: MERGER;ASSIGNOR:MG ACQUISITION CORP. A CORP. OF DE (MERGED TO) KENDALL MCGAW LABORATORIES, INC., A CORP. OF OHIO;REEL/FRAME:005640/0520
Effective date: 19910205
Oct 24, 1990ASAssignment
Owner name: KENDALL MCGAW LABORATORIES, INC. AN OH CORPORAT
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MANUFACTURERS HANOVER TRUST COMPANY;REEL/FRAME:005709/0001
Effective date: 19901015
Oct 23, 1990ASAssignment
Owner name: WELLS FARGO BANK, N.A.
Free format text: SECURITY INTEREST;ASSIGNOR:MCGAW, INC., A CORP. OF OH;REEL/FRAME:005477/0809
Effective date: 19901022
Jul 14, 1986ASAssignment
Owner name: KENDALL MCGAW LABORATORIES, INC., 2525 MCGAW AVENU
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE NOVEMBER 26, 1985.;ASSIGNOR:AMERICAN HOSPITAL SUPPLY CORPORATION, A CORP OF IL;REEL/FRAME:004600/0460
Effective date: 19851126
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN HOSPITAL SUPPLY CORPORATION, A CORP OF IL;REEL/FRAME:4600/460
Owner name: KENDALL MCGAW LABORATORIES, INC., A CORP OF OH,CAL
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN HOSPITAL SUPPLY CORPORATION, A CORP OF IL;REEL/FRAME:004600/0460