Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3924041 A
Publication typeGrant
Publication dateDec 2, 1975
Filing dateMar 25, 1974
Priority dateMar 23, 1973
Publication numberUS 3924041 A, US 3924041A, US-A-3924041, US3924041 A, US3924041A
InventorsMasuo Miyayama, Mineyuki Murase, Harumi Shiraiwa
Original AssigneeKohjin Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat-sensitive recording material and process for producing same
US 3924041 A
Abstract
A heat-sensitive recording material comprising support (A) having provided thereon transfer layer (B) and support (C) in order, these supports having the property that before heating the adhesion strength between transfer layer (B) and support (C) is smaller than the adhesion strength between transfer layer (B) and support (A) and larger than 0.1 g/cm but, after heating to a temperature higher than the heat sensitive temperature of transfer layer (B), the adhesion strength between transfer layer (B) and support (C) becomes greater than the adhesion strength between support (A) and transfer layer (B), and the transfer layer (B) comprising, at least on the side to be in contact with support (C), a heat-sensitive composition containing as a major component a mixture of a heat-sensitive substance which is fluidized at the heat sensitive temperature of the heat-sensitive substance and an adhesiveness-imparting agent which can adhere to support (C) at a temperature not higher than the heat sensitive temperature of the heat-sensitive agent; and a process for producing same. An embodiment includes the transfer layer (B) comprising two layers: one being a colored layer adhering to support (A); and the other being a heat-sensitive layer adhering to support (C).
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 1 1111 3,924,041

Miyayama et al. Dec. 2, 1975 HEAT-SENSITIVE RECORDING MATERIAL [57] ABSTRACT AND PROCESS FOR PRODUCING SAME A heat-sensitive recording material comprising sup- [75] Inventors: Masuo Miyayama; Mineyuki port (A) having provided thereon transfer layer (B) Murase; Harumi Shiraiwa, all of and support (C) in order. these supports having the Shizuoka, Japan property that before heating the adhesion strength between transfer layer (B) and support (C) is smaller [73] Asslgnee' Kohlm Tokyo Japan than the adhesion strength between transfer layer (B) [22] Filed: Mar. 25, 1974 and support (A) and larger than 0.1 g/cm but, after heating to a temperature higher than the heat sensitive 21 A l. N 4 4 4 l 1 pp 0 5 temperature of transfer layer (B), the adhesion strength between transfer layer (B) and support (C) [30] Foreign Application Priority Data becomes greater than the adhesion strength between Mar. 23, 1973 Japan 48-32704 pp a transfer layer and th transfer layer (B) comprising, at least on the side to be in [52] us. Cl. 428/212; 427/148; 427/152; Contact i h pp a h en i i c mposi i n 427/208; 428/216; 428/913 containing as a major component a mixture of a heat- [51] Int. Cl. B41M 5/26 sensitive substance whi h is fluidized at the heat sensi- [58] Field of Search .L. 117/367, 36.8, 36.9; tive temperature f h h -s n itive substance and 101/471; 428/212, 913 40 216, 914; an adhesiveness-imparting agent which can adhere to 427/148, 152, 208 support (C) at a temperature not higher than the heat sensitive temperature of the heat-sensitive agent; and

[56] References Cited a process for producing same. An embodiment in- UNITED STATES PATENTS ClUdCS the transfer layer comprising tWO layers:

1 one being a colored layer adhering to support (A); 7 and the other being a heat-sensitive layer adhering to 3,311,489 3/1967 Barbour.... .....ll7/36.1 SUPPOYHO- 3,751,318 8/1973 Newman... ll7/36.l 3,852,091 12/1974 Newman 428/913 X Primary ExaminerThomas J. Herbert, Jr. 14 Claims, 5 Drawing Figures Attorney, Agent, or FirmSughrue, Rothwell, Mion, Zinn & Macpeak ADHESION TEMPERATURE (c) U.S. Patent Dec. 2, 1975 Elm INFRARED RAYS 2 3L822? as E 5:: $22: 25% is; a:

ADHESION TEMPERATURE (c) HEAT-SENSITIVE RECORDING MATERIAL AND PROCESS FOR PRODUCING SAME BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-sensitive recording material and a process for producing the same.

2. Description of the Prior Art Heretofore, a so-called transfer-type heat-sensitive copying method is known in which a transfer sheet having a heat-sensitive transfer layer and a receiving sheet are superposed on each other and heat is imagewise applied to the heat-sensitive layer of the heat-sensitive transfer sheet to imagewise soften and melt this layer, thus imagewise transferring the transfer layer onto the receiving layer to obtain a copy, as disclosed, for example, in US. Pat. No. 2,769,391. The heat-sensitive copying material to be used therefor comprises two independent sheets, i.e., a receiving sheet and a transfer sheet. These two sheets are superposed over each other for use in duplication.

Therefore, in the conventional method, insufficient contact between the receiving sheet and the transfer sheet results in an insufficient and non-uniform transfer of the transfer layer to the receiving sheet upon application of heat. If the transfer layer is increased in thickness than is necessary to achieve duplication so as to improve the above defect, the transfer layer spreads too widely in lateral direction upon transfer, which results in obtaining discontinuous, broad or distorted images only.

Also, in the conventional method using two separate sheets, a slight deviation can occur between the two sheets or one of the sheets can wrinkle upon duplication. Therefore, it has the defect in that transfer is not achieved at all in some areas, in that seriously distorted copied images result, and in that the material transfer is so difficult to handle that copying cannot be conducted with stability.

Furthermore, in the conventional method, the transfer layer must possess additional properties such as coloring properties when used for copying documents, or an affinity for an ink when used for producing a master for offset printing, as well as the heat-sensitive property, depending upon the end use to which the assembly is put. Since a conventional transfer layer has had to possess a plurality of properties as described above, it has been difficult to obtain a transfer layer capable of satisfying all of these requirements.

SUMMARY OF THE INVENTION An object of the present invention is to obtain a novel heat-sensitive recording material without the defects which have been encountered with the abovedescribed conventional heat recording materials.

Another object of the present invention is to provide a heat-sensitive recording material which can be handled with ease and stably provide a sharp and distinct copied image with no distortion, no broadened areas and discontinuous areas, and to provide a process for producing the same. The material of the present invention can be applied to various heat-sensitive copying or recording methods.

The above-described objects of the invention can be attained by using the heat-sensitive recording material of the present invention.

The heat-sensitive recording material of the present invention comprises support A having thereon transfer layer B and support C in order, these sheets having the property that before heating the adhesion strength between transfer layer B and support C is less than the adhesion strength between transfer layer B and support A and is larger than 0.1 g/cm but, after heating to a temperature higher than the heat sensitive temperature of transfer layer B, the adhesion strength between transfer layer B and support C becomes greater than the adhesion strength between support A and transfer layer B, with the transfer B comprising, at least at the side thereof in contact with support C, a heat-sensitive composition containing as a major component a mixture of a heat-sensitive substance which becomes fluid at the heat-sensitive temperature of the heat-sensitive substance and an adhesiveness-imparting agent which can adhere to support C at a temperature not higher than the heat-sensitive temperature of the heat-sensitive substance. In this invention, the recording material can be handled integrally as one sheet by adhering the transfer layer B on support A to the receiving support C with an appropriate degree of strength.

BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS FIG. 1 is a cross-sectional view showing one embodiment of the heat-sensitive recording material of the present invention.

FIG. 2 is a cross-sectional view showing another embodiment of the heat-sensitive recording material of the present invention in which transfer layer B comprises a colored layer or an ink-receptive layer B-1 and a heat-sensitive layer B-2.

FIF. 3 shows the condition of duplication using reflection exposure method with the heat-sensitive recording material 1 of the present invention, in which numeral 2 denotes an original and 3 an image area.

FIG. 4 shows the condition of the material after copying, in which delamination occurs between transfer layer B and support C at the non-image area B and, at image area B, delamination occurs between support A and transfer layer B.

FIG. 5 shows the relationship between the press-contacting temperature and the peel strength required between the transfer layer B and support C, in one example of the heatsensitive recording material of the present invention, in the case of press-contacting support C onto transfer B formed on support A.

DETAILED DESCRIPTION OF THE INVENTION The transfer layer B of the present invention must comprise, at least at one side thereof which is in contact with support C, a heat-sensitive composition containing as a major component a mixture of a heatsensitive substance and an adhesiveness-imparting agent. As long as this condition is satisfied, the number of layers forming the transfer layer B is not particularly limited.

The transfer layer B can be formed as one layer comprising a composition containing as a major component a mixture of a heat-sensitive substance and an adhesiveness-imparting agent. It can further contain a coloring agent such as an oil-soluble dye, a water-soluble dye, an alcohol-soluble dye or a disperse dye, or an organic or inorganic pigment if it is to have end-use applications for copying documents, a spirit dye if it is to have end-use applications for preparing a spirit master,

or an ink-receptive agent if it is to have end-use applications for producing a master for general printing and, if desired, various polymers, low molecular weight compounds, fillers and the like for the purpose of adjusting the cohesive force of the transfer layer. A suitable amount of these addenda can range from about 2 to 80, preferably 5 to 60, percent by weight of the layer.

Also, as a preferred improved embodiment, the transfer layer can comprise two layers: one layer being a colored or ink-receptive layer B-l in contact with support A; and the other layer being a heat-sensitive layer B-2 in contact with support C, containing as a major component a mixture of a heat-sensitive substance and an adhesiveness-imparting agent.

Where, for example, a reflection exposure method is used, the transfer layer B must substantially transmit the ligth used for exposure, while where a stencil transmission method is used, the transfer layer B must possess a component which absorbs the light used for exposure to generate heat.

The heat-sensitive substance must become fluid at the heat-sensitive temperature employed upon heatsensitive duplication. Usually, the heat-sensitive temperature is preferably not less than about 40C and not higher than about 200C, most preferably 50 to 150C. As the heat-sensitive substance, those which exhibit almost no fluidity at a temperature lower than the heatsensitive temperature but become fluid very quickly at the heat-sensitive temperature, that is, those substances which exhibit the characteristics as graphically shown, e.g., by XYZ, in FIG. 5 are preferable.

Suitable examples of such heat-sensitive substances are paraffins having a variety of melting points, e.g. (50 to 75C); waxes such as candelilla wax (m.p. 60 80C), bees wax (m.p. 60 66C), montan wax (m.p. 65 105C), ceresine wax (m.p. 65- 85C), carnauba wax (m.p. 75 86C), etc.; wax analogs such as stearic acid, stearyl alcohol, etc.; synthetic resins such as coumarone-indene resins, phenolic resins, e.g., novalac (m.p. 50 150C), alkylphenolic resins (m.p. 70 150C), petroleum resins, comparatively low molecular weight polystyrene (e.g., having a number mean molecular weight about 300 to 200,000, having a melting point of about 50 to 150C), aliphatic hydrocarbon polymers (e.g., having an number mean molecular weight of about 500 to 2,000 and a melting point of about 50 to 130C), etc.; natural resins and modified ones thereof such as rosin, ester gum, hydrogenated rosin, etc., these materials can be used either alone or in combination.

The adhesiveness-imparting agent must impart adhesivity to the mixture of the adhesiveness-imparting agent and the heat-sensitive substance upon mixing such that the mixture can adhere to support C at a temperature less than the heat-sensitive temperature of the heat-sensitive substance.

Suitable examples of adhesiviness-imparting agent which can be used and which satisfy the abovedescribed requirement are a variety of rubbers and resins having a glass transition point or a softening point less than the heat-sensitive temperature of the heatsensitive substance, preferably a softening point or glass transition point of more than 5 less than the heatsensitive temperature from a practical standpoint. To illustrate some specific examples, there are rubbers such as natural rubber, polyisobutylene, butadiene rub ber, styrene-butadiene rubber, nitrile rubber, etc.; pol- 4 yvinyl chloride and the copolymers thereof (e.g., vinyl chloride-vinyl acetate, vinyl chloride-vinyl propionate, vinyl chloride-vinylidene chloride, vinyl chloride-vinyl acetate-maleic anhydride, etc.); polyvinylidene chloride and copolymers thereof (e.g., vinylidene chloridemethyl acetate, vinylidene chloride-ethyl acetate, vinylidene chloride-acrylonitrile, vinylidene chloridevinyl chloride, etc.); polyvinyl acetate and the copolymers thereof (e.g., vinyl acetate-methyl acrylate, vinyl acetate-ethyl acrylate, etc.); polymethacrylates and the copolymers thereof (e.g., methyl methacrylate-methyl acrylate, methyl methacrylate-ethyl acrylate, methyl methacrylate-Z-ethyl hexyl acrylate, etc.); polyacrylates and the copolymers thereof; polystyrene and the copolymers thereof (e.g., styrene-butadiene, etc.); ethylene copolymers such as ethylene-vinyl acetate, ethylene-acrylate, etc.; other polyolefins; polyvinyl ethers; polyvinyl butyral; polyesters; nylon, a variety of plasti cizers (e.g., dicyclohexyl phthalate, di(2-ethyl hexyl)phthalate, etc.) or low molecular weight compounds capable of exhibiting analogous effects; and the like. These materials have a glass transition points or softening point up to 180C, preferably up to 140C and can be suitably selected so as to have the appropriate relationship to the heat-sensitive temperature of the heatsensitive substance with which they are used.

The amount of the adhesiveness-imparting agent employed can be appropriately selected depending upon the combination of the heat-sensitive substance and the adhesiveness-imparting agent used or the desired degree of adhesion strength between, e.g., the transfer layer B and support C. Generally, the proportion of the adhesiveness-imparting agent in the heat-sensitive layer is about 1 to 90 percent by weight, preferably 5 to percent by weight and, more preferably, 20 to 50 percent by weight.

Transfer layer B can comprise two layers, i.e., a colored or ink-receptive layer B-l in contact with support A and a heat-sensitive layer B-2 in contact with support C. In this case, as such a colored layer B-l, those layers which are prepared by incorporating in the heat-sensitive composition a variety of dyes such as oil-soluble dyes (e.g., Oil Black, Oil Blue, Oil Red, Oil Yellow, etc.), water-soluble dyes (e.g., Methylene Blue, Congo Red, etc.), alcohol-soluble dyes (e.g., Rhodamine, Safranine, Victoria Green, Crystal Violet, etc.) and disperse dyes; various organic or inorganic pigments such as carbon black, titanium oxide, zinc oxide, red iron oxide, Phthalocyanide Blue and Phthalocyanine Green in a suitable amount, or those which are prepared by incorporating the coloring agent in thermoplastic resins such as polyvinyl chloride or a copolymer thereof, polyvinylidene chloride or a copolymer thereof, polyvinyl acetate or acopolymer thereof, polymethacrylate or a copolymer thereof, 'polyacrylate or a copolymer thereof, polystyrene or a copolymer thereof, polyethylene or a copolymer thereof, polyvinyl acetal, polyvinyl alcohol, an alkylphenol resin, a polyamide, a polyester, a petroleum resin, a coumarone-indene resin, etc., or in thermosetting resins such as a melamine resin, a urea resin, a polyurethane, a reactive acrylic resin, an epoxy resin, etc., a natural resin or a modified natural resin such as rosin, ester gum, hydrogenated rosin, etc., various waxes, paraftins, or the mixture thereof, can be used.

As the ink-receptive layer B-l, those ink-receptive layers prepared by appropriately selecting ink-receptive materials from among various waxes, the above described thermoplastic resins, thermosetting resins, natural resins and the modified natural resins and, if desired, incorporating a coloring agent and a filler therein can be used. For example, for preparing a master for use in offset printing using an oily ink, oleophilic substances such as waxes, polystyrene, polyethylene, etc. are used, while for preparing a master for printing using a water-color ink, hydrophilic substances such as water-insolubilized polyvinyl alcohol are used. Thus, the material is selected depending upon the end use purpose.

The use of a colored or ink-receptive layer B-l which is heat-insensitive at a heat-sensitive temperature of the heat-sensitive layer B-2 has the advantage of providing better copied images, because an excessive fluidity of the transfer layer upon heat sensitization can be controlled and the adhesion strength between the support A and transfer layer B is made constant regardless of the temperature.

As the heat-sensitive substance which forms the conventional heat-sensitive transfer stratum comprising a transfer sheet and a receiving sheet, those heat-sensitive substances which do not exhibit any fluidity when the temperature is increased to a certain point but become fluid very quickly at the heat-sensitive temperature, such as carnauba wax, are preferable. However, if adherence of transfer layer B comprising such a substance to support C is attempted at a temperature less than the heat-sensitive temperature of the transfer layer B by heat-pressing support C onto the surface of transfer layer B, formed on support A, using the abovedescribed heat-sensitive substance alone, layer B will not adhere to support C at all, while when the temperature is increased to or higher than the heat-sensitive temperature, layer B adheres to support C so strongly, due to the fluidity of the heat-sensitive layer B, that the relative relationship in adhesion strength between these sheets is not satisfactory. This results in completely destroying the duplication ability thereof. That is, it is extremely difficult to control the adhesion strength between transfer layer B and receiving support C.

On the other hand, when those heat-sensitive substances whose viscosity decreases and fluidity increases gradually with an increase in temperature, such as a high molecular weight polymer, are used, it becomes possible to control the adhesion strength between transfer layer B and receiving support C to some extent, even though not to a completely sufficient extent. However, the change in fluidity versus the change in temperature is so slow that it has the defects that the boundary of the copied image are blurred, resulting in a copied image which is not sharp, and that the adhesion strength between transfer layer B and receiving support C tends to undergo changes with the lapse of time.

As is described above, when those substances which are preferred as a heat-sensitive substance for transfertype heat-sensitive recording material are used per se as a heat-sensitive substance, technical difficulties have occurred in that the adhesion strength between the transfer layer B and the support C becomes impossible to control, whereas when those substances in which the adhesion strength between the transfer layer B and the support C can be controlled to some extent are used as a heat-sensitive substance, the heat-sensitive copying property is degraded.

However, it is now extremely easy to control the adhesion strength between the transfer layer B and the re- 6 ceiving support C by adding an adhesiveness-imparting agent to the heat-sensitive substance as described in the present invention.

As support A, those supports which are not melted by the heat applied upon heat-sensitive duplication, such as paper, plastic films, and the like, can be used. The support A can be appropriately selected depending upon the end-use application and the copying method employed. For example, in using the reflection exposure method as the copying method, support A must substantially transmit the light used. An appropriate thickness of support A is a thickness of about 5 to 500 u, preferably 5 to u.

Suitable examples of plastic films are plastic films of polypropylene, polyethylene, polyvinyl chloride; polyvinylidene chloride, polymethyl methacrylate, polyvinyl alcohol, polystyrene, polycarbonate, polyester, nylon, polyurethane, cellulose derivatives, and the like. The choice of such a film will be dependent upon the purpose for use. If desired, these sheets can be subjected to a surface treatment such as corona discharge, flame treatment, chemical treatment, etc. or a coating treatment to appropriately adjust the adhesivity of the support.

As support C, those examples suitable for support A, such as paper and plastic films can be selected depending upon the end use. In order to adjust the adhesion between support C and transfer layer B or to impart ink-repellent properties, hydrophilic properties or marking properties, support C can be also subjected to, if desired, a surface treatment or a coating treatment as described previously for support A to appropriately adjust the adhesivity to the support C.

The absolute values of the adhesion strength between these supports are not particularly limited so long as the above-described relative and the condition in which the adhesion'strength between layer B and support C before heating is greater than zero are satisfied. However, in practice, the peel strength between support A and transfer layer B is about 1 to g/cm, preferably 2 to 50 g/cm, and the peel strength between layer B and support C is about 0.1 to 50 g/cm before heating and, after heating, is not less than about 2 g/cm, preferably not less than 20 g/cm as measured as described hereinafter.

As was described above, in the heat-sensitive recording material of the present invention, the adhesion strength between layer B and support C is greater than zero. That is, transfer layer B adheres to support C with a certain degree of strength. Therefore, even when the thickness of the transfer layer is reduced, transfer can be effected in high yield and the material can be handled as one sheet. In addition, good copied images with no distortion and image broadening, which have been defects in conventional materials, can be obtained with stability.

In order to obtain good copied images, it is necessary that the cohesive strength of transfer layer (B) itself or the adhesion strength between the colored or inkreceptive layer B-1 and the heat-sensitive layer B-2 must be greater than both the adhesion strength between transfer layer B and support C before heat sensitizing and the adhesion strength between transfer layer B and support A after heat sensitizing, whereas the cohesion strength must be of such degree that, upon separating support A from support C after copying, transfer layer B can be severed in an imagewise manner. In order to adjust the cohesive force, means can be taken in which various polymers a or low molecular weight compounds as previously described, or fillers such as titanium oxide or silica are incorporated or the transfer layer B can be formed as a discontinuous layer comprising fine particles, e.g., having a particle size ranging from about 0.1 to 100 1.1..

The process for producing the heat-sensitive recording material of the present invention which comprises support A, transfer layer B and support C comprises press-contacting support C onto the surface of transfer layer B formed on support A, each support having the property such that 1 before heating, the adhesion strength between support A and layer B is greater than the adhesion strength between transfer layer B and support C is greater than 0, and 2 this relation is changed by heating to a temperature not less than the heat sensitive temperature of the transfer layer B so that the adhesion strength between transfer layer B and support C becomes greater than the adhesion strength between support A and transfer layer B.

The transfer layer B comprises, at least at one one side in contact with support C, a heat-sensitive composition containing a major component a mixture of a heat-sensitive substance and an adhesiveness-imparting agent, this heat-sensitive substance exhibiting fluidity at a heat-sensitive temperature upon duplication and this adhesiveness-imparting agent imparting sufficient adhesiveness so that adherence to support C at a temperature less than the heat-sensitive temperature of the heat-sensitive substance occurs. Support C is presscontacted onto the surface of heat-sensitive composition of the transfer layer B comprising the heat-sensitive composition at a temperature not higher than the heat-sensitive temperature of the heat-sensitive composition and at a temperature not lower than the adhesiveness-generating temperature thereof.

Various methods for forming transfer layer B on support A can be employed, e.g., a method of applying a solution in water or an organic solvent, a dispersion in water or an organic solvent or a melt of the heat-sensitive composition to support A, followed by drying, or a method of forming a heat-sensitive composition layer on a separate temporary support, bringing this heatsensitive composition layer into contact with support A and then removing the temporary support. Suitable examples of organic solvents which can be used as described hereinbefore are alcohols such as methanol, ethanol, butanol and isopropyl alcohol, aromatic hydrocarbons such as toluene, benzene and xylene, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone, etc. These solvents or water can be used alone or as a mixture using a concentration in the solvent of 2 to 60 percent by weight.

Also, as a method for forming transfer layer (B) comprising a colored or ink-receptive layer B-1 and a heatsensitive layer B-2, various methods can be employed, for example, a method of forming on support A a col- )I'Cd or ink-receptive layer B-1 and a heat-sensitive ayer B-2 in turn, a method of forming a heat-sensitive ayer 8-2 on a separate temporary support, bringing :his layer into contact with a colored or ink-receptive ayer 8-1 on support A previously formed, and then renoving the temporary support, or a method of forming )n a separate temporary support a heat-sensitive layer 3-2 and a colored or ink-receptive layer 8-1 in turn, )ringing it into contact with support A, and then renoving the temporary support.

The thickness of transfer layer B can be appropriately selected depending upon the end use purpose. However, generally the thickness ranges from about 0.3 to 18 u, more preferably 0.5 to 51.1.. in order to obtain good copied images, the transfer layer should be as thin as possible. Where the layer B comprises two layers, a suitable thickness for transfer layer B-l ranges from about 0.5 to 17 ,u. and for B-2 ranges from about 0.5 to 15 u, preferably 0.5 to 5 ,u..

Where transfer layer B comprises two layers, i.e., a colored or ink-receptive layer B-1 and a heat-sensitive layer, it is easy to make the thickness of the heat-sensitive layer B-2 as thin as about 0.5 to 5 t. With such a structure, there is the advantage that good copied images can be obtained even when the colored or inkreceptive layer B-l is quite thick.

After forming transfer layer B on support A as described above, support C is press-contacted onto the surface of the transfer layer B comprising the heat-sensitive composition. Thepress-contacting temperature should not be higher than the heat-sensitive temperature of the heat-sensitive composition and should not be lower than the adhesiveness-generating temperature. A suitable press-contacting temperature can range from room temperature (about 20 30C) to about lC, preferably 50C to C.

If the press-contacting temperature is not higher than the adhesiveness-generating temperature, adherence of transfer layer B to support C is impossible, while if the press-contacting temperature is not lower than the heat-sensitive temperature, the heat-sensitive substance is converted to a heat-sensitized state and the adhesion strength between the transfer layer B and support C becomes so great that relative relationship in the adhesion strength between the supports is not satisfied, resulting in a destruction of copying ability.

As has already been described, the adhesion strength between transfer layer B and support C can usually be about 0.1 to 50 g/cm, which can be highly controlled by selecting the press-contacting temperature, the application pressure, the time, the kind of adhesivenessimparting agent, the compounds amount, and the like.

Various press-contacting method can be employed, e.g., a method of passing two superposed supports through two press rollers maintained at an appropriate temperature, or a method of press-contacting the two supports to each other using parallel heating plates.

In addition, the order of press-contacting support A, transfer layer B and support C can be different from that described above. For example, formation of transfer layer B on a separate temporary support, press-contacting support C onto transfer layer B at a temperature higher than the heat sensitive temperature of the transfer layer and not lower than the adhesiveness-generating temperature, removal of the temporary support to prepare a configuration comprising support C/transfer layer B, bringing the transfer layer of this configuration into contact with the adhesive agent-coated surface of support A coated with the adhesive agent capable of adhering to the transfer layer at a temperature not higher than the heat-sensitive temperature of the transfer layer, and application of a pressure to the assembly at a temperature not higher than the heat-sensitive temperature of transfer layer B is within the scope of this invention.

The combination of support A, transfer layer B and support C in the present invention includes, for example, polyester-(montan wax (this first listed component in the parentheses here and in the examples hereinafter being a heat sensitive substance), polyisoprene (this second listed component in the parentheses here and in the examples hereinafter being an adhesiveness-imparting agent))-cellulose acetate, polypropylene-(carnauba wax, styrene-butadiene copolymer rubber)-polyvinyl chloride, nylon- (montan wax-polybutadiene)polypropylene, nylon-(montan wax, low molecular weight polyethylene a non-crystalline polyester)-polystyrene, polypropylene-(montan wax, ethylene-vinyl acetate copolymer)-cellulose acetate, polyethylene terephthalate-(montan wax, polyvinyl butyral, ethylenevinyl acetate copolymer)-cellulose acetate, polyethylene terephthalate-(carnauba wax, ethylene-vinyl acetate copolymer)-internally plasticized polyvinyl chloride film, nylon-(carnauba wax, montan wax, ethylenevinyl acetate copolymer)-internally plasticized polyvinyl chloride film, polyethylene terephthalate- (montan wax, ethylene vinyl acetate copolymer)-cellulose acetate, polyethylene terephthalate-(montan wax carnauba wax, ethylene vinyl acetate copolymer)-cellulose acetate, and the like.

FIG. 1 is an enlarged cross-sectional view showing configuration 1 of the heat-sensitive copying material in accordance with the present invention, wherein A, B and C represent support A, transfer layer B and support C, respectively.

FIG. 2 is anenlarged cross-sectional view showing another configuration 1 of the heat-sensitive copying material in accordance with the present invention, wherein B-l represents a colored or ink-receptive layer 3-], and 8-2 a heat-sensitive layer B-2.

FIG. 3 shows the condition of copying employing a reflection exposure method using the heat-sensitive copying material 1 of the present invention, wherein numeral 2 denotes an original and 3 denotes an image area. Upon irradiation with infrared rays, heat is generated in image area 3, which travels in the order of support A and transfer layer B, and thus the temperature of transfer layer B corresponding to the image area reaches the heat-sensitive temperature. Thus, in the B'- portion, as a result of increase in adhesion strength between portion B' and support C, the adhesion strength between portion B' and support C becomes greater than the adhesion strength between support A and portion B after heating, the former having been less than the latter before heating.

In this case, since the adhesion strength between layer B and support C is greater than zero before copying, that is, transfer layer B adheres to support C with a certain degree of adhesion strength, layer B is in uniform contact with support C over the entire surface with substantially no inclusions such as air bubbles therebetween and the above-described change in the relative relationship of the adhesion strength takes place uniformly and completely over the entire heated portion B'.

Upon delaminating support C from support A as shown in FIG. 4, a positive copied image B corresponding to the image area is formed on support C while a negative copied image is formed on support A. Because no heating occurred in the non-image area, delamination occurs between transfer layer B and sup port C since the adhesion strength between support A and the transfer layer B is greater than the adhesion strength between transfer layer B and support C, whereas in the image area B, delamination occurs between support A and transfer layer B since the adhe- 10 sion strength between transfer layer B and support C is greater than the adhesion strength between support A and transfer layer B.

FIG. 5 shows the relationship between the press-contacting temperature and the adhesion strength between transfer layer B and support C in conducting the presscontacting at a pressure of 3 kg/cm for 2 seconds, in which a heat-sensitive composition provided on a polyethylene terephthalate film [support A is brought into Contact with a cellulose acetate film [support C with this composition containing montan wax as a heat-sensitive substance and ethylene-vinyl acetate copolymer (vinyl acetate content: 40 percent by weight) as an adhesiveness-imparting agent in a weight proportion of 30.

X represents the point at which adhesiveness appears, transfer layer B being capable of adhering to support C at a temperature higher than this temperature. Y represents the heat sensitive temperature, the adhesion strength of transfer layer B to support C sharply increasing at a temperature higher than this temperature.

When a heat-sensitive substance, montan wax, alone is used as the heat-sensitive composition, the adhesion strength between layer B and support C increases along the curve XYZ (represented by a dotted line). From this, it is apparent that it is difficult to adhere transfer layer B to support C at a temperature less than the heat-sensitive temperature of the transfer layer (66C).

However, when a composition prepared by compounding the heat-sensitive substance (montan wax) with an adhesiveness-imparting agent (ethylene-vinyl acetate copolymer) suitable adhesion property as shown by XYZ in FIG. 5 can surprizingly be imparted to the transfer layer without destroying the heat-sensitive property. at all. This adhesion property is characteristic of the heat-sensitive substance. The adhesion strength between transfer layer B and support C can be closely controlled by press-contacting support C onto transfer layer B at a temperature between X and Y as shown in FIG. 5.

Additionally, although the adhesiveness-generating temperature of the heat-sensitive composition can be room temperature (about 20 30C) or less than that, it is preferably higher than room temperature to stabilize the adhesion strength with the lapse of time.

As the heat-sensitive substance, those with which the temperature difference betweeen Y and Z in FIG. 5 is small are preferred, because such substances provide sharp copied images. This temperature difference is preferably less than about 20C, e.g., a difference of 0C to 20C with a smaller difference being preferred.

Additionally, the adhesion strength between support A and transfer layer B can be varied somewhat depending upon the temperature as long as the adhesion strength is intermediate in strength between the adhesion strengths corresponding to Y and Z at least in the heat-sensitive temperature range Y to Z.

The adhesion strength between support A and transfer layer B can be adjusted by an appropriate selection of the material of support A or transfer layer B, by using a support A which has been surface treated and by a selection of laminating conditions of transfer layer B onto support A.

The heat-sensitive recording material of the present invention can be employed in various heat-sensitive copying or recording methods.

That is, the heat-sensitive recording material of the present invention can be used in a reflection or transmission exposure method wherein an original having an image capable of absorbing infrared rays or visible light and generating heat is superposed on the heat-sensitive copying material and the assembly is irradiated with infrared rays or visible light; a stencil transmission copying method wherein a stencil bearing image areas capable of transmitting infrared rays or visible light and nonimage areas capable of reflecting infrared rays or visible light is superposed on the copying material containing a substance capable of absorbing infrared rays or visible light and generating heat, and infrared rays or visible light are applied thereto from the stencil side; or a heat-printing method using an imagewise heated plate or a heating pen. A suitable exposure can be radiation of a wave length ranging from about 400 to 10,000 m preferably 700 to 3,000 mg, for an exposure time of less than 1 second, generally 0.5 to 0.001 second.

For example, the heat-sensitive recording material of the invention can be used in the following applications.

1. It can be used for copying general documents or as a chart paper for recording data of measuring devices, by using paper as support C and incorporating a coloring agent in the transfer layer or providing a colored layer.

2. It can be used as an intermediate original for use in diazo copying, for photographing film, or as an intermediate original for preparing an original printing plate, by using transparent plastic films as support A and support C and incorporating a coloring agent in the transfer layer or providing a colored layer.

3. It can be used as a stencil duplicating master using a porous sheet as support A.

4. It is usable as a spirit master by incorporating a spirit dye in the transfer layer or providing a colored layer containing a spirit dye.

5. It is usable as a lithographic printing master by using an ink-receptive or oleophilic light-sensitive substance such as wax or providing an ink-receptive layer and using, as support C, a support which, on at least the surface, is inkrepellent or can be rendered hydrophilic.

6. It is usable as a printing master by providing a comparatively thick, ink-receptive layer in the transfer layer and producing a relief plate.

EXAMPLE 1 Configuration: Support A/Colored layer B-l/Heatsensitive layer B-Z/Support C Support A: Surface-corona-treated, stretched, polypropylene film (20 ,u thick) Support C: Cellulose acetate film p. thick) Composition of Colored Layer (B-l shown in Table 1) Process for Production A 15% toluene/ethyl acetate mixed solvent solution of the colored layer composition was coated onto the corona-treated surface of support A in an amount of 1.5 g/m on a solids basis, and dried at 100C. Then, a 20% toluene solution (heated to 40C) of the heat-sensitive layer composition was coated onto the colored layer surface in an amount of 1.5 g/m on a solids basis, then dried at 100C.

The heat-sensitive layer-coated surface of the thus prepared configuration of support A/colored layer B- l/heat-sensitive layer 8-2 was brought into contact with support C and passed through two press rollers heated to C to obtain a heat-sensitive copying material. Additionally, a comparative sample was prepared for comparison using montan wax alone as a heat-sensitive composition.

The peel strength between the layers as measured in a manner similar to ASTM D 1876-61T are as shown in Table l, but using 2 cm wide test sample and a head speed of 100 mm/min.

TABLE 1 Peel Between Layers Peel Strength Between Peel Strength Between None (Comparative sample) Of course various additional modifications of the present invention can be made in view of the disclosure herein.

The present invention will now be illustrated in greater detail by reference to the following non-limiting examples of preferred embodiments of the present invention. Unless otherwise indicated, all parts, percents, ratios and the like are by weight.

As is shown in Table l, the effects of the present invention are apparent.

These heat-sensitive copying materials obtained by the process of the present invention can be handled as one sheet and, when copying was conducted superposing the material on an original using a reflection exposure method using a commercially available heat-sensitive copying machine, black, negative and positive copied sheets were obtained in a simple copying operation.

The resulting copied sheets were favorably used as transparencies for an overhead projector, as an intermediate original for preparing a printing original plate and as an intermediate original for use in diazo copying.

EXAMPLE 2 In a manner analogous to Example 1 except for changing the composition of the heat-sensitive layer B-2 in Example 1 to that shown in Table 2, heat-sensitive copying materials were obtained. The results thus obtained are shown in Table 2.

Table 2 Peel Strength Between Layer (B-2) and Support (C) Composition of Heatsensitive Layer Peel Strength Between Layer (B-2) and Support (C) (g/ Montan Wax/Evaflex No. 40=80l20 0.6 =60/40 0.8 =50/50 3.0

These heat-sensitive copying materials were easy to In a manner analogous to Example 1 except for the handle and Showed good Py Properties Similar to press-contacting temperature being 65C, a heat-sensithose obtained in Example 1.

EXAMPLE 3 In a manner analogous to Example 1 except for changing the composition of the heat-sensitive layer B-2 in Example I to (50 parts of carnauba wax 50 parts of Evaflex No. and changing support C and the press roll temperature as shown in Table 3, heatsensitive copying materials were obtained. The results thus obtained are shown in Table 3.

Table 3 tive copying material was obtained. With this sample, the peel strength between support A and layer B-l was 5 g/cm and the peel strength layerB-2 and support C was 0.5 g/cm.

When printing papers, wet with alcohol, were printed using a commercially available spirit printing machine employing as a master a positive copied sheet obtained from the above-described heat-sensitive copying material by conducting duplication using a heat-sensitive copying machine, printing was well effected to obtain dark blue printed images.

Peel Strength Between Layer (B-2)/Support (C) Press Roll Temperature ":Saran F239. made by Asahi-Dow Ltd. ":Comparative example using carnauba wax alone as the heat-sensitive layer ":According to this invention.

The resulting heat-sensitive copying materials obtained in the present invention were handled as one sheet and showed good copying properties. The sample in which vinylidene chloride copolymer-coated paper was used as support C was used as a document copy by conducting duplication according to a transmission exposure method.

EXAMPLE 4 Configuration: Support A/Spirit Dye Layer B- I/Heat-sensitive Layer B-2/Support C Support A Polyethylene terephthalate film (12 p.

thick) Support C Cellulose acetate film p. thick) EXAMPLE 5 Support (A)/Transfer Layer (B)/Support (C) Polyethylene terephthalate film (12 p.

thick) Internally plasticized polyvinyl chloride film (50 p. in thickness) Composition of Transfer Layer (8):

Configuration: Support (A):

Support (C):

Camauba Wax (mp. 84C) 35 parts Evaflex No. 40 35 Oil Black 2H8 30 A toluene solution (heated to 60C) of the transfer layer composition was coated onto support A in an amount of 2 g/m on a solid basis, and dried at 1 10C. Then, the transfer layer-coated surface was brought into contact with support C and pressure was applied 15 thereto at 65C to obtain an integral heat-sensitive copying material.

With this heat-sensitive copying material, the peel strength between support A/layer B was 10 g/cm and the peel strength between layer B/support C was 1 g/cm. This heat-sensitive copying material was easy to handle, showed good copying properties and was advantageously used for projection and as an intermediate original.

EXAMPLE 6 Configuration: Support A/Transfer Layer B (inkreceptive heat-sensitive layer)/Support C (paper having a hydrophilic layer thereon) In a manner analogous to Example except for using as support C an offset master for direct drawing (made by Fuji Photo Film Co., Ltd), a heat-sensitive copying material was obtained for use as an offset master. The peel strength between layer B and support C was 2 g/cm. After conducting heat-sensitizing copying using a transmission exposure method, the surface of the resulting offset master plate having an ink-receptive wax image was desensitized and mounted on an offset printer. Upon conducting printing, good impressions were obtained.

EXAM PLE '7 Configuration: Support A/Colored Layer B-l/Heatsensitive Layer B-Z/Support C Support (A) Stretched nylon film (15 1. thick) Support (C) Internally plasticized polyvinyl chloride film (100 ,u. thick) A toluene solution (heated to 60C) of the colored layer composition was coated onto support A in an amount of 1.5 g/m on a solid basis, and dried at l C. Then, a toluene solution (heated to 60C) of the heatsensitive layer composition was coated on the colored layer-coated surface in an amount of 2 g/m on a solid basis, and dried at l 10C. The heat-sensitive layercoated surface of the thus prepared constitution of support A/colored layer B-l/heat-sensitive layer B-2 was brought into contact with support C, pressure being applied thereto at 60C, to obtain an integral heat-sensitive copying material.

With this heat-sensitive copying material, the peel strength between support A and layer 8-1 was 10 g/cm and the peel strength between layer B-2 and support C was 0.2 g/cm.

The resulting heat-sensitive copying material was easy to handle, showed good copying properties, and was advantageously used for projection and as an intermediate original.

While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

What is claimed is:

l. A heat-sensitive recording material comprising a support (A) having thereon a transfer layer (B) and a support (C) in turn, said supports having the property that before heating the adhesion strength between the transfer layer (B) and the support (C) is smaller than the adhesion strength between the transfer layer (B) and support (A) and larger than 0.1 g/cm but, after heating to a temperature higher than the heat-sensitive temperature of the transfer layer (B), the adhesion strength between the transfer layer (B) and support (C) becomes greater than the adhesion strength between support (A) and transfer layer (B), and said transfer layer (B) comprising, at least on the side thereof in contact withsupport (C), a heat-sensitive composition containing as a major component a mixture of a heat-sensitive substance which becomes fluid at the heat-sensitive temperature of the heat-sensitive substance and an adhesiveness-imparting agent which can adhere to support (C) at a temperature not higher than the heat-sensitive temperature of said heat-sensitive substance.

2. The heat-sensitive recording material as described in claim 1, wherein said transfer layer (B) comprises a colored layer in adhesive contact with support (A) and a heat-sensitive layer in adhesive contact with support (C).

3. The heat-sensitive recording material as described in claim 1, wherein said transfer layer (B) comprises an ink-receptive layer in contact with support (A) and a heat-sensitive layer in contact with support (C).

4. The heat-sensitive recording material as described in claim 1, wherein the proportion of said adhesivenessimparting agent in said heat-sensitive layer (B) is about 1 to percent by weight of the weight of said heatsensitive layer (B).

5. The heat sensitive recording material as described in claim 1, wherein said transfer layer (B) has a thickness ranging from about 0.3 to 18 11..

6. The heat-sensitive recording material as described in claim 1, wherein the peel strength between support (A) and layer (B) is about 1 to g/cm and the peel strength between layer (B) and support (C) is about 0.1 to 50 g/cm before heating and not less than 2 g/cm after heating.

7. The heat-sensitive recording material as described in claim ll, wherein said heat-sensitive substance is a wax and said adhesiveness-imparting agent is an ethylene-vinyl acetate copolymer.

8. The heatsensitive recording material as described in claim 7, wherein said wax is candelilla wax, bees wax, montan wax, ceresine wax, camauba wax or a mixture thereof.

9. The heat-sensitive recording material as described in claim 8, wherein said wax is montan wax or a mixture of montan wax and carnauba wax.

10. A process for producing a heat-sensitive recording material, which comprises applying support (A) and support (C) onto opposite sides of transfer layer (B) at a temperature, for support (C), not higher than the heat-sensitive temperature of said heat-sensitive composition of layer (B) and not lower than the adhesiveness-generating temperature of layer (B), said support (A), transfer layer (B) and support (C) having the property that before heating the adhesion strength between layer (B) and support (C) is less than the adhesion strength between support (A) and layer (B) and greater than 0.1 g/cm but, after heating to a temperature higher than the heat-sensitive temperature of the transfer layer (B), the adhesion strength between layer (B) and support (C) becomes greater than the adhesion strength between support (A) and layer (B), and said transfer layer (B) comprising at least at the side thereof in contact with support (C) a heat-sensitive composition containing as a major component a mixture of a heat-sensitive substance which becomes fluid at the heat-sensitive temperature of the heat-sensitive sheet and an adhesiveness-imparting agent which can impart sufficient adhesiveness to adhere to support (C) at a temperature lower than the heat-sensitive temperature of said heat-sensitive substance.

11. The process for producing a heat-sensitive recording material as described in claim 10, including 18 press-contacting support (C) onto the heat-sensitive layer of transfer layer (B) after forming transfer layer (B) on support (A).

12. The process for producing a heat-sensitive recording material as described in claim 10, including adhering support (A) to transfer layer (B) after forming transfer layer (B) on support (C).

13. The process as described in claim 11, including forming transfer layer (B) by first forming a colored layer on support (A) and then forming a heat-sensitive layer thereon, and press-contacting support (C) onto the heat-sensitive layer of transfer layer (B).

14. The process as described in claim 11, including forming transfer layer (B) by first forming an inkreceptive layer on support (A) and then forming a heat-sensitive layer on said ink-receptive layer and press-contacting support (C) onto the heat-sensitive layer of transfer layer (B).

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,924,041 DATED December 2, 1975 Page 1 of z lN\/ ENTOR(S) MASUO MIYAYAMA ET AL It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

IN THE ABSTRACT:

Line 19, delete "not higher" and insert 1 lower of IN THE SPECIFICATION:

Column 2 Line 18, delete "not higher" and insert lower Column 3 Line 40, delete "novalac" and insert Q novolac Line 56, delete "less" and insert lower Line 63, delete "preferably a" and insert and a preferred temperature difference between the Line 64, delete "of more than 5 less than" and insert and Line 65, after "temperature" insert of at Q least 5C less Column 5 Line 28, delete "less" and insert lower Column 7 Line 29, delete "less" and insert lower Column 8 e Line 52, after "temperature" insert we not UNITED STATES PATENT AND TRADEMARK OFFICE CETIFICATE 0F CORRECTION PATENT NO. 3,924,041 page 2 of 2 DATED December 2, 1975 !NV ENTOR(S) I MASUO MIYAYAMA ET AL It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

IN THE SPECIFICATION:

Column 8 Line 60, delete "not" and insert lower Line 61, delete "higher". Q

Line 63, delete "not higher" and insert lower Column 11 Line 39, delete "light" and insert heat Column 12 In TABLE 1 after "Peel" insert Strength (first occurrence) IN THE CLAIMS:

Column 16 Line 25, delete "not higher" and insert a lower Column 17 Line 15, delete "sheet" and insert substance J Signed and Sealed this first Day of June 1976 [SEAL] Q Arrest:

RUTH c. MASON t. c. MARSHALL DANN Arresting Officer Commissioner uj'lamm and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2769391 *Nov 14, 1951Nov 6, 1956Dick Co AbMethod of manufacturing imaged hectograph spirit master
US2974585 *Jul 7, 1958Mar 14, 1961Columbia Ribbon & CarbonDuplicating
US3311489 *Sep 24, 1965Mar 28, 1967Oxford Paper CoTransfer sheet and method of preparing
US3751318 *Jan 25, 1971Aug 7, 1973Columbia Ribbon Carbon MfgThermographic transfer process
US3852091 *Sep 11, 1972Dec 3, 1974Columbia Ribbon Carbon MfgThermographic transfer sheets
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4066810 *Mar 31, 1976Jan 3, 1978Toyo Soda Manufacturing Co., Ltd.Hot melt ink containing a polymer, tackifier, and a pigment or dye
US4074003 *May 11, 1976Feb 14, 1978Weber Marking Systems, Inc.Thermographic stencil sheet, assembly and method of making an imaged stencil sheet
US4104067 *Jan 23, 1975Aug 1, 1978Agfa-Gevaert, AgCopolymers of methyl acrylate-alkyl acrylate or methyl methacrylate-alkyl methacrylate; ultraviolet sensitive recording
US4131695 *Feb 23, 1976Dec 26, 1978Ciba-Geigy CorporationAzo color former containing heat-sensitive recording material
US4157412 *Oct 25, 1977Jun 5, 1979Minnesota Mining And Manufacturing CompanyComposite material for and method for forming graphics
US4173677 *Jun 17, 1977Nov 6, 1979Sekisui Kagaku Kogyo Kabushiki KaishaFilm-forming vinyl chloride polymer, leuco dye, zinc compound
US4189171 *Jan 11, 1978Feb 19, 1980Sterling Drug Inc.Marking systems containing 3-aryl-3-heterylphthalides and 3,3-bis(heteryl)phthalides
US4244605 *May 29, 1979Jan 13, 1981Minnesota Mining And Manufacturing CompanyMaterial for forming graphics
US4349620 *Dec 17, 1980Sep 14, 1982E. I. Du Pont De Nemours And CompanySolvent developable photoresist film
US4474898 *Jul 12, 1983Oct 2, 1984Mitsubishi Paper Mills, Ltd.Polyvinyl ether
US4576831 *Aug 23, 1983Mar 18, 1986Fuji Photo Film Co., Ltd.Process for producing heat-sensitive recording paper
US4981746 *Aug 26, 1988Jan 1, 1991Dai Nippon Insatsu Kabushiki KaishaProtective coating
US5024989 *Apr 25, 1990Jun 18, 1991Polaroid CorporationProcess and materials for thermal imaging
US5155003 *Nov 21, 1990Oct 13, 1992Polaroid CorporationThermal imaging medium
US5200297 *Nov 21, 1990Apr 6, 1993Polaroid CorporationLaminar thermal imaging mediums, containing polymeric stress-absorbing layer, actuatable in response to intense image-forming radiation
US5229247 *Nov 27, 1991Jul 20, 1993Polaroid CorporationMethod of preparing a laminar thermal imaging medium capable of converting brief and intense radiation into heat
US5270073 *Feb 4, 1992Dec 14, 1993Konica CorporationHeat sensitive recording material, its manufacturing method and image forming process
US5275914 *Jul 31, 1992Jan 4, 1994Polaroid CorporationMultilayer sheets
US5279889 *Nov 27, 1991Jan 18, 1994Polaroid CorporationComposite laminar structure
US5328798 *May 5, 1993Jul 12, 1994Polaroid CorporationLaminar thermal imaging medium containing photohardenable adhesive layer and polymeric elastic and non-brittle barrier layer
US5342731 *Nov 21, 1990Aug 30, 1994Polaroid CorporationLaminar thermal imaging medium actuatable in response to intense image-forming radiation utilizing polymeric hardenable adhesive layer that reduces tendency for delamination
US5387490 *Jul 23, 1993Feb 7, 1995Polaroid CorporationMethod of preparing a laminar thermal imaging medium
US5389180 *Dec 10, 1993Feb 14, 1995Polaroid CorporationImaging laminate with improved tab for delamination
US5393639 *Nov 25, 1992Feb 28, 1995Polaroid CorporationImaging laminate
US5426014 *May 27, 1994Jun 20, 1995Polaroid CorporationMethod for preparing a laminar thermal imaging medium actuatable in response to intense image-forming radiation including a polymeric hardenable adhesive layer that reduces delamination tendency
US5514525 *May 12, 1995May 7, 1996Polaroid CorporationMethod of preparing a laminar thermal imaging medium
US5552259 *Sep 23, 1993Sep 3, 1996Polaroid CorporationThermal imaging system with improved resistance to stress induced delamination
US6245479Aug 9, 1999Jun 12, 2001Polaroid CorporationThermal imaging medium
EP0042954A2 *May 12, 1981Jan 6, 1982International Business Machines CorporationCorrectable thermal transfer printing ribbon
WO1989010845A1 *Apr 26, 1989Nov 16, 1989Ncr CoThermal transfer ribbon
Classifications
U.S. Classification428/212, 427/148, 427/208, 427/152, 428/216, 428/913
International ClassificationB41M5/392, B41M5/26, B41C1/055, B32B27/00, B41C1/10, B41M5/382
Cooperative ClassificationB41M5/38207, Y10S428/913
European ClassificationB41M5/382A