Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3925775 A
Publication typeGrant
Publication dateDec 9, 1975
Filing dateOct 26, 1973
Priority dateOct 26, 1973
Also published asDE2450046A1
Publication numberUS 3925775 A, US 3925775A, US-A-3925775, US3925775 A, US3925775A
InventorsLeslie W Gay
Original AssigneeNcr Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multiple digit display employing single digit readout
US 3925775 A
Abstract
Display of multiple digit information is carried out in a single digit readout device by serially flashing the information digits on the readout device in a predetermined order. Each digit is shown for a fraction of a second, typically on the order of one-fourth second. After each digit is displayed, the readout device is blanked in such a manner that the duration of the blanking period provides an indication of the relationship between successive digits. Thus, the blanking periods between successive digits within a group having a common range of significance may have a first duration approximating the duration for which each digit is displayed whereas the blanking periods between the last digit within a group and the first digit within a succeeding group may have a second, longer duration, typically twice the digit display duration.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Gay Dec. 9, 1975 MULTIPLE DIGIT DISPLAY EMPLOYING SINGLE DIGIT READOUT [75] Inventor: Leslie W. Gay, Escondido, Calif. [73] Assignee: NCR Corporation, Dayton, Ohio [22] Filed: Oct. 26, 1973 [21] Appl. No.: 410,166

340/25, 334, 336, 49, 378 R, 324 M, 343, 344, 325, 324 A; 178/30, 15; 58/50 R, 23 R; 235/92 T,-92 BA, 92 ST; 328/130; 315/169 R [56] References Cited UNITED STATES PATENTS 2,754,360 7/1956 Dersch, Jr 340/324 A 2,862,144 1 1/1958 McNaney 340/324 A 2,907,995 10/1959 Justus 340/336 2,909,972 10/1959 DeLano, Jr. 178/15 3,047,851 7/1962 Palmiter 178/15 3,122,734 2/1964 Rice 340/336 3,276,200 10/1966 Freeman... 58/50 3,320,585 5/1967 Hines.... 340/43 3,401,385 9/1968 Jaffe 340/336 3,416,133 10/1963 Hunkins 340/334 3,555,505 1/1971 Srogi 340/24 3,585,296 6/1971 Martin 178/15 3,760,581 9/1973 Wakabayashi 58/425 60 HZ GENERATOR 3,846,784 11/1974 Sinclair 340/336 OTHER PUBLICATIONS Novel Clock Displays Hours and Minutes One Digit at a Time, Electronic Design News, July 20, 1973, pp. 25-26.

Build the Monodigichron, Popular Electronics, Sept, 1973, by Michael S. Robbins, pp. 35-39.

Primary ExaminerGareth D. Shaw Assistant Examiner.lames D. Thomas Attorney, Agent, or Firm .l. T. Cavender, James H. Phillips, Edward A. Gerlaugh ABSTRACT Display of multiple digit information is carried out in a single digit readout device by serially flashing the information digits on the readout device in a predetermined order. Each digit is shown for a fraction of a second, typically on the order of one-fourth second. After each digit is displayed, the readout device is blanked in such a manner that the duration of the blanking period provides an indication of the relationship between successive digits. Thus, the blanking periods between successive digits within a group having a common range of significance may have a first duration approximating the duration for which each digit is displayed whereas the blanking periods between the last digit within a group and the first digit within a succeeding group may have a second, longer duration, typically twice the digit display duration.

6 Claims, 4 Drawing Figures CLOCK CHIP US. Patent Dec. 9, 1975 Sheet 1 of 4 3,925,775

FIG. IA

DEVELOP OR ACCEPT MULTIPLE DIGIT INFORMATION ARRANGE THE DIGITS IN A PREDETERMINED ORDER OF SIGNIFICANCE DO THE DIGITS BELONG TO MORE THAN ONE GROUP, THE DIGITS WITHIN A GROUP HAVING A COMMON RANGE OF SIGNIF ICANCE ARRANGE THE DIGITS IN GROUPS OF ONE OR MORE SUCCESSIVE DIGITS HAVING A COMMON RANGE OF SIGNIFICANCE DISPLAY THE MOST SIGNIFICANT PREVIOUSLY UNDISPLAYED DIGIT FOR LESS THAN I/2 SECOND U.S. Patent Dec. 9, 1975 Sheet 2 of4 3,925,775

[ BLANK DISPLAY FOR J LESS THAN I/2 SECON BLANK DISPLAY FOR PERIOD- EXCEEDING DURATION OF BLANKING BETWEEN DISPLAY OF DIGITS U.S. Patent Dec. 9, 1975 Sheet 3 of4 3,925,775

60 HZ GENERATOR US. Patent Dec. 9, 1975 Sheet 4 of4 3,925,775

3 X 2 4 y 4 6 X 4 B D 7 2 v0 V m m w V F 9 K 5 m w X \AUH W 5 6 2 5 X E 3 B 5 O R m Mm X5 5 w 9 0 5 6 BLANK MULTIPLE DIGIT DISPLAY EMPLOYING SINGLE DIGIT READOUT This invention relates to information display and, more particularly, to a multiple digit display employing a single digit alphanumeric readout.

Displays for effecting communication of multiple digit alphanumeric information take many forms well known in the art. The prior art displays have one common characteristic; viz.: a plurality of digits, generally the complete information set, is displayed simultaneously utilizing a corresponding plurality of display digits. For example: a cash register display given a simultaneous readout of all digits in dollars and cents or other exchange medium, a digital clock display simultaneously presents hours and minutes and sometimes also seconds, and a computer console display typically includes a great deal of simultaneously presented information.

For a multitude of uses, there is no significant drawback to utilizing the general prior art approach of presenting multiple digit information with a corresponding plurality of readout digits. However, the cost of providing a multiple digit display must always be considered. In addition, certain environments and applications bring other factors into account. Space which can be dedicated to the display may be limited which requires either the utilization of undesirably small individual display elements in the display array or some other compromise such as decreasing the number of digits displayed. Power consumption is a critical factor in portable apparatus, particularly in applications where battery size is severely limited. A notable example is to be found in the field of electronic digital watches.

Thus, those skilled in the art will readily appreciate that it would be highly desirable to provide simplified means for reliably effecting multiple digit alphanumeric readout, which means occupies much less space than known readouts for effecting this function and which consumes a great deal less power.

It is therefore a broad object of my invention to provide improved multiple digit information display means. i

It is another object of my invention to provide such display means which occupies a minimum of space while affording improved legibility.

In another aspect, it is an object of my invention to provide multiple digit alphanumeric readout means which affords a manifold decrease in power consumptron.

Briefly, these and other objects of the invention are achieved by utilizing a single digit display on which multiple digits comprising an information set are serially flashed in a rapid burst periodically or upon interrogation. Differing blanking periods between sequential digits are introduced to provide order and grouping information.

The subject matter of the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification.

The invention, however, both as to organization and method of operation, may best be understood by reference to the following description taken in connection with the accompanying drawing of which:

FIGS. la and lb, taken together, are a generalized flow diagram setting forth the method of the present invention; and i FIGS. 2a and 2b, taken together, constitute a logic diagram of an exemplary environment in which the invention may be practiced.

It will be observed from FIG. 1 that the fundamental basis of the method of the present invention lies in the realization that serially presented multiple digit information can be readily assimilated if the total number of digits is not excessive, if the type of information being conveyed is known, and if the presentation is keyed by periods during which the display is blanked for predetermined durations, More particularly, it has been found that such multiple digit information can be assimilated with accuracy similar to that achieved with parallel, simultaneous displays when the serial display rate flashes each digit for one-fourth second or less.

By way of example, six digit time (hours, minutes, seconds) may be displayed on a one digit readout according to the present invention by serially ordering the digits from most significant (tens of hours) to least significant (units of minutes) and further providing distinguishing pauses between the hours digits, between the minutes digits, and between the seconds digits. A complete display cycle is divided into 16 equal time periods of approximately one-fourth second each. The tens of hours digit is flashed on the display element for one time period. The display is then blanked for one time period after which the units of hours digit is presented for one time period. Next, the display is blanked for two time periods to indicate the separation between hours and minutes information. The two minutes digits are each flashed on for one time period separated by a single time period during which the display is blanked, and the seconds digits are similarly presented. After the units of seconds digit has been displayed for one time period, the readout is blanked for three time periods to signify the beginning of another complete display cycle.

Those skilled in the art will readily appreciate that the concept to which the present invention is directed is not limited to the readout of time or even six digits. A display for reading, for example, Social Security numbers would be given in a burst of nine figures in a three-digit, two-digit, four-digit pattern. Similarly, a telephone number would be presented in a three-digit, four-digit pattern, or if area code information were included, a three-digit, three-digit, four-digit pattern. Other patterns meaningful in presenting various information will occur to those skilled in the art,

In order to illustrate an exemplary environment in which the invention may be practiced, FIG. 2 (2a and 2b taken together), a logic diagram of a six-digit clock utilizing a single read-out element, will not be discussed. A time base signal is developed by a hz generator 1. The time base generator 1 may be dependent upon power line frequency, a frequency subdivided crystal oscillator, a low frequency relaxation oscillator, or such other standard as may be appropriate. It will be understood, of course, that 60 hz is simply convenient for the specific apparatus of FIG. 2, and other time base frequencies find use in appropriate applications. Four binary frequency divider stages 2, 3, 4, and 5 reduce the 60 hz time base signal to 3O, 15, 7 /2 and 3% hz. The 7 /2 hz signal is applied to the first of four additional cascaded binary frequency dividers 6, 7, 8, and 9, each of which has a 1 output when the corresponding stage is in a first state. The output from the binary divider stage 6 is applied to input terminals of logic inverters 16 and 24. Similarly, the output from binary stage 7 is applied to the input terminals of inverters l4 and 22, and the output of binary stage 8 is coupled to the input terminals of inverters 12 and 20. However, it wil be noted that the output from the divider stage 9,'in addition to being directly connected to the input of inverter'18, is also connected to the input of an I inverter 43 which, in turn, drives inverter 10. Assigning the mnemonic designations A0, A1, A2, and A3 to the respective outputs of divider stages 6, 7, 8, and 9, it will be seen that the output signals from inverters 16 and 24 are bOtl AO, the output signals from inverters l4 and 22 are Al, the output signals from inverters 12 and 20 are A2, the output signals from inverter 10 is A3, and

' l the output signal from inverter 16 is A3. Inverters 10-24 respectively drive a second array of inverters 11-25 to provide logically reinverted signals for combi- 1 nation with'the inverted signals to develop 16 sequential time periods. Inverters 11 and 19 are not used and are shown only because they are present in the specific integrated circuits (which will be referenced below) from which the exemplary embodiment of the apparatus has been fabricated.

' "Each gate of an array of 16 NAND gates 26-42 inclusive is provided with four inputs. These inputs receive the outputs of the inverters 10-25 in 16 unique combinations as shown in FIG. '2; The NAND gates 26-42 w ill therefor sequentially issue respective output signals T-T16. For example, the logic equation which will cause the NAND gate 26 to issue the signal T0 is A0- -A1-A2'A3. Similarly, the logic combin a tion which will ca use the NAND gate 36 to issue the T signal is A0- It will be observed that the signal A0 changes logic level at a frequency of 3.75 hz. Since A1, A2, and A3 are slower by powers of 2, A0 governs the rate at which the logic pattern issued by the dividers 6, 7, 8, and 9 changes. The duration of each time period for the logic than necessary.

A 60 hz signal from the time base generator 1 is also applied to the reference frequency input of clock chip 44. The logic within the clock chip 44 is quite complex. However, only the functions carried out by the clock chip are of direct pertinence to the present invention,

j and therefore no detailed analysis of the logic will be attempted. A commercially available clock chip will be referenced below to permit those skilled in the art to readily reproduce the exemplary embodiment of the invention described herein.

The clock chip 44 accepts the 60 hz time base signal and issues a multiplexed BCD output to logic inverters .45, 46, 47, and 48 to provide, respectively, the signals 1 2 2 2 and 2. The digit value signals are applied to appropriate inputs of a single digit readout device 49. The readout device'49 also includes logic circuitry V which is of no direct import to an understanding of the present invention. It should be noted, however, that the exemplary embodiment utilizes a readout device which includes a 4-bit latch such that a strobe pulse is necessary to introduce new information to the display. A commercially available readout device incorporating this end and other functions to be described will be referenced below.

The clock chip 44 also issues, at any given time, one of six signals to indicate which digit of the clock presentation is currently available at the BCD outputs. These signals, after passing through inverters 50-55, are assigned the mnemonicdesignations HT, HU, MT, MU, ST, and SU representing tens of hours through units of seconds. The strobe pulse necessary to introduce a new digit into the readout device 49 is developed by combining certain of the clock pulses with the digit multiplex information from the clock chip 44. Thus, TO and HT are applied as the two input signals to NAND gate '56; T2 and HU signals are applied as the two inputs to NAND gate 57; and T5 and MT are applied as the two inputs to NAND gate 58. Similarly, NAND gates 59-61 are selectively enabled. All outputs from the NAND gates 56-61 are connected together and applied to the strobe input to the readout device 49.

The clock chip 44 utilized in the exemplary embodiment of the apparatus incorporates an internal multiplexing oscillator which can however be externally frequency controlled. The multiplexing frequency is not critical so long as it is well above the step frequency from time period to time period. A multiplex frequency of approximately 1 Khz has been found to be satisfactory in the exemplary embodiment. Thus, during T0, digit information from clock chip 44 will be strobed into the internal 4-bit latch of the readout device 49 only when the signal HT is present to fully enable NAND gate 56. Similarly, as another example, during T10, only the signal .ST can cause a strobe pulse to be generated by fully enabling the NAND gate 60. As a result, the readout device 49 can accept only tens of seconds information from the clock chip 44 during T10. It has been found that comprehension of the displayed information can be improved by methodically blanking the readout device 49 between the display of successive digits. Perception of the distinction between the hours and minutes and between the minutes and seconds is achieved by lengthening between the units of hours digit and the tens of minutes digit and between the units of minutes digit and the tens of seconds digit. Further improvement in assimilation is achieved by blanking the readout device 49 for a somewhat longer period between the display of the units of seconds digit and commencement of a successive complete readout cycle starting with the tens of hours digit. A blanking input to the readout device 49 is provided such that it is only necessary to determine during which time periods the readout device 49 is to be blanked and r to suitably combine the time period signals. This fun ctign i s cagiecL ou t by EORgate 2 which ccepts T1, T3, T4, T6, T8, T9, T11, T13, T14, and T15 as input signals with its output coupled to the blanking input of the readout device 49. l

Thus, a full 6-digit display cycle takes place as follows. During T0, the tens of hours digit is displayed. During T1, the readout device 49 is blanked to separate the tens of hours digit from the units of hours digit. During T2, the units of hours digit is displayed. During T3 and T4, the readout device is blanked to separate the units of hours and the tens of minutes digits and also, as a result of the extended blanking duration, provide an indication of the separation between the hours digit pair and the minutes digit pair. Similarly, the tens,

of minutes and units of minutes digits are displayed during T5 and T7, respectively, with the readout device being blanked during T6 and also during T8 and T9 to separate the minutes digit pair from the second digit pair. The seconds are read out during T and T12 separated by T11. Then, the display is blanked for the whole of T13, T14, and T15 to provide an indication that the entire display cycle has been completed and that a new display cycle follows.

The relationship of the time durations of the various blanking phases to the time durations during which digits are displayed has been found to be readily implemented with binary logic. That is, equal blanking duration is provided between successive digits having the same order of significance (such as the hour digits, dollar digits, etc.) while the extended duration between successive digits which constitute the last digit of a group of digits in one range of significance and the first digit in the next digit group (hours to minutes, dollars to cents, etc.) may usefully be twice as long. The duration of blanking between the end of a complete display and the institution of a succeeding display may be accommodated to a particular application. One time period increment in excess of the maximum blanking period used during a display has been found to give entirely sufficient psychological warning of the beginning of a display event.

In order to permit those skilled in the art to readily practice the invention, the following component information is provided to permit fabrication of a replica of the FIG. 2 apparatus. As previously noted, the 60 hz generator 1 may take any one of many forms well known to all skilled in the art. For high accuracy, a superior crystal oscillator and appropriate countdown logic may be utilized. Alternatively, a useful signal may be developed from a 60 hz power line of suitable frequency integrity. For simplicity, a 60 hz relaxation oscillator may be used.

The binary divider stages 2-9 are two 4-bit integrated circuit binary counters, designated 9316, manufactured by Fairchild Semiconductor. Inverters 10-25 and NAND gates 26-42 comprise two integrated circuit one-of-lO decoders utilized as one-of-8 decoders and manufactured under the disignation 9301 by Fairchild. The inverters 43, 45-55, and 63-58 available on three integrated circuits designated 9016 by Fairchild. The NAND gates 56-61 are contained on two Fairchild 9002 integrated circuits. The NOR gate 62 is contained on two Fairchild type 9007 integrated circuits. The single digit readout device 49 is a Texas Instruments type T1L3ll light emitting diode unit. The clock chip 44 is a type MM5313, manufactured by The National Semiconductor Corporation. One may refer to Fairchild TTL Data Book (June, 1972), National Semiconductor Specification Sheet for MM431l/MM531 l, MM4312/MM5312, MM43l3/MM5313, MM43l4/MM5314 Digital Clock Chip (June, 1972), and Texas Instruments Bulletin DL-S 7211653 for Type TIL31 l Hexadecimal Display with Logic (March, 1972) for detail of the internal logic and circuitry of the elements employed in the exemplary apparatus. Those skilled in the art will understand that the selection of logic type and readout device type is strictly a matter of design choice and that many different choices are available to the practitioner.

In order to set the clock, switches 69, 70, and 71 are provided to provide fast slew, slow slew, and hold functions, respectively, by momentarily applying a V signal to appropriate inputs of the clock chip 44. When switch 69 is closed, the internal logic of the clock chip 44 responds by advancing the internal time by 1 hour per second. Similarly, actuating switch 70 advances the internal time by one minute per second. Actuation of the switch 71 inhibits incrementing the internal time to effect a hold feature.

While the principles of the invention have now been made clear in an illustrative embodiment, there will be immediately obvious to those skilled in the art many modifications of structure arrangements, proportions, the elements, materials, and components used in the practice of the invention which are particularly adapted for specific environments and operating requirements without departing from those principles.

What is claimed is:

1. A method for displaying multiple digit information comprising the steps of:

A. arranging the digits in a predetermined order of significance from most significant to least significant;

B. displaying the most significant previously undisplayed digit on a single digit readout device for a period having a first predetermined duration, said first predetermined duration being in the range from one-eighth to one-half second;

C. blanking the readout device for a period having a second predetermined duration, said second predetermined duration being in the range from oneeighth second to one-half second;

D. repeating steps (B) and (C) until all digits of the information have been displayed.

2. The method of claim 1 which includes the additional steps of:

A. arranging the digits in a plurality of groups of one or more successive digits, each of the digits within a given group having a common range of significance; and

B. blanking the readout device for a period having a third predetermined duration between the last displayed digit of a group and the first displayed digit of a succeeding group.

3. The method of claim 2 in which the third predetermined duration is longer than each of the first and second durations.

4. The method of claim 3 which includes the further sequential steps of:

A. blanking the readout device for a period of longer duration than each of the first, second, and third durations after the last digit of the multiple digit information has been displayed: and

B. instituting another cycle of display by returning to step A of claim 1 and repeating the foregoing steps.

5. The method of claim 3 in which the first and second durations are equal.

6. The method of claim 5 in which the third duration is twice the first duration.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2754360 *Dec 24, 1951Jul 10, 1956IbmCharacter synthesizer
US2862144 *Mar 21, 1958Nov 25, 1958Gen Dynamics CorpSimplified system for character selection in a shaped beam tube
US2907995 *Jan 17, 1957Oct 6, 1959American Sign & Indicator CoDisplay signs
US2909972 *Sep 15, 1958Oct 27, 1959IbmDisplay apparatus employing electro-optical devices
US3047851 *Mar 21, 1958Jul 31, 1962Marquardt CorpElectronic character generating and displaying apparatus
US3122734 *Jun 24, 1960Feb 25, 1964IbmCode conversion and display system
US3276200 *Aug 27, 1964Oct 4, 1966Gen Time CorpElectronic clock
US3320585 *Dec 23, 1964May 16, 1967Hines James L RTime informing display device
US3401385 *Nov 3, 1964Sep 10, 1968Polarad Electronics CorpSerial pulse continuous message indicator system
US3416133 *Jan 7, 1963Dec 10, 1968Ultronic Systems CorpShift register controlled market ticker information display
US3555505 *Mar 17, 1969Jan 12, 1971Ladislaw G SrogiAir space traffic simulator
US3585296 *Oct 28, 1969Jun 15, 1971IbmSynchronized reciprocating lens photocomposer
US3760581 *Oct 17, 1972Sep 25, 1973Wakabayashi YElectro-mechanical digital world clock
US3846784 *May 7, 1973Nov 5, 1974Sinclair CElectronic digital displays
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4090247 *Aug 11, 1975May 16, 1978Arthur D. Little, Inc.Portable data entry device
US4097924 *Sep 3, 1976Jun 27, 1978Ing. C. Olivetti & C., S.P.A.Computer operator guide device
US4141208 *Jan 19, 1976Feb 27, 1979Hughes Aircraft CompanyDigitally tuned timepiece
US4394653 *Nov 24, 1980Jul 19, 1983General Instrument CorporationBi-directional drive multiplexed display system
US4401262 *Jun 18, 1982Aug 30, 1983Honeywell Inc.Energy saving thermostat with means to shift offset time program
US4668994 *May 10, 1984May 26, 1987Canon Kabushiki KaishaFacsimile apparatus
US4970502 *Oct 25, 1985Nov 13, 1990Sharp Kabushiki KaishaRunning character display
US5596554 *Jun 4, 1993Jan 21, 1997Hagadorn; Hubert W.Set operation in a timepiece having an electrooptical display
Classifications
U.S. Classification345/34, 368/239, 968/955
International ClassificationG04G99/00, G09G3/04, G04G9/08, G06F3/147
Cooperative ClassificationG04G9/082
European ClassificationG04G9/08B