US3926010A - Rotary heat exchanger - Google Patents

Rotary heat exchanger Download PDF

Info

Publication number
US3926010A
US3926010A US436124A US43612474A US3926010A US 3926010 A US3926010 A US 3926010A US 436124 A US436124 A US 436124A US 43612474 A US43612474 A US 43612474A US 3926010 A US3926010 A US 3926010A
Authority
US
United States
Prior art keywords
fluid
heat exchanger
rotor
passage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US436124A
Inventor
Michael Eskeli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/393,571 external-priority patent/US3972203A/en
Application filed by Individual filed Critical Individual
Priority to US436124A priority Critical patent/US3926010A/en
Application granted granted Critical
Publication of US3926010A publication Critical patent/US3926010A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B3/00Self-contained rotary compression machines, i.e. with compressor, condenser and evaporator rotating as a single unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits
    • F28D11/02Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller
    • F28D11/04Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller performed by a tube or a bundle of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies

Definitions

  • ABSTRACT [63] f; ;;l of 393571 A method and apparatus for transferring heat from a fluid stream at a lower temperature to a fluid stream [52] Us Cl 62/40l 67/499. 122/26 at a higher temperature.
  • a gaseous fluid is sealed 7 within a rotating rotor and circulated therein, com- L6/247 165/86 165/88 ff 4 f pressing said gaseous fluid by centrifugal action on [51] Int C12 F253 3/00 said fluid by said rotor, with heat being added to said 58] Fie'ld 402 499 gaseous fluid from said lower temperature fluid stream during first part of said compression, and then remov- 122/26; 165/86, 88; 126/247; 415/1, 64, 114,
  • Various fluids may be used for said lower UNITED STATES PATENTS temperature and higher temperature fluids, such as 2,393,338 1/1946 Roebuck 62 401 water, and said gaseous fluid may be carbon dioxide, 2,451,873 10/1948 ROCbUCk 62/401 o some other gas 2,490,064 12/1949 Kollsman 62/401 2,490,065 12/1949 KOllSm'dll 62/402 5 4 Drawmg Figures 11 I 8 4 o l7 l8 ,1 H 29 W o 0 2a 0 22 US. Patent Dec.
  • This invention relates to devices for transferring heat from a fluid at a lower temperature to another fluid at a higher temperature by employing a compressible fluid which is compressed within a continuous flow centrifuge to an elevated pressure with accompanying temperature increase, and this higher temperature is then used to effect heat transfer to a second fluid which is at a higher temperature than said lower temperature fluid, and providing means within said centrifuge to propel said gaseous fluid through said centrifuge.
  • FIG. 1 is a cross section of one form of the heat exchanger
  • FIG. 2 is an end view of the unit shown in FIG. 1, with sections removed to illustrate interior details.
  • FIG. 3 is a detail showing fluid nozzles within the heat exchanger.
  • FIG. 1 therein is shown a cross section of the heat exchanger.
  • said first fluid is sealed within the rotor, and the second fluid and the third fluid are supplied from external sources through passages provided within the rotor shaft, and then distributed to their respective heat exchangers.
  • FIG. 3 a detail of first fluid rotor nozzles is shown.
  • 30 is nozzle wall
  • 32 indicates direction of movement of nozzles
  • 13 are nozzles
  • 33 indicates first fluid leaving said nozzles 13.
  • the operation of the heat exchanger is as follows: First fluid enters the compression side of the rotor via entry opening 18, and is compressed by rotor centrifugal action with accompanying temperature increase, with vanes 25 and fins of heat exchanger tubes assuring that said first fluid will rotate with said rotor. During first part of said compression, heat is added to said first fluid in heat addition heat exchanger 26, and then said first fluid is further compressed and then heat is removed from said first fluid and transferred to said second fluid in heat exchanger 12. After said heat removal, said first fluid is passed to expansion side of rotor via nozzles 13, with said nozzles discharging usually said first fluid backward away from direction of rotation thus providing additional pressure differential to provide for circulation of said first fluid within said rotating rotor.
  • Said first fluid is then passed inward toward rotor center with vanes 15 assuring that said first fluid will rotate with said rotor for receiving the work associated with the deceleration of said first fluid. After said deceleration and expansion, said first fluid is passed via opening 18 thus completing its cycle. Heat is carried away from said heat exchanger by said second fluid through said rotor shaft passages, and heat is supplied to said first fluid by said third fluid being circulated via said rotor shaft passages. Shaft 20 is used to connect said rotor to a power source.
  • the unit described herein is similar to the unit described in co-pending patent application Rotary Heat Exchanger, except that the placement of the heat addition heat exchanger is slightly different.
  • the function of the heat exchanger is the same as in said copending application, which is Ser. No. 393,571.
  • the heat removal heat exchanger 12 is shown to be within the compression side of the said rotor; said heat exchanger may also be extended to be partially or fully within said expansion side of said rotor, without changing the function of said rotary heat exchanger. Similarly, said heat addition heat exchanger may be partially placed within the inward extending expansion side passages without changing the function of said rotary heat exchanger.
  • a heat exchanger comprising a rotor, means for mounting said rotor for rotation, said rotor having first and second closed passages extending outwardly from the 'axis of rotation of the rotor, a first passage means forconnecting-th'e outer ends and a second passage means for connecting the inner ends of said first and second closed outwardly extending pasages to allow a fluid to flow outwardly in said first passage and inwardly toward the axis of rotation in said second passage, a compressible first fluid in said passages, a first heat exchanger carried by said rotor and a second heat exchanger carried by said rotor and located inwardly from the outermost part of said first heat exchanger, means for passing a second fluid through said first heat exchanger to remove heat from the first fluid, and means for passing a third fluid through said second heat exchanger to add heat to said first fluid, and means for rotating said rotor to cause said first fluid to flow outwardly in said first passage and be heated by compression due to centrifugal force and to

Abstract

A method and apparatus for transferring heat from a fluid stream at a lower temperature to a fluid stream at a higher temperature. A gaseous fluid is sealed within a rotating rotor and circulated therein, compressing said gaseous fluid by centrifugal action on said fluid by said rotor, with heat being added to said gaseous fluid from said lower temperature fluid stream during first part of said compression, and then removing heat from said gaseous fluid during latter part of compression and after compression; said gaseous fluid having gained in temperature during said compression. Various fluids may be used for said lower temperature and higher temperature fluids, such as water, and said gaseous fluid may be carbon dioxide, or some other gas.

Description

United States Patent 11 1 1111 3,926,010
Eskeli Dec. 16, 1975 1 ROTARY HEAT EXCHANGER 2.522.781 9/1950 Exner 62/499 2,529,765 9/1950 Exner 62/499 [76] Inventor: Michael Eskeli, 7994-41 Locke Lee,
7 Houston 7704 Primary E.\'aminerAlbert W. Davis, Jr.
[22] Filed: Jan. 24, 1974 Assistant E.\'ami11erSheldon Richter 1 pp NO: 436,124 Attorney, Agent, or FirmJennings B. Thompson Related US. Application Data [57] ABSTRACT [63] f; ;;l of 393571 A method and apparatus for transferring heat from a fluid stream at a lower temperature to a fluid stream [52] Us Cl 62/40l 67/499. 122/26 at a higher temperature. A gaseous fluid is sealed 7 within a rotating rotor and circulated therein, com- L6/247 165/86 165/88 ff 4 f pressing said gaseous fluid by centrifugal action on [51] Int C12 F253 3/00 said fluid by said rotor, with heat being added to said 58] Fie'ld 402 499 gaseous fluid from said lower temperature fluid stream during first part of said compression, and then remov- 122/26; 165/86, 88; 126/247; 415/1, 64, 114,
177, 178, 179 99 A; 416/95 96 mg heat from sa1d gaseous flu1d durmg latter part of compression and after compression; said gaseous fluid having gained in temperature during said com- [56] References cued pression. Various fluids may be used for said lower UNITED STATES PATENTS temperature and higher temperature fluids, such as 2,393,338 1/1946 Roebuck 62 401 water, and said gaseous fluid may be carbon dioxide, 2,451,873 10/1948 ROCbUCk 62/401 o some other gas 2,490,064 12/1949 Kollsman 62/401 2,490,065 12/1949 KOllSm'dll 62/402 5 4 Drawmg Figures 11 I 8 4 o l7 l8 ,1 H 29 W o 0 2a 0 22 US. Patent Dec. 16, 1975 ROTARY HEAT EXCHANGER CROSS REFERENCES TO RELATED APPLICATIONS This application is a continuation-in part application of a previous application titled Rotary Heat Exchanger, filed Aug. 31, 1973, Ser. No. 393,571. Also, the principles used with the heat exchanger of this invention were used previously with Heat Exchanger with Three Fluids, filed May 17, 1973, Ser. No. 361,281, and Heating and Cooling Wheel, filed Jan. 11, 1972, Ser. No. 216,938, and also Heating and Cooling Wheel with Dual Rotors, filed Jan. 20, 1972, Ser. No. 219,212.
BACKGROUND OF THE INVENTION This invention relates to devices for transferring heat from a fluid at a lower temperature to another fluid at a higher temperature by employing a compressible fluid which is compressed within a continuous flow centrifuge to an elevated pressure with accompanying temperature increase, and this higher temperature is then used to effect heat transfer to a second fluid which is at a higher temperature than said lower temperature fluid, and providing means within said centrifuge to propel said gaseous fluid through said centrifuge.
There have been several devices that have provided means of transferring heat from lower temperature fluid to a higher temperature fluid. These devices have been relatively inefficient due to the device requiring an external compressor to provide needed pressure differential to transport said gaseous compressible fluid through said centrifuge rotor.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross section of one form of the heat exchanger, and
FIG. 2 is an end view of the unit shown in FIG. 1, with sections removed to illustrate interior details.
FIG. 3 is a detail showing fluid nozzles within the heat exchanger.
DESCRIPTION OF PREFERRED EMBODIMENTS It is an object of this invention to provide a method and apparatus for transferring heat from a compressible and gaseous first fluid initially at a lower temperature to a second fluid at a higher temperature by compressing said first fluid within a centrifuge with accompanying temperature increase so that said first fluid is at a higher temperature when compressed than said second fluid thus providing needed temperature differential; said first fluid then being allowed to expand within said centrifuge with accompanying temperature decrease; said first fluid being passed via a set of nozzles arranged to discharge backward near the periphery of said centrifuge rotor; said gaseous first fluid having preferably heat added to it during and before compression, and having heat removed from said first fluid during and after compression.
Referring to FIG. 1, therein is shown a cross section of the heat exchanger. In this unit, said first fluid is sealed within the rotor, and the second fluid and the third fluid are supplied from external sources through passages provided within the rotor shaft, and then distributed to their respective heat exchangers. is casing, 11 is rotor, 12 is heat removal heat exchanger through which said second fluid is circulated, 13 are first fluid nozzles, 14 is a space for said first fluid downstream of said nozzles l3, 15 are vanes within inward extending first fluid passages, 16 is thermal insulation, 17 is distribution conduit for second fluid, 18 is first fluid passage near rotor center for passing first fluid from expansion side to compression side, 19 and 27 are shaft bearings and seals, 20 is rotor shaft, 21 and 22 are second fluid entry and exit, 23 is' rotor divider, 24 is casing vent into which a vacuum pump may be connected, 25 are compression side vanes, 26 is heat addition heat exchanger, wherein said third fluid is being circulated, 28 and 29 are third fluid entry and exit, 30 is third fluid passage within rotor shaft.
In FIG. 2, an end view of the unit shown in FIG. 1 is illustrated. 10 is casing, 11 is rotor, 15 is vane, 14 is first fluid space, 13 are first fluid nozzles, 12 is heat removal heat exchanger, 25 are vanes, 26 is heat addition heat exchanger, 17 is second fluid conduit, 31 indicates direction of rotation for rotor.
In FIG. 3, a detail of first fluid rotor nozzles is shown. 30 is nozzle wall, 32 indicates direction of movement of nozzles, 13 are nozzles, and 33 indicates first fluid leaving said nozzles 13.
The operation of the heat exchanger is as follows: First fluid enters the compression side of the rotor via entry opening 18, and is compressed by rotor centrifugal action with accompanying temperature increase, with vanes 25 and fins of heat exchanger tubes assuring that said first fluid will rotate with said rotor. During first part of said compression, heat is added to said first fluid in heat addition heat exchanger 26, and then said first fluid is further compressed and then heat is removed from said first fluid and transferred to said second fluid in heat exchanger 12. After said heat removal, said first fluid is passed to expansion side of rotor via nozzles 13, with said nozzles discharging usually said first fluid backward away from direction of rotation thus providing additional pressure differential to provide for circulation of said first fluid within said rotating rotor. Said first fluid is then passed inward toward rotor center with vanes 15 assuring that said first fluid will rotate with said rotor for receiving the work associated with the deceleration of said first fluid. After said deceleration and expansion, said first fluid is passed via opening 18 thus completing its cycle. Heat is carried away from said heat exchanger by said second fluid through said rotor shaft passages, and heat is supplied to said first fluid by said third fluid being circulated via said rotor shaft passages. Shaft 20 is used to connect said rotor to a power source.
The unit described herein is similar to the unit described in co-pending patent application Rotary Heat Exchanger, except that the placement of the heat addition heat exchanger is slightly different. The function of the heat exchanger is the same as in said copending application, which is Ser. No. 393,571.
The heat removal heat exchanger 12 is shown to be within the compression side of the said rotor; said heat exchanger may also be extended to be partially or fully within said expansion side of said rotor, without changing the function of said rotary heat exchanger. Similarly, said heat addition heat exchanger may be partially placed within the inward extending expansion side passages without changing the function of said rotary heat exchanger.
The rotor nozzles 13 may be arranged to discharge said first fluidradially or axially, if desired, depending 3 of the requirements of the first fluid used".
The said third fluid may be used for cooling applications, if desired; normally, when said third fluid is used for cooling, the said first fluid and said third fluidare arranged to be in counter-flow within said heat addition heat exchanger 26. Said second fluid may be vaporized within said heat removal heatexchanger, if desired.
Thermal insulation is provided as shown and as desired to prevent undesirable heat transfer between fluids and rotor. H
The heat exchangers are shown having been made using finned tubing as the heat exchange members. Other forms of heat exchangers may be used if desired.
Various controls and governors may be used with the device of this invention. They do not form a part of this invention and are not further described herein.
Vanes are shown to be curved in FIG. 2. Said vanes may be also made radial as desired. Further, vanes may be curved if desired, and the fins'of heat exchanger tubing slanted if desired.
The first fluid is usually a gas, such 'as carbon dioxide, or be a vapor, such as many of the halogenated hydro carbons. The second fluid may be either gas'or a liquid; normally said second fluid is a liquid. Said third fluid may be also either gas or a liquid. Water may be used as said second and said third fluid,
Work input to said rotor to rotate said rotor is normally low and may be negligiblefWork is required to accelerate said first fluid to rotor tangential speed, and then work is recovered when said first fluid is decelerated. Discharge of said first fluid backward in nozzles 13 increases work loss, but if said nozzles are arranged todischarge said first fluid radially or in axial direction, this work loss can be eliminated. The amount of work lost in nozzles 13 depends on the fluid chosen for said first fluid, and of the location of said heat exchangers l2 and 26, and the temperature differences maintained within the rotor.
What is claimed is:
l. A heat exchanger comprising a rotor, means for mounting said rotor for rotation, said rotor having first and second closed passages extending outwardly from the 'axis of rotation of the rotor, a first passage means forconnecting-th'e outer ends and a second passage means for connecting the inner ends of said first and second closed outwardly extending pasages to allow a fluid to flow outwardly in said first passage and inwardly toward the axis of rotation in said second passage, a compressible first fluid in said passages, a first heat exchanger carried by said rotor and a second heat exchanger carried by said rotor and located inwardly from the outermost part of said first heat exchanger, means for passing a second fluid through said first heat exchanger to remove heat from the first fluid, and means for passing a third fluid through said second heat exchanger to add heat to said first fluid, and means for rotating said rotor to cause said first fluid to flow outwardly in said first passage and be heated by compression due to centrifugal force and to flow inwardly in said second passage toward the axis of rotation of the rotor.
2. The heat exchanger of claim 1 in which the passage .means connecting the outer ends of the passages comprises a set of nozzles for passing said first fluid from the. first passage to the' second passage.
3. The heat exchanger of claim 2 in which the nozzles direct the fluid flowing therethrough in a direction away from the direction of. rotation of the rotor.
' 4. The heatexchanger of claim 2 in which the first heat exchanger is located upstream of the nozzles.
5. The heat exchanger of, claim 4 in which the second heat exchanger is located in the same passage as the first heat exchanger.

Claims (5)

1. A heat exchanger comprising a rotor, means for mounting said rotor for rotation, said rotor having first and second closed passages extending outwardly from the axis of rotation of the rotor, a first passage means for connecting the outer ends and a second passage means for connecting the inner ends of said first and second closed outwardly extending pasages to allow a fluid to flow outwardly in said first passage and inwardly toward the axis of rotation in said second passage, a compressible first fluid in said passages, a first heat exchanger carried by said rotor and a second heat exchanger carried by said rotor and located inwardly from the outermost part of said first heat exchanger, means for passing a second fluid through said first heat exchanger to remove heat from the first fluid, and means for passing a third fluid through said second heat exchanger to add heat to said first fluid, and means for rotating said rotor to cause said first fluid to flow outwardly in said first passage and be heated by compression due to centrifugal force and to flow inwardly in said second passage toward the axis of rotation of the rotor.
2. The heat exchanger of claim 1 in which the passage means connecting the outer ends of the passages comprises a set of nozzles for passing said first fluid from the first passage to the second passage.
3. The heat exchanger of claim 2 in which the nozzles direct the fluid flowing therethrough in a direction away from the direction of rotation of the rotor.
4. The heat exchanger of claim 2 in which the first heat exchanger is located upstream of the nozzles.
5. The heat exchanger of claim 4 in which the second heat exchanger is located in the same passage as the first heat exchanger.
US436124A 1973-08-31 1974-01-24 Rotary heat exchanger Expired - Lifetime US3926010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US436124A US3926010A (en) 1973-08-31 1974-01-24 Rotary heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/393,571 US3972203A (en) 1972-01-11 1973-08-31 Rotary heat exchanger
US436124A US3926010A (en) 1973-08-31 1974-01-24 Rotary heat exchanger

Publications (1)

Publication Number Publication Date
US3926010A true US3926010A (en) 1975-12-16

Family

ID=27014348

Family Applications (1)

Application Number Title Priority Date Filing Date
US436124A Expired - Lifetime US3926010A (en) 1973-08-31 1974-01-24 Rotary heat exchanger

Country Status (1)

Country Link
US (1) US3926010A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988905A (en) * 1975-09-24 1976-11-02 Will Clarke England Reversible mechanical-thermal energy cell
US4012912A (en) * 1975-04-09 1977-03-22 Michael Eskeli Turbine
US4256085A (en) * 1979-03-02 1981-03-17 Line Howard C Method and system for generating heat
US4776754A (en) * 1985-08-29 1988-10-11 Fuji Electric Co., Ltd. Total flow turbine
FR2619201A1 (en) * 1987-08-05 1989-02-10 Boone Jacques Rotary heat pump
WO1989004449A1 (en) * 1987-11-06 1989-05-18 Yong Nak Lee Heat exchange device
WO1997034107A1 (en) * 1996-03-14 1997-09-18 Ari Nir Heat recovery system
US5765387A (en) * 1993-12-22 1998-06-16 Entropy Systems, Inc. Device and method for thermal transfer using air as the working medium
US6016798A (en) * 1995-04-18 2000-01-25 Advanced Molecular Technologies Llc Method of heating a liquid and a device therefor
US6019499A (en) * 1995-04-18 2000-02-01 Advanced Molecular Technologies, Llc Method of conditioning hydrocarbon liquids and an apparatus for carrying out the method
WO2010000840A1 (en) * 2008-07-04 2010-01-07 Heleos Technology Gmbh Process and apparatus for transferring heat from a first medium to a second medium
US20100199691A1 (en) * 2007-07-31 2010-08-12 Bernhard Adler Method for converting thermal energy at a low temperature into thermal energy at a relatively high temperature by means of mechanical energy, and vice versa
EP2300769A1 (en) * 2008-04-14 2011-03-30 Rotoboost AS A device and method for transport heat
US9243850B1 (en) * 2013-02-07 2016-01-26 Hy-Tek Manufacturing Company, Inc. Rotary high density heat exchanger
EP2982263A1 (en) 2014-08-04 2016-02-10 Samsonite IP Holdings S.à.r.l. Frame structure for a luggage article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2393338A (en) * 1941-03-13 1946-01-22 John R Roebuck Thermodynamic process and apparatus
US2451873A (en) * 1946-04-30 1948-10-19 John R Roebuck Process and apparatus for heating by centrifugal compression
US2490064A (en) * 1945-01-12 1949-12-06 Kollsman Paul Thermodynamic machine
US2490065A (en) * 1945-08-27 1949-12-06 Kollsman Paul Thermodynamic machine
US2522781A (en) * 1946-06-06 1950-09-19 Exner Hellmuth Alfredo Arturo Centrifugal refrigerating machine
US2529765A (en) * 1947-10-14 1950-11-14 Exner Hellmuth Alfredo Arturo Centrifugally operated machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2393338A (en) * 1941-03-13 1946-01-22 John R Roebuck Thermodynamic process and apparatus
US2490064A (en) * 1945-01-12 1949-12-06 Kollsman Paul Thermodynamic machine
US2490065A (en) * 1945-08-27 1949-12-06 Kollsman Paul Thermodynamic machine
US2451873A (en) * 1946-04-30 1948-10-19 John R Roebuck Process and apparatus for heating by centrifugal compression
US2522781A (en) * 1946-06-06 1950-09-19 Exner Hellmuth Alfredo Arturo Centrifugal refrigerating machine
US2529765A (en) * 1947-10-14 1950-11-14 Exner Hellmuth Alfredo Arturo Centrifugally operated machine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012912A (en) * 1975-04-09 1977-03-22 Michael Eskeli Turbine
US3988905A (en) * 1975-09-24 1976-11-02 Will Clarke England Reversible mechanical-thermal energy cell
US4256085A (en) * 1979-03-02 1981-03-17 Line Howard C Method and system for generating heat
US4776754A (en) * 1985-08-29 1988-10-11 Fuji Electric Co., Ltd. Total flow turbine
FR2619201A1 (en) * 1987-08-05 1989-02-10 Boone Jacques Rotary heat pump
WO1989004449A1 (en) * 1987-11-06 1989-05-18 Yong Nak Lee Heat exchange device
US5765387A (en) * 1993-12-22 1998-06-16 Entropy Systems, Inc. Device and method for thermal transfer using air as the working medium
US6016798A (en) * 1995-04-18 2000-01-25 Advanced Molecular Technologies Llc Method of heating a liquid and a device therefor
US6019499A (en) * 1995-04-18 2000-02-01 Advanced Molecular Technologies, Llc Method of conditioning hydrocarbon liquids and an apparatus for carrying out the method
US6227193B1 (en) 1995-04-18 2001-05-08 Advanced Molecular Technologies, L.L.C. Method for heating a liquid and a device for accomplishing the same
AU714864B2 (en) * 1996-03-14 2000-01-13 Ari Nir Heat recovery system
WO1997034107A1 (en) * 1996-03-14 1997-09-18 Ari Nir Heat recovery system
US8316655B2 (en) * 2007-07-31 2012-11-27 Bernhard Adler Method for converting thermal energy at a low temperature into thermal energy at a relatively high temperature by means of mechanical energy, and vice versa
US20100199691A1 (en) * 2007-07-31 2010-08-12 Bernhard Adler Method for converting thermal energy at a low temperature into thermal energy at a relatively high temperature by means of mechanical energy, and vice versa
EP2300769A4 (en) * 2008-04-14 2014-04-16 Rotoboost As A device and method for transport heat
EP2300769A1 (en) * 2008-04-14 2011-03-30 Rotoboost AS A device and method for transport heat
US20110146951A1 (en) * 2008-07-04 2011-06-23 Frank Hoos Process and apparatus for transferring heat from a first medium to a second medium
CN102077038B (en) * 2008-07-04 2014-01-22 海利奥斯技术有限公司 Process and apparatus for transferring heat from first medium to second medium
WO2010000840A1 (en) * 2008-07-04 2010-01-07 Heleos Technology Gmbh Process and apparatus for transferring heat from a first medium to a second medium
AU2009265652B2 (en) * 2008-07-04 2015-10-29 Heleos Technology Gmbh Process and apparatus for transferring heat from a first medium to a second medium
US9400125B2 (en) 2008-07-04 2016-07-26 Heleos Technology Gmbh Process and apparatus for transferring heat from a first medium to a second medium
US9243850B1 (en) * 2013-02-07 2016-01-26 Hy-Tek Manufacturing Company, Inc. Rotary high density heat exchanger
US9970712B2 (en) 2013-02-07 2018-05-15 John Carl Bastian Rotary high density heat exchanger
EP2982263A1 (en) 2014-08-04 2016-02-10 Samsonite IP Holdings S.à.r.l. Frame structure for a luggage article

Similar Documents

Publication Publication Date Title
US3926010A (en) Rotary heat exchanger
US3834179A (en) Turbine with heating and cooling
US3791167A (en) Heating and cooling wheel with dual rotor
US3748057A (en) Rotary compressor with cooling
US2393338A (en) Thermodynamic process and apparatus
US3828573A (en) Heating and cooling wheel
US4117695A (en) Thermodynamic method and device for carrying out the method
US4077230A (en) Rotary heat exchanger with cooling
US5107682A (en) Maximum ambient cycle
US3931713A (en) Turbine with regeneration
US4107944A (en) Heat pump with two rotors
US3986852A (en) Rotary cooling and heating apparatus
US4000778A (en) Temperature-control system with rotary heat exchangers
US2260600A (en) Pump
US3937034A (en) Gas compressor-expander
US2490065A (en) Thermodynamic machine
US3811495A (en) Rotary heat exchangers in the form of turbines
US3933008A (en) Multistage heat exchanger
US3972194A (en) Thermodynamic machine of the vane type
US3809017A (en) Heat and steam generator
US2597249A (en) Thermodynamic engine
US3949557A (en) Turbine
US3986361A (en) Turbine with regeneration
US5545006A (en) Multi-stage rotary fluid handling apparatus
US3054269A (en) Liquification of gas