Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3926198 A
Publication typeGrant
Publication dateDec 16, 1975
Filing dateMay 2, 1975
Priority dateJun 10, 1974
Also published asCA1041609A1, DE2524815A1
Publication numberUS 3926198 A, US 3926198A, US-A-3926198, US3926198 A, US3926198A
InventorsSteve A Kolenik
Original AssigneeArco Med Prod Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cardiac pacer
US 3926198 A
Abstract
The forces which are imparted by a cardiac pacer to adjacent tissues are below the threshold of troublesome difficulty when the body is subjected to acceleration or deceleration. Such below-threshold forces are attributed to controlling the weight of the cardiac pacer to be less than 100 grams, and to controlling the specific gravity to be less than 1.7. Such low density and low weight are attainable by reason of the use of a miniaturized oscillator featuring complementary metal oxide semiconductors consuming such a small power that more than 5 years of life are attainable from the thionyl chloride-lithium type of battery having a prolonged stable voltage of at least 3.3 volts. The cardiac pacer is thin enough to avoid troublesome bulging of the skin adjacent the implanting location.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

llnited States Patent Kolenik Dec. 16, 1975 [54] CARDHW PACER OTHER PUBLICATIONS [75] Inventor: Steve Kolemk Leechburg Greatbatch et al., IEEE Transactions on Biomedical [73] Assignee: ARCO Medical Products Company, g n ering, V. ENE-18, N0. 5, Sept. 1971, pp.

Leechburg, Pa. 317423.

[22] Filed May 1975 Primary Examiner-William E. Kamm [21] Appl. No.1 574,199 Attorney, Agent, or Firm-John R. Ewbank Related US. Application Data [63] Continuation-impart of Ser, No. 477,571, June 10, [57] ABSTRACT 1974, abandoned- The forces which are imparted by a cardiac pacer to adjacent tissues are below the threshold of troublel CL 123/419 128/419 128/419 some difficulty when the body is subjected to acceler- 136/156 ation or deceleration. Such below-threshold forces are [51] I111. (11. attributed to ontrolling the weight of the ardiac 1 1 Field Of Search-M 128/419 P, 419 PG, 419 PS, pacer to be less than 100 grams, and to controlling the 128/419 421, 422, 423; 136/86 F, 153; specific gravity to be less than 1.7. Such low density 307/304, 313 and low weight are attainable by reason of the use of a miniaturized oscillator featuring complementary 1 References Cited metal oxide semiconductors consuming such a small UNITED STATES PATENTS power that more than 5 years of life are attainable 3,474,353 10/1969 Keller, Jr. 128/419 PG from the thionyl Chloridelithium yp Of battery 3 20 220 11/1971 Murphy JR I 12 419 p5 ing a prolonged stable voltage of at least 3.3 volts. The 3,649,367 3/1972 Purdy 128/419 P cardiac pacer is thin enoughto avoid troublesome 3,743,923 7/1973 Steudel 307/304 bulging of the skin adjacent the implanting location. 3,822,707 7/1974 Adducci et a1. 128/419 PS 3,835,864 R8801 128/419 PG 3 Claims, 5 Drawing Figures US. Patent Dec. 16, 1975 CARDIAC PACER RELATED APPLICATION This is a continuation-in-part of Ser. No. 477,571, filed June 10, 1974, and now abandoned.

FIELD OF INVENTION This invention relates to cardiac pacers suitable for implantation and particularly to overcoming the adverse side effects heretofore observed in connection with prior art use of some types of implantable cardiac pacers.

HISTORY OF PRIOR ART In a hospital in which a patient under intensive care can receive electrical pulse signals from an external oscillator, the size and complexity of the signal generating apparatus is of only minor importance. Any implantable cardiac pacer, however, must be sufficiently miniaturized to permit surgical placement in a cavity within the body. As used herein, the lead (or conduit or catheter) is deemed a supplement to the pacer, although others have designated the combination of the lead and unit generating pulses as a pacer. An electrical conduit, sometimes called a catheter, transmits the electrical signals from the implanted cardiac pacer to an appropriate signal-receiving zone of the heart. A significant portion of implanted cardiac pacers have employed batteries comprising mercury. Such mercury batteries generate a gas which must be vented from the battery chamber. Such venting has complicated the problem of preventing the eventual penetration of body fluids into undesired portions of the cardiac pacer. The durability of a mercury battery has permitted usage for more than a year but generally less than 4 years. A variety of other types of batteries, including batteries comprising a lithium anode, have been proposed for use with cardiac pacers but the numerous problems related to the long-term reliability has left most of the needs unanswered.

When a heart pacer, which generally weighs from about 200 to 500 grams, is implanted in the body, the bulge in the skin at the zone of implantation is troublesome to the patient. The tissue adjacent the cavity in which the heart pacer is implanted is subjected to severe forces under certain jolting conditions or other rapid acceleration or deceleration conditions in which the inertia of the heart pacer imparts forces to such tissue adjacent the implantation cavity. It is well known that bruising, sense of pain, and/or other biological phenomena are influenced by threshold phenomena. As long as the forces are below the threshold, no biological response is apparent but above the threshold, increasing force involves increasing biological response.

Initially, only older patients were treated with implanted heart pacers. As their usefulness became better known, it was recognized that certain types of cardiac problems in children are best treated with heart pacers. Some children needing implanted heart pacers were too small to permit implantation of the previously available heart pacers, and the continuing reports of deaths of such children has provided a long-standing demand for miniaturized pacers for cardiac patients.

SUMMARY OF THE PRESENT INVENTION In accordance with the present invention, a cardiac pacer is maintained at a weight less than 100 grams and at a specific gravity less than 1.7, whereby the inertia forces attributable to acceleration and deceleration are below the threshold of significant trouble to the tissue adjacent the cavity of implantation, whereby the patient may wear the implanted cardiac pacer with greater comfort than prior art cardiac pacers. Such small size and low specific gravity for the heart pacer are attributable in part to the utilization of oscillator means featuring the use of complementary metal oxide semiconductor devices which not merely occupy a small volume, but more particularly utilize significantly less power per day, whereby the battery life is significantly prolonged. In accordance with the present invention, the sub-threshold weight, sub-threshold density, and acceptable battery life are achieved in part by the combination of said complementary metal oxide semiconductor devices and a battery featuring the combination of a lithium anode and a thionyl chloride electrolyte. No gas is evolved by the generation of current from the thionyl chloride type battery. One of the most significant and unique characteristics of such thionyl chloride battery is the attainment of a voltage of about 3.3 volts or more over a battery life of more than 5 years. The invention features a metal casing effective in shielding the electric components from electromag netic interference. At least two lithium thionyl chloride type batteries may desirably be maintained in parallel with circuit means protecting the pacer from interferences attributable to failure of one battery while assuring redundant reliability of parallel batteries.

The smallness of the cardiac pacer permits its implantation in an infant a few weeks old, thus fulfilling a long-standing demand for a pediatric pacer for cardiac patients.

The nature of the present invention is further clarified by reference to descriptions of appropriate embodiments which merely illustrate and do not restrict the invention.

DESCRIPTION OF DRAWINGS FIG. 1 is a schematic drawing showing a heart pacer implanted in a body so that the electrical conduit can direct stimulating pulse to an appropriate zone of a heart.

FIG. 2 is a schematic drawing of a sub-threshold inertia cardiac pacer of the present invention.

FIG. 3 is a perspective view of the heart pacer.

FIG. 4 is a schematic partially sectional end view of FIG. 3.

FIG. 5 is a schematic showing of a heart pacer exerting forces upon the tissue of the walls of the cavity in which it is placed. Differential acceleration and/or deceleration attributable to differential inertia of the heart pacer relative to such adjoining tissue during periods when rapid shifts of acceleration and/or deceleration occur, impart such forces upon such tissues.

DESCRIPTION OF INVENTION As shown in FIG. 1, a heart pacer 10 is electrically and mechanically connected to an electrical conduit 11 carrying electrical impulses to a signal reception zone 12 of a heart 13 of a mammal 14. The electrical conduit may be directed through a vein 15 toward the signal reception zone 12. The heart pacer 10 is implanted within a cavity l6. Heretofore, surgeons have employed any of several cavities such as 17a, l7biand' 17c as alternative cavities for heart pacer implantation. The small size and weight of the heart pacer of the present invention is so much less than that of prior heart-.pac'ers that additional locations might be suitable for implantation;

As shown in FIG. 5, a heart pacer -10 can be posi-. tioned within a cavity 516. The walls 18 of cavity to transmit mechanical forces arising from shifting of heart pacer l0 and may compress and/or stretch tissue 519 near cavity walls 18.

In FIG. 5, there is a schematic showing of compression of tissue 51% and the stretching of tissue 519a as a result of inertial shifting of heart pacer 516 toward wall 180. The specific gravity of heart pacer 51.0 is greater than the specific gravity of tissue 519 so that when mammal 14 is jerked back and forth, the inertia of heart pacer 510 is not identical to the inertia of the tissue 519, thereby causing differential inertial forces.

Using the heavy heart pacers of the prior art, differences in weight and/or density amongst the heart pacers appear to be of little consequence because all heartventional differential inertial forces, whereby the heart pacer may be worn with significantly greater comfort and with less likelihood of trauma, infection, inflammation, and/or other adverse developments in the tissue adjacent the walls of the cavity in which the heart pacer is implanted. In accordance with the present invention, there is greatly decreased likelihood of discomfort for the person having an implanted heart pacer by reason of the control of the density and weight of the heart pacer to be so low as to be below the threshold of significant discomfort from the differential inertial forces arising from the plausible acceleration-deceleration forces to which the wearer might be subjected.

As shown in FIG. 2, a heart pacer 210 comprises a casing 230. Such casing is made of titanium to assure adequate inertness to the biological fluids. In a preferred embodiment, a partition 231 divides the interior of the casing into a circuitry chamber 232 and a battery chamber 233. A socket 234 is adapted to receive a plug portion of electrical conduit 11. The socket 234 is an insert within a molded organic polymeric shield 235 which protects a wire 236 extending from upper por- 4 the battery and positive grounding to the casing 230, as by having a casing of the circuitry unit in electrical contact with casing 230.

The positive pole of batteries are associated electrically with casing 236. Wires 252 and 253 from passthroughs 254 and 255 are energized respectively by wire 256 from a standard battery and by wire 257 from a supplemental battery. A negativeterminal 258 of standard battery 260 supplies current to wire 256 and thence to pass-through 254, and wire 252 and thence to circuitry means, conveniently designated as circuitry unit (1). Similarly, supplemental battery 261 supplies current to wire 257, pass-through 255, wire 253 and thence to circuitry unit 256. Thus, power from parallel batteries 260 and 261 in chamber 233 is supplied to circuitry, unit 256 in chamber 232.

Each of the pass-throughs comprises an insulating member, desirably constructed of alumina, sealed to a pin and brazed in an opening in partition 231, thus closely resembling the structure of pass-through 238. Wires 262 and 263 assure *the good electrical'connection between the positiveposts of batteries 260, 261

tion of an electrical pass-through 238 through the roof 239 of circuitry chamber 232. Any electrical signal directed to the electrical pass-through 238 is transmitted to the upper portion 237 and thence to wire 236 to socket 234, all electrical components being'anchored within plastic shield 235. The electrical pass-through metic sealing between the circuitry chamber 232 and the zone of plastic shield 235.

Within circuitry chamber 232'is a circuitry unit 250 having an output wire 251 directed to said pass-through" pin 2410. The circuitry unit 250 is energized by the combination of wire means from the negative pole of with casing 230.

"It should be noted that in a preferred embodiment, the batteries 266 and 261 are connected electrically in parallel within hermetically sealed battery chamber 233 andthat the power of two batteries is transmitted through pass-throughs 254 and 255 independently to the circuitry unit 250. Various materials, such as body fluids from cavity 16 and/or fluids within a battery might adversely affect operation of the circuitry unit 250 if any leakage occurred. However, because in such preferred embodiment circuitry chamber 232 is hermetically sealed, both from cavity 16 and from battery chamber 233, the circuitry unit 250 has appropriate protection against any leakage which might occur. Of particular importance, in all embodiments, casing 36 is hermetically sealed from cavity 16 so that the heart pacer is protected from the effects of liquids and/or gases'in cavity 16.

Particular attention is directed to the fact that battery 260 features a lithium anode 270 and an electrolyte consisting predominantly of thionyl chloride 271. Because battery 26tl features the combination of lithium anode 270 and thionyl chloride electrolyte 271, its voltage can be as high as 3.64 volts and is assuredly at least 3.3 volts during a lifetime of more than 5 years. Of particular importance,.the voltageof such lithium-thionyl chloride type battery remains substantially constant during substantially all of the life. expectancy of the battery and diminishes significantly only during a few months of theterminal period of use of the battery. The decreasin g voltage and'thus alteration of the pulse rate, provides the clue indicative of theappropriateness of a change of batteries. It is especially important that there be a procedure for detection of battery depletion. The combination of lithium anode and thionyl chloride achieves this highly significant desiderata.

In a constant rate heart pacer, the signal pulses to the heart represent only about A; of l per cent of the time during which the heart pacer is implanted. Accordingly, the battery life for a heart pacer is significantly influenced by the current drain during the 799/800s fraction of the time when no pulse is sent even though the circuitry unit must be operative. Any demand circuitry sensitive to the normal operation of the heart delivers impulses to the heart during a time fraction less than the delivery time fraction for a fixed rate heart pacer. Early types of heart pacers were based upon circuitry energized by a voltage supply of about 6 volts. Significant power was consumed by 6 volt circuitry, thereby shortening battery life.

Circuitry unit 250 is characterized by oscillator means employing complementary metal oxide semiconductor devices operable at a low voltage, so that the two lithium batteries can be connected in parallel instead of in series. Moreover, such complementary metal oxide semiconductor devices of the oscillator means permit the circuitry unit to function much of the time at a current drain which is so small that battery life can be based to a significant extent upon the dissipation of power at the signal reception zone 12 of the heart. The power consumption during the quasi-dormant portion of use is particularly significant in connection with demand pacers, in which the combination of thionyl chloride-lithium batteries and complementary metal oxide semiconductor devices are particularly advantageous.

The nature of the cardiac pacer of the present invention can be clarified by noting that the pacer consists essentially of the combination of a metal casing hermetically sealing the interior zones of the cardiac pacer from exposure to body fluids in the cavity in which the cardiac pacer is implanted, said casing being less than mm thick, and each other orthagonal dimension being less than 60 mm, such small dimensions permitting implantation without troublesome bulging of the skin adjacent the cardiac pacer, said metal casing shielding electrical components from electromagnetic interference; at least one battery in said casing, each battery generating no gas, each battery having a lithium anode and an electrolyte consisting predominantly of thionyl chloride, each battery having prolonged low impedance and constant high voltage of at least 3.3 volts during an expected life of more than 5 years, the voltage diminishing significantly only during the terminal period of use of the battery, whereby detection of battery depletion is manageable; in a preferred embodiment there are wires and pass-throughs within the casing associating at least two batteries in parallel and protecting other circuit means from interference attributable to failure of one battery while assuring the redundant reliability of parallel batteries; employing complementary metal oxide semiconductor circuit means for producing pulses adapted to stimulate the heart, said circuit means being electrically energized by current supplied by the combination of wire means from the negative pole of the battery and positive grounding to the casing of the cardiac pacer, said circuit means desirably being within a circuitry chamber within said samll casing; said complementary metal oxide semiconductors and said circuitry means consuming such a small amount of power that the battery life is more than 5 years; electrical socket means adapted to transmit to an electrical conduit said electrical pulses suitable for stimulating the heart; and said combination of casing, batteries, wires, pass-throughs, circuit means, and electrical socket means having a weight less than 100 grams and a specific gravity less than 1.7, whereby changes in acceleration or deceleration of a body having such implanted cardiac pacer impart only forces which are tolerable to tissue adjacent the cavity in which the cardiac pacer is implanted.

6 Various modifications of the invention are possible without departing from the scope of the appended claims.

It is claimed:

1. A cardiac pacer consisting essentially of the combination of:

a metal casing hermetically sealing the interior zones of the cardiac pacer from exposure to body fluids in the cavity in which the cardiac pacer is implanted, said casing being less than 20 mm thick, and each other orthagonal dimension being less than mm, such small dimensions permitting implantation without troublesome bulging of the skin adjacent the cardiac pacer, said metal casing shielding electrical components from electro-magnetic interference and constituting a grounding electrode for the cardiac pacer;

a hermetically sealed battery chamber and a hermetically sealed circuitry chamber within said casing;

a plurality of batteries in said battery chamber, there being an electrical conductor transmitting battery power from each battery to said circuitry chamber, each battery generating no gas, each battery having a lithium anode and an electrolyte consisting predominantly of thionyl chloride, each battery having prolonged low impedance and constant high voltage of at least 3.3 volts during an expected life of more than 5 years, the voltage diminishing significantly only during the terminal period of use of the battery, whereby detection of battery depletion is manageable, the positive pole of the batteries being grounded to the metal casing;

wires and pass-throughs within the casing associating at least two batteries in parallel and assuring the redundant reliability of parallel batteries;

a circuitry unit employing complementary metal oxide semiconductor circuit means for producing pulses adapted to stimulate the heart, said circuit means being electrically energized by current from said batteries, the casing of the circuit means being grounded to the casing of the heart pacer, said circuit means being within said circuitry chamber, said circuit means including an output wire, said wires and pass-throughs being electrically connected to said circuit means;

said complementary metal oxide semiconductors and said circuit means consuming such a small amount of power that the battery life is more than 5 years;

electrical socket means adapted to transmit to an electrical conduit the output from said circuit means, said electrical conduit being adapted to transmit the output from said circuit means to a signal-receiving zone of a heart, electrical passthrough means connecting said output wire to said socket means; and

said combination of casing, batteries, wires, passthroughs, circuit means, and electrical socket means having a weight less than grams and a specific gravity less than 1.7, whereby changes in acceleration or deceleration of a body having such implanted cardiac pacer impart only forces which are tolerable to tissue adjacent the cavity in which the cardiac pacer is implanted.

2. The cardiac pacer of claim 1 in which the casing consists of titanium.

3. The cardiac pacer of claim 1 in which the electrical socket means is an insert within a molded organic plastic shield.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3474353 *Jan 4, 1968Oct 21, 1969Cordis CorpMultivibrator having pulse rate responsive to battery voltage
US3620220 *Oct 1, 1969Nov 16, 1971Cordis CorpCardiac pacer with redundant power supply
US3649367 *Apr 14, 1969Mar 14, 1972Nuclear Materials & EquipmentElectrical generator
US3743923 *Dec 2, 1971Jul 3, 1973Rca CorpReference voltage generator and regulator
US3822707 *Apr 17, 1972Jul 9, 1974Cardiac Pacemakers IncMetal-enclosed cardiac pacer with solid-state power source
US3835864 *Sep 21, 1970Sep 17, 1974Rasor Ass IncIntra-cardiac stimulator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4010759 *Aug 29, 1975Mar 8, 1977Vitatron Medical B.V.Insulated, corrosion resistant medical electronic devices and method for producing same
US4013081 *Apr 19, 1976Mar 22, 1977Arco Medical Products CompanyPediatric cardiac pacer system
US4038991 *Mar 15, 1976Aug 2, 1977Arco Medical Products CompanyCardiac pacer with rate limiting means
US4127134 *Apr 11, 1977Nov 28, 1978Cordis CorporationPalladium getter
US4254775 *Jul 2, 1979Mar 10, 1981Mieczyslaw MirowskiImplantable defibrillator and package therefor
US4256115 *Jan 14, 1980Mar 17, 1981American Technology, Inc.Leadless cardiac pacer
US4399819 *Dec 21, 1981Aug 23, 1983Telectronics Pty. Ltd.Heart pacer mechanical construction
US4869251 *May 11, 1988Sep 26, 1989Siemens AktiengesellschaftImplantable heart pacemaker with a sensor for inertial and/or rotational movements of the user
US5385574 *Jul 24, 1992Jan 31, 1995Cardiac Pacemakers, Inc.Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5439482 *Sep 23, 1993Aug 8, 1995Angeion CorporationProphylactic implantable cardioverter-defibrillator
US5674248 *Jun 7, 1995Oct 7, 1997Angeion CorporationStaged energy concentration for an implantable biomedical device
US5814091 *Mar 24, 1997Sep 29, 1998Pacesetter AbActive medical implant having a hermetically sealed capsule and method for making same
US6192277Jul 6, 1999Feb 20, 2001Pacesetter, Inc.Implantable device with bevel gear actuation for lead retention and actuation
US6238813Jul 24, 1998May 29, 2001Cardiac Pacemakers, Inc.Battery system for implantable medical device
US6736770Aug 27, 2001May 18, 2004Cochlear LimitedImplantable medical device comprising an hermetically sealed housing
US6999814Jun 19, 2001Feb 14, 2006Cardiac Pacemakers, Inc.Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US7522959Dec 30, 2004Apr 21, 2009Cardiac Pacemakers, Inc.Subcutaneous cardiac rhythm management
US7529586 *Dec 9, 2003May 5, 2009Medtronic, Inc.Concavity of an implantable medical device
US7596408Apr 30, 2004Sep 29, 2009Medtronic, Inc.Implantable medical device with anti-infection agent
US7761167Oct 2, 2006Jul 20, 2010Medtronic Urinary Solutions, Inc.Systems and methods for clinician control of stimulation systems
US7813809 *Jun 10, 2005Oct 12, 2010Medtronic, Inc.Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7957805 *Jun 1, 2005Jun 7, 2011Boston Scientific Neuromodulation CorporationImplantable microstimulator with external electrodes disposed on a film substrate and methods of manufacture and use
US8086313Aug 5, 2009Dec 27, 2011Medtronic, Inc.Implantable medical device with anti-infection agent
US8165692Jul 3, 2007Apr 24, 2012Medtronic Urinary Solutions, Inc.Implantable pulse generator power management
US8195304Oct 12, 2007Jun 5, 2012Medtronic Urinary Solutions, Inc.Implantable systems and methods for acquisition and processing of electrical signals
US8457744Dec 9, 2003Jun 4, 2013Medtronic, Inc.Low-profile implantable medical device
US8467875Mar 28, 2007Jun 18, 2013Medtronic, Inc.Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8706252Jul 1, 2010Apr 22, 2014Medtronic, Inc.Systems and methods for clinician control of stimulation system
WO1999005750A1 *Jul 24, 1998Feb 4, 1999Cardiac Pacemakers IncBattery system for implantable medical device
WO1999057871A1 *Apr 22, 1999Nov 11, 1999Increa OyRadiophone
Classifications
U.S. Classification607/36, 429/99
International ClassificationA61N1/375, H01M6/14, A61N1/378
Cooperative ClassificationA61N1/375, A61N1/378
European ClassificationA61N1/378, A61N1/375
Legal Events
DateCodeEventDescription
Mar 21, 1988ASAssignment
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MAY PARTNERSHIP, THE, BY: ROLLINS HOLDING COMPANY, INC.;REEL/FRAME:004874/0945
Effective date: 19870112
Aug 25, 1986ASAssignment
Owner name: AMERICAN PACEMAKER CORPORATION A CORP OF MA
Owner name: AMERICAN PACEMAKER CORPORATION, A MASSACHUSETTS CO
Owner name: CALCITEK, INC., A TEXAS CORP.
Effective date: 19860813
Owner name: CALCITEK, INC., ALL TEXAS CORPS
Owner name: CARBO-MEDICS, INC.
Owner name: CARBOMEDICS, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: INTERMEDICS CARDIASSIST, INC.
Owner name: INTERMEDICS CARDIASSIST, INC., A TEXAS CORP.
Owner name: INTERMEDICS INTRAOCULAR, INC.
Owner name: INTERMEDICS INTRAOCULAR, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Effective date: 19860813
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CHASE COMMERCIAL CORPORATION;REEL/FRAME:004605/0581
Effective date: 19860804
Owner name: INTERMEDICS, INC., A TEXAS CORP.
Effective date: 19860813
Owner name: NEUROMEDICS, INC.
Owner name: NEUROMEDICS, INC., A TEXAS CORP.
Owner name: SURGITRONICS CORPORATION
Owner name: SURGITRONICS CORPORATION, A TEXAS CORP.
Owner name: SURGITRONICS CORPORATION, A TEXAS CORP., STATELESS
Owner name: INTERMEDICS INTRAOCULAR, INC., A TEXAS CORP., STAT
Owner name: INTERMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: INTERMEDICS CARDIASSIST, INC., A TEXAS CORP., STAT
Owner name: CARBOMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: NEUROMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: CALCITEK, INC., A TEXAS CORP., STATELESS
Jul 8, 1986ASAssignment
Owner name: MAY PARTNERSHIP THE, 2170 PIEDMONT ROAD, N.E., ATL
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.,;INTERMEDICS CARDIASSIST, INC.;SURGITRONICS CORPORATION;AND OTHERS;REEL/FRAME:004581/0501
Effective date: 19860703
Owner name: MAY PARTNERSHIP, THE,GEORGIA
Jun 9, 1986ASAssignment
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP MULTILEASE (SEF), INC.;REEL/FRAME:004576/0516
Effective date: 19860515
Owner name: INTERMEDICS, INC., INTERMEDICS CARDIASSIST, INC.,
Free format text: SAID PARTIES RECITES OBLIGATIONS RECITED IN SECURITY AGREEMENT RECORDED SEPTEMBER 17, 1984 REEL 4303 FRAMES 077-127 HAVE BEEN PAID IN FULL ALL;ASSIGNOR:CITIBANK, N.A., INDIVIDUALLY AND AS AGENT FOR BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION, THE CHASE MANHATTAN BANK, N.A., THE FIRST NATIONAL BANK OF CHICAGO, TRUST COMPANY BANK, FIRST FREEPORT NATIONAL BANK OF BRAZOSPORT BANK OF TEXAS;REEL/FRAME:004592/0424
Effective date: 19860502
Free format text: SECURED PARTY HEREBY RELEASE THE SECURITY INTEREST IN AGREEMENT RECORDED AUGUST 5, 1985. REEL 4434 FRAMES 728-782;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:004592/0394
Aug 5, 1985ASAssignment
Owner name: B.A. LEASING CORPORATION
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A CORP. OF TEXAS;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004449/0424
Effective date: 19850703
Owner name: CHASE COMMERCIAL CORPORATION
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A CORP. OF TEXAS;INTERMEDICS CARDIASSIST, INC., A CORP OF TX.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004449/0501
Owner name: CITIBANK, N.A.
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A TX CORP;INTERMEDICS CARDIASSIST, INC., A TX CORP.;INTERMEDICS INTRAOCULAR, INC., A TX CORP.;AND OTHERS;REEL/FRAME:004434/0728
Owner name: CITICORP MILTILEASE (SEF), INC.
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004452/0900
Aug 5, 1985AS06Security interest
Owner name: CITICORP MILTILEASE (SEF), INC.
Effective date: 19850703
Owner name: INTERMEDICS CARDIASSIST, INC.
Owner name: INTERMEDICS INTRAOCULAR, INC
Owner name: INTERMEDICS, INC.
Sep 17, 1984ASAssignment
Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA
Owner name: BRAZOSPORT BANK OF TEXAS
Owner name: CHASE MANHATTAN BANK, N.A., THE
Owner name: CITIBANK, N.A., AS AGENT
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC.;AND OTHERS;REEL/FRAME:004303/0077
Effective date: 19840726
Owner name: FIRST FREEPORT NATIONAL BANK
Owner name: FIRST NATIONAL BANK OF CHICAGO, THE
Owner name: TRUST COMPANY BANK
Apr 3, 1981ASAssignment
Owner name: COOK PACEMAKER CORPORATION, A CORP. OF PA.
Free format text: LICENSE;ASSIGNOR:INTERMEDICS, INC.,;REEL/FRAME:003844/0181
Effective date: 19810327
Free format text: LICENSE;ASSIGNOR:INTERMEDICS, INC.,;REEL/FRAME:3844/181
Owner name: COOK PACEMAKER CORPORATION, A CORP. OF,PENNSYLVANI
Owner name: COOK PACEMAKER CORPORATION, A CORP. OF, PENNSYLVAN
Apr 3, 1981AS04License
Owner name: COOK PACEMAKER CORPORATION, A CORP. OF PA.
Owner name: INTERMEDICS, INC.,
Effective date: 19810327
Jan 19, 1981AS02Assignment of assignor's interest
Owner name: ARCO MEDICAL PRODUCTS COMPANY
Effective date: 19801202
Owner name: INTERMEDICS, INC., P.O. BOX 617, FREEPORT, TX 7754