Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3926778 A
Publication typeGrant
Publication dateDec 16, 1975
Filing dateDec 19, 1972
Priority dateDec 19, 1972
Also published asDE2361142A1, US5547910
Publication numberUS 3926778 A, US 3926778A, US-A-3926778, US3926778 A, US3926778A
InventorsDemmel Edward J, Owen Hartley
Original AssigneeMobil Oil Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and system for controlling the activity of a crystalline zeolite cracking catalyst
US 3926778 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 1 1111 3,

Owen et a1. 1 1 Dec. 16, 1975 METHOD AND SYSTEM FOR 2,944,963 7/1960 Wilson 208/ 149 CONTROLL THE ACTIVITY OF A 2,948,673 8/1960 Hemminger 208/164 2,965,454 12/1960 Harper 23/288 CRYSTALLINE ZEOLITE CRACKING 3,008,896 1 1/1961 Lawsonm. 208/74 CATALYST 3,351,548 11/1967 Payne et al. 208/120 [75] Inventors: Hartley Owen, Belle Mead; Edward 33649136 H1968 Chen et I Demmel Pitman both of NJ 3,412,013 11/1968 Bowles 208/120 I 3,494,858 2/1970 Luckenbach 208/164 [73] Assignee: Mobil Oil Corporation, New York, 3,563,91 1 2/1971 Pfeiffer et a1... 252/417 N,Y 3,647,714 3/1972 White 252/417 3,661,799 5/1972 Cartmell 252/417 1 1 Flledl 1972 3,679,576 7/1972 McDonald 208/74 3,696,025 10/1972 Chessmore et a1. 252/417 [21] Appl' 3,748,251 7 1973 Demmel et a1. 208/74 3,751,359 8/1973 Bunn 208/155 52 us. c1. 208/74; 208/78; 208/120; 317589403 9/1973 Rosinski 208/120 I; 3,769,202 10/1973 Plank et a1... 208/111 5 I] Int. CI 2 CIOG 37/02, CIOG 11/04, 3,838,036 7/1974 Stine et a1 208/120 B10] BIOJ 9/1 3,843,330 10/1974 Conner et a1. 23/288 3,844,973 10 1974 S l 252 417 [58] Field of Search 208/74, 78, 120, 146-155, me eta I 208/163; 252/4174 Primary ExaminerDelbert E. Gantz Assistant E.raminer-G. E. Schmitkons [56] References Cited Attorney, Agent, or Firm-Charles A. Huggett; Carl D.

UNITED STATES PATENTS Famswonh 2,312,230 2/1943 Belchetz 208/157 2,391,944 l/1946 Carlsmith... 208/151 2,394,710 2/1946 McAfee 208/118 [57] ABSTRACT 2,436,927 3/1948 Kassel 252/417 A method and system for cracking hydrocarbons and 2,451,619 10/1948 Heflgstebeck 61 111 208/O regeneration of the catalyst is described with particug 5 g lar emphasis directed to partially restoring the activity 1 3 2 313 i zgz 208x51 of the catalyst after an initial hydrocarbon conversion 1 W949 Hemmingerm" 208,150 use by heat soaking the catalyst at an elevated temperiz 10/1950 Kumeuther 2055/ ature before use in a second hydrocarbon conversion 2,589,984 3/1952 Borcherding 208/ zone- 2,902,432 9/1959 Codet et 11v 208/113 2,929,774 3/1960 Smith 208/113 5 Clams l Drawmg Fgure US. Patent Dec. 16, 1975 3,926,778

METHOD AND SYSTEM FOR CONTROLLING THE ACTIVITY OF A CRYSTALLINE ZEOLITE CRACKING CATALYST BACKGROUND OF THE INVENTION The field of catalytic cracking and particularly dense or dilute fluid phase catalytic operations have been undergoing progressive development since early 1940. Thus as new experience was gained in operating and design parameters, new catalyst compositions were developed which required a further refinement of known operating and design parameters so as to extract maximum efficiency from the combination operation. With the advent of high activity crystalline zeolite cracking catalyst development, we once again find ourselves in a new area of operation requiring ever further refinements in order to take advantage of the new catalyst activity, selectivity and operating sensitivity. The present invention is concerned with a combination operation which relies upon a combination of catalyst functions mutually contributing to accomplish upgrading of available refinery feed material.

SUMMARY OF THE INVENTION The present invention is concerned with the conversion of hydrocarbon feed materials in one or more catalytic reaction zones and maintaining the activity of the catalyst employed therein. More particularly the present invention is concerned with the removal of carbonaceous material from the cracking sites of a crystalline zeolite containing cracking catalyst by the combination of catalyst regeneration in the presence of oxygen containing gaseous material and heat soaking of catalyst particles at least partially inactivated by deposited carbonaceous material. In a more particular aspect the present invention involves the regeneration of catalyst comprising crystalline zeolite materials suitable for cracking hydrocarbon feed materials by the combina tion of riser regeneration of a carbon inactivated catalyst composition in the presence of sufficient oxygen to form combustion products substantially free of carbonmonoxide. Oxygen regenerated cracking catalyst is used in a first hydrocarbon conversion zone under conditions to at least partially deactivate the catalyst by the deposition of carbonaceous material, the partially deactivated catalyst is then heat soaked at a tempera ture preferably in excess of the temperature of the catalyst as recovered from the first reaction zone whereby deposited carbonaceous material is substantially recovered from the active zeolite cracking catalyst and the zeolite catalyst thus improved in activity is used in a second hydrocarbon conversion reaction zone under elevated temperature cracking conditions. Heat soaking of the catalyst is accomplished in the presence of added freshly regenerated catalyst provided in an amount to achieve a mixed catalyst temperature of about 50F. above the temperature of the catalyst as recovered from the first reaction zone and preferably 150F. above that temperature. The mixed catalyst is heat soaked for a duration of at least 2 minutes and preferably at least 5 to minutes or more.

The method and system of this invention is concerned with the finding that heating of a crystalline aluminosilicate cracking catalyst containing fresh deposits of carbonaceous material of cracking will substantially restore the cracking activity of the catalyst. This discovery is of particular interest in, for example,

a process design wherein catalyst separated from a first riser reactor with deposited carbonaceous material is combined with freshly regenerated catalyst, heat soaked for a duration of time of at least 5 minutes at a temperature of at least ll00F. and then using the catalyst mixture in a separate second riser reactor. However, in a single riser reactor conversion system wherein seperated catalyst is collected, stripped of entrained hydrocarbons and then recycled to a regeneration operation, it is contemplated recycling heat soaked catalyst mixture at least in'part to the inlet of the single riser system. The concepts of the present invention are widely applicable to crystalline zeolite cracking catalyst compositions and particularly those employing X and Y crystalline zeolites when alone or in combination with crystalline zeolites of the ZSM-S and ZSM-S type of materials. Another suitable catalyst composition is known as Alderey.

The processing concepts of the present invention are particularly amenable to modem-day low coke producing crystalline aluminosilicate catalyst compositions and such catalyst may be used to advantage in both the hydrocarbon conversion operation of the process and the catalyst regeneration operation by developing a greater accumulation of carbonaceous deposits on the total mass of catalyst than heretofore obtained before regeneration thereof. The reasons for this observed phenomenon is not readily explained and most unexpected. Furthermore, it has been found that the concepts going to the very essence of the present invention are applicable to other zeolite catalyst mixtures and particularly those comprising a mixture of a crystalline faujasite cracking component with a ZSM-5 type of crystalline material.

The catalyst mixture and/or compositions suitable for use in this invention comprise a mixture of small pore and large pore, crystalline aluminosilicate in combination with one another as separate discrete particles and these may be composited from substantially any high activity large pore crystalline zeolite cracking component in admixture with, for example, a ZSM-5 type of catalyst composition. The ZSM-5 type catalyst composition is a relatively small average pore diameter material smaller than, for example, a rare earth exchanged X or Y crystalline zeolite.

The large and small pore crystalline zeolites above discussed may be dispersed within a separate or a common matrix material suitable for encountering relatively high temperatures contemplated in the fluid cracking operation of this invention with its attendant catalyst regeneration operation. The catalyst mixture or composition contemplated for use in this invention will catalyze the conversion of the various components comprising the hydrocarbon feed including normal paraffins to produce for example gasoline as well as LPG types of gaseous materials. Thus the catalysts suitable for this invention have activity for'cracking several different kinds and types of hydrocarbons found in gas oil boiling range materials in combination with a very selective cracking of normal paraffins and singly branched hydrocarbons which are restructured and/or upgraded to desired higher boiling components.

The novel process combination of this invention using a catalyst system comprising a mixture of separate catalyst particles or a homogeneous composition of one or more crystalline zeolite components dispersed in an amorphous matrix material wherein the zeolite component or components acts substantially independently as herein defined upon given hydrocarbon components and each catalyst component is relied upon substantially to support the function of the other. Thus it is contemplated employing in the catalyst system of this invention, a large pore crystalline aluminosilicate having a pore size in excess of about 9 Angstroms as a major component with the minor component being a small pore crystalline component having a maximum pore size not exceeding about 9 Angstroms and preferably being less than about 7 Angstroms. On the other hand, the large and small pore zeolites may be used in substantially equal amounts or the smaller pore crystalline zeolite may be in a minor or major proportion. On the other hand, either crystalline zeolite component may be used alone and dispersed in a suitable matrix material as herein defined. The small pore crystalline zeolite is preferably a ZSM-S type of crystalline material such as that described in US. Pat. No. 3,702,886, issued Nov. 14, 1972 or copending application Ser. No. 257,983 a continuation of Ser. No. 865,418 filed Oct. 10, 1969 both now abandoned. The large pore crystalline zeolite may be any of the now known crystalline aluminosilicates which are suitable for cracking hydrocarbons and providing a pore size in excess of 8 Angstroms. Such a composition has the structure and capability to act upon substantially all the components usually found in a gas oil feed boiling in the range of 500 up to 950 or llOF. Large pore zeolites of this type are well known and include materials or synthetic faujasite of both the X and Y type as well as zeolite L. Of these materials zeolite Y is particularly preferred.

The crystalline zeolites above identified may be exchanged, combined, dispersed or otherwise intimately admixed with a porous matrix. By porous matrix it is intended to include inorganic and organic compositions with which the crystalline aluminosilicates may be affixed. The matrix may be active or substantially inactive to the hydrocarbon conversion reactions encountered. The preferred porous matrix may be selected from the group comprising inorganic oxides such as clay, acid treated clay, silica-alumina etc. A more complete description of a catalyst composition comprising ZSM- type materials which may be used with advantage in this invention and their method of preparation may be found in the application and patent above identified.

In the combination of this invention the small pore crystalline zeolite component of the catalyst is relied upon for promoting new ring formations and/or alkylation thereof in a manner which may be made to increase with reaction severity either by increasing temperatures or by increasing residence time thus encountering a corresponding decrease in alkylation reaction with the ZSM-5 crystalline component.

In yet a further embodiment it is contemplated combining the ZSM-5 type catalyst with a porous matrix as suggested above and an oxidation catalyst suitable for converting carbon monoxide to carbon dioxide. Thus separate particles of catalyst, one comprising ZSM-S and the oxidation catalyst dispersed in a suitable material are provided with the other comprising catalytically active X or Y faujasite dispersed in a suitable matrix material from a mixture of catalyst particles which are circulated in the system herein discussed for the reasons discussed.

A significant observation contributing to the operational concepts of this invention is the finding that high temperature cracking of the gas oil feed above about lOO0F. does not significantly deactivate the activity and selectivity of a smaller pore ZSM-5 crystalline component combined with the larger pore size cracking component. Furthermore, it has been observed that combining a carbon monoxide oxidation promoter such as chromium oxide with the ZSM-5 catalyst component is not significantly deactivated by coke depositors and thus each component of the catalyst particle can function to independently perform its desired reaction mechanism, the ZSM-S component for olefin cyclization and the oxidation promoter for conversion of carbon monoxide to carbon dioxide in the regeneration steps of the overall combination herein described. Furthermore, the total mass of catalyst circulated in the system desirably is a heat sink for promoting desired endothermic conversion reactions encountered in the operation. When the oxidation component such as copper, nickel, chromium, manganese oxide or copper chromite is combined with the catalyst as above described a significant heat benefit is realized by virtue of the exothermic conversion of CO to CO during regeneration of the catalyst and every opportunity for recovering this heat supply is taken advantage of in the processing concepts herein described. The oxidation component may comprise from one tenth to three weight percent of the catalyst inventory.

The small pore size crystalline zeolite catalyst material preferred in the combination of this invention is preferably of the ZSM-5 type and as such the small pore has a uniform pore size varying because of its elliptical shape from about 5.5 Angstroms up to about 6 and about 9 Angstrom units.

One embodiment of this invention resides in the use of a single porous matrix material as the sole support for the two different pore size crystalline zeolites herein defined. Thus the catalyst may comprise an aluminosilicate of the ZSM-S type blended with an aluminosilicate having a pore size generally larger than that of ZSM-5 and more usually greater activity 8 Angstrom units in a porous matrix as a homogenous mixture in such 'proportions that the resulting product contains from about 1 up to about by weight and preferably from about 10 to 50% by weight of total crystalline aluminosilicates in the final composite.

The particular proportions of one aluminosilicate component to the other in the catalyst system or composition herein defined is not narrowly critical and even though it can vary over an extremely wide range it has been found that the weight ratio of the ZSM-S type aluminosilicate to the large pore size aluminosilicate can range from 1:10 up to 3:1 and preferably should be 1 from about 1:3 to lzl.

Hydrocarbon charge stocks which may be converted by the combination and method of this invention comprise petroleum fractions having an initial boiling point of at least 400F. and an end point of at least 600F. and as high as 950 to 1l0OF. The present invention also contemplates the cracking of naphtha boiling in the range of C hydrocarbons up to about 400F. to improve its octane rating in combination with producing significant quantities of LPG type materials which then can be used as part of the charge to the ZSM-S contact stage of the combination. Hydrocarbons boiling above 400F. include gas oils, residual oils, cycle stocks, whole topped crudes and heavy hydrocarbon fractions derived by destructive hydogenation processes. These may be used alone or in combination as the first riser reactor hydrocarbon charge.

BRIEF DESCRIPTION OF THE DRAWING The drawing diagrammatically depicts a processing scheme and arrangements of vessels for effecting hydrocarbon conversion in a combination of riser reactor stages, regeneration of catalyst under dense and dispersed phase conditions and heat soaking of used catalyst between the hydrocarbon conversion stages.

DISCUSSION OF SPECIFIC EMBODIMENTS Referring now to the drawing, a cracking catalyst comprising a crystalline aluminosilicate such as a faujasite cracking component either alone or in admixture with a ZSM-S type material dispersed in matrix material of relatively low cracking activity is caused to circulate in a system of hydrocarbon conversion and catalyst regeneration shown in the drawing and herein de fined. In the process of the drawing a catalyst contaminated with deposited carbonaceous material of cracking and obtained as hereinafter defined is passed by conduit 2 provided with flow control valve 4 at a temperature within the range of 800 up to about lOOOF. and more usually about 950F. into a vessel 6 which tapers inwardly and upwardly to form a riser regenerator 8 of restricted cross section in the upper portion. In the lower bulb portion 6 of riser 8 the catalyst is retained as a relatively dense fluid bed of catalyst 10 to which hot freshly regenerated catalyst at a temperature in the range of 1200 to 1400F. may be added by conduit 12 provided with valve 14 to form a heated catalyst mixture to be regenerated. Oxygen containing regeneration gas is introduced by conduit 16 to a bottom portion of the dense fluid mass of catalyst 10 under conditions of temperature, pressure and space velocity to initiate combustion of carbonaceous material and raise the temperature of the mass of catalyst sufficient to substantially complete burning of deposited carbonaceous materials. The mixing of hot regenerated catalyst with spent catalyst to raise the temperature of the spent catalyst can be further assisted by the addition of a combustion supporting fuel as by conduit 18 along with the oxygen containing regeneration gas. The catalyst being regenerated in bed 10 in a relatively dense fluid condition is caused to move upwardly from the bed by combustion gases and carried into the restricted riser section with gaseous products of combustion for discharge from the end of the riser 8 into a combination of cyclone separators 24 and 26 arranged in parallel flow arrangement for separating regenerated catalyst from regeneration flue gases. The regeneration system of this invention is particularly useful and desirable since additional oxygen containing regeneration gas is added to the suspension in riser 8 by one or more spaced apart conduits represented by conduits 20 and 22. The additional oxygen rich gas causes further buming of carbonaceous deposits to be accomplished along with promoting the combustion of formed carbon monoxide (CO) so that the restricted riser section is an effective heat exchange zone of considerable magnitude between catalyst particles and combustion product gases passing therethrough. Thus a more selective temperature control increasing in the direction of flow of the catalyst passing upwardly through the riser from about 900 up to about 1200F. and as high as l400F. may be realized by the combination operation above described. The suspension in riser 8 is discharged by a T" connecting conduit into cyclone separators 24 and 26 on each end thereof. The cyclonic separators are provided with diplegs 28 and 30 for passing separated hot catalyst sequentially to fluid catalyst bed 32 therebelow. Gaseous products of combustion pass overhead from cyclone separator 24 and 26 by open end conduits 34 and 36 discharging into a dispersed phase above a fluid bed of catalyst 32 and thence into cyclone separators 38 and 40 provided with diplegs 42 and 44. F luidizing gas and/or oxygen containing regeneration gas may be added by conduit 46 to the lower portion of catalyst bed 32 to effect a final burning of carbonaceous material if such is required and desired to further elevate the temperature of the catalyst. Gaseous products of regeneration or flue gases are passed from cyclone separators 38 and 40 to chamber 48 from which they are withdrawn by conduit 50. The hot regenerated catalyst comprising bed 32 being at an elevated temperature in excess of about lOOOF. and as high as 1400 or 1600F. is withdrawn from a lower portion thereof for distribution and use as discussed above and below.

A stream of hot regenerated catalyst is withdrawn from catalyst bed 32 by conduit 52 provided with flow control valve 54 and passed to the bottom portion of riser reactor 56 to which a suitable hydrocarbon feed is introduced by conduit 58. A suspension is formed with the catalyst and hydrocarbon introduced to the riser providing a catalyst to oil ratio sufficient to obtain a suspension temperature of at least lOOOF. The hydrocarbon feed may be preheated by means not shown up to about 800F. before admixture with the catalyst. In riser reactor 56, hydrocarbon conversion conditions of temperature in the range of lOOO up to about l200F. or l300F. are maintained and space velocity conditions sufficient to provide a hydrocarbon residence time with the range of a fraction of a second up to several seconds such as 5 to 10 seconds or as high as about 15 seconds. More usually the hydrocarbon residence time within riser 56 will be in the range of 1 to 5 seconds. The hydrocarbon-catalyst suspension passed through riser 56 discharges at the upper end thereof into one or more suitably arranged cyclone separator 60 provided with catalyst dipleg 62. Gasiform hydrocarbon material separated in cyclone 60 is carried overhead by conduit 64 into chamber 66 and thence by conduit 68 to a product fractionation zone not shown.

The catalyst separated by cyclone 60 is conveyed by dipleg 62 to a dense fluid bed of catalyst 70 therebelow. In accordance with this invention hot freshly regenerated catalyst is added to fluid bed 70 by riser conduit 72 in an amount sufficient to achieve a desired temperature increase of at least 50F. and sufficient to provide a catalyst mix temperature of at least lOOOF. The regenerated catalyst is supplied to riser 72 by conduit 74 provided with flow control valve 76. Lift gas, substantially inert to the environment contacted is introduced to the base of riser 72 by conduit 78. In the dense fluid catalyst bed 70, the catalyst is maintained at a temperature of at least lOOOF. under agitated conditions to provide a heat soaking of used catalyst discharged by dipleg 62 with freshly regenerated catalyst for a time duration of at least about 2 minutes and as high as 15 minutes. During heat soaking of the cracking catalyst it has been found that carbonaceous material deposited on the catalyst is removed or displaced in such amounts to substantially restore the activity of the cracking catalyst to that expected from the crystalline zeolite cracking component of the catalyst. This unexpected and unusual finding is particularly useful when using low coke producing crystalline zeolite cracking catalysts since it has been found that a much greater accumulation of carbonaceous material may be collected on the catalyst before regeneration thereof without undesirably influencing the useful activity of the catalyst for cracking hydrocarbon materials. A stripping and/or fluidizing gas is introduced to the lower portion of bed 70 by steam conduit 80 to maintain the catalyst during its head soaking operation in a fluidized condition. The heat soaked catalyst is then withdrawn at an elevated temperature in the range of 1000 to about l300F. from the bottom of the bed by conduit 82 provided with a flow control valve 84 for passage to the bottom portion of a second riser reactor 86 to which a second hydrocarbon feed is introduced by conduit 88. Additional hot regenerated catalyst may also be withdrawn by conduit 90 provided with flow control valve 92 and mixed with the catalyst in conduit 82 passed to riser 86.

The catalyst and oil introduced to the lower portion of riser 86 is adjusted to form a suspension providing a temperature within the range of lOOO to l250F. which then moves upwardly through the riser during the conversion of the hydrocarbon charge. The operating conditions in riser 86 may be the same as that employed in riser 56 or more severe by relying upon an increased catalyst to oil ratio within the range of 3 to and a hydrocarbon residence time within the range of 0.5 to 15 or more seconds. For example, a more dense catalyst phase suspension may be employed in riser reactor 86 than employed in riser reactor 56. The suspension passed through riser 86 is separated in cyclone 94 provided with dipleg 96. Separated gasiform hydrocarbon material is removed from separator 94 by conduit 98 and passed to chamber 66 wherein it is combined with hydrocarbons separated by cyclone 60. Catalyst separated in cyclone 94 is passed by dipleg 96 to a separate dense fluid bed of catalyst 100 separated from catalyst bed 70 by a common baffle member 102. It is contemplated maintaining catalyst bed 100 and 70 as concentric cylindrical and annular beds within the lower portion of the vessel with bed 70 being retained preferably as the concentric cylindrical bed of catalyst. Catalyst bed 100 is stripped with stripping gas such as steam introduced by conduit 104. Stripped catalyst is withdrawn from catalyst bed 100 and conveyed by conduit 2 to catalyst regeneration as defined above.

A further embodiment of this invention is concerned with utilizing a dual function catalyst such as a Y faujasite crystalline zeolite in conjunction with a ZSM-5 type of crystalline material to provide the capability of internally controlling to some considerable degree the activity level of each of the separate zeolite components. For example, varying the temperature and time of heat soaking the catalyst apparently yields a higher activity for the Y faujasite component. On the other hand, since the ZSM-S type component lays down very little coke by comparison it inherently retains much more of its initial cracking activity. Thus using no heat soaking between stages or after the first stage will maximize the activity of the ZSM5 component in the second riser. The amount of activity would be proportional to the ratio of recycled to freshly regenerated catalyst. Reheating the catalyst after a first stage of cracking to a very high temperature such as about l300F. before or concurrent with stripping will operate to reactivate the Y faujasite component more and EXAMPLE A Y faujasite crystalline zeolite containing cracking catalyst was coked for one minute at 925F., at a 6 weight hourly space velocity using a 10 catalyst to oil ratio with a gas oil feed boiling from 460 to 900F. of 22 API gravity. The catalyst thus coked had a cracking activity of about 27.9. Determination of the catalyst cracking acitvity was obtained by contacting the catalyst with a Light East Texas Gas Oil (LETGO) at 850F., 2 catalyst/oil ratio, 6 weight hourly space veloc ity.

The spent catalyst of 27.9 activity was stripped with nitrogen at 925F. resulting in a catalyst with an activity of 34.3 as determined by LETGO test above defined.

The stripped catalyst was then heat soaked for 10 minutes at 1100F. and tested for activity. The activity determined by the above recited LETGO test was 38.9. It is clear from the above that heat soaking of a crystalline zeolite containing catalyst used for cracking gas oil can restore its activity far beyond that obtained by high temperature stripping of the catalyst above. The activity of a stabilized Y sieve cracking catalyst after regeneration is usually in the range of 40 to 45.

Having thus provided a general discussion of the invention and provided specific examples in support thereof, it is to be understood that no undue limitations are to be imposed by reason thereof except as defined in the following claims.

We claim:

1. A method for converting hydrocarbons by cracking in the presence of a crystalline zeolite containing cracking catalyst which comprises a. passing a first hydrocarbon feed in admixture with a crystalline zeolite cracking catalyst obtained from a catalyst regeneration zone through a first cracking zone at an elevated cracking temperature in the range of lOOOF. up to about l30()F. at a hydrocarbon residence time less than about 10 seconds,

b. separating the first hydrocarbon feed catalyst sus pension product of the first cracking zone into a hydrocarbon phase and a catalyst phase,

c. combining sufficient hot regeneration catalyst with the separated catalyst phase to provide a mix catalyst temperature of at least 1000F. and heat soaking said mixed catalyst at said catalyst mix temperature for at least about 5 minutes in the presence of a gas substantially inert to the environment so as to substantially improve the used cracking catalyst component activity,

(1. passing catalyst subjected to said heat soaking step through an additional hydrocarbon conversion step maintained at a temperature of at least lOO0F., and

e. separating catalyst from said additional hydrocarbon conversion step for return after stripping thereof to a catalyst regeneration step.

2. The method of claim 1 wherein the crystalline zeolite containing cracking catalyst comprises a mixture of faujasite cracking catalyst particles and ZSM-5 type catalyst particles containing an oxidation promoter for converting carbon monoxide to carbon dioxide.

3. In a hydrocarbon conversion process relying upon a catalyst comprising a crystalline zeolite wherein car bonaceous deposits deactivate the catalyst during conversion and the deactivated catalyst is then regenerated with an oxygen containing gas the improvement which comprises, heat soaking a crystalline zeolite conversion catalyst contaminated with carbonaceous deposits of hydrocarbon conversion in the presence of gas substantially inert to the environment at a temperature of at least 1000F. for a period of time of at least 10 minutes and thereafter using the heat soaked catalyst combined with freshly regenerated catalyst for further hydrocarbon conversion before passing the catalyst to regeneration with an oxygen containing regeneration gas.

4. A method for improving the activity of a crystalline zeolite hydrocarbon conversion catalyst reduced in activity by deposited carbonaceous material which comprises heat soaking the crystalline zeolite hydrocarbon conversion catalyst at a temperature of at least 1lOOF. for about 10 minutes in the presence of a gas substantially inert to the environment.

5. In a hydrocarbon conversion operation using a crystalline zeolite containing cracking catalyst and regeneration of the catalyst with an oxygen containing regeneration gas to remove deposited carbonaceous material the improvement which comprises passing regenerated catalyst suspended in hydrocarbon material through a riser cracking zone at a temperature of at least l000F. for a hydrocarbon residence time less than 10 seconds, separating the product obtained in said riser cracking zone into a hydrocarbon phase and a catalyst phase, heat soaking the catalyst phase thus separated with freshly regenerated catalyst at a temper- 10 ature of at least 1000F. for at least 5 minutes in the presence of steam stripping gas, passing the heat soaked catalyst admixed with additional hot regenerated catalyst and suspended in hydrocarbon feed material through an additional hydrocarbon conversion zone maintained at a temperature of at least 1000F. and at a hydrocarbon residence time less than 10 seconds, separating catalyst containing carbonaceous deposits from hydrocarbon vapors removed from said additional hydrocarbon conversion zone, stripping the separated catalyst, passing the stripped catalyst to a fluid bed of catalyst in the lower end of an elongated riser regeneration zone, raising the temperature of said fluid bed of catalyst with freshly regenerated catalyst and by burning deposited carbonaceous material on the catalyst particles with oxygen containing gas, passing the catalyst particles thus contacted with gaseous products of carbonaceous material combustion upwardly through elongated riser regeneration zone, adding additional oxygen containing gas to said upflowing catalyst particles to obtain combustion of formed carbon monoxide, separating hot regenerated catalyst from combustion product gases at the end of said riser regeneration zone, collecting the separated catalyst as a dense fluid bed of catalyst at a temperature in the range of 1000 to l600F. contacting the thus collected dense fluid bed of catalyst with oxygen containing gas and using the regenerated catalyst in the hydrocarbon conversion and catalyst regeneration combination as above recited.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2312230 *Jun 28, 1941Feb 23, 1943Kellogg M W CoCatalytic conversion of hydrocarbons
US2391944 *Aug 13, 1943Jan 1, 1946Standard Oil Dev CoConversion of hydrocarbon oils
US2394710 *Aug 30, 1943Feb 12, 1946Universal Oil Prod CoContacting fluids with solids
US2436927 *Nov 29, 1943Mar 2, 1948Universal Oil Prod CoPrevention of afterburning in fluidized catalytic cracking processes
US2451619 *Nov 20, 1944Oct 19, 1948Standard Oil CoCatalytic conversion process
US2456707 *Aug 17, 1944Dec 21, 1948Hydrocarbon Research IncProcess for stripping spent fluid catalysts
US2457255 *Apr 20, 1945Dec 28, 1948Standard Oil CoStripping of spent catalyst in a hydrocarbon conversion process
US2463434 *Dec 22, 1944Mar 1, 1949Standard Oil CoTreatment of fluidized solid catalyst
US2487132 *Dec 9, 1944Nov 8, 1949Standard Oil Dev CoContacting gaseous fluid with solid particles
US2526881 *May 17, 1948Oct 24, 1950Shell DevCatalytic conversion of hydrocarbons to produce alkyl naphthalenes
US2589984 *Jul 1, 1947Mar 18, 1952Kellogg M W CoCatalyst stripping of fouled catalysts employed in hydrocarbon conversion processes
US2902432 *Feb 9, 1954Sep 1, 1959Exxon Research Engineering CoCatalytic conversion of hydrocarbons
US2929774 *Dec 21, 1955Mar 22, 1960Kellogg M W CoConversion process and apparatus therefor
US2944963 *Mar 3, 1958Jul 12, 1960Shell Oil CoConversion of heavy oils to gasoline using the fluidized catalyst technique
US2948673 *Apr 30, 1957Aug 9, 1960Exxon Research Engineering CoCatalytic cracking of hydrocarbons
US2965454 *Apr 30, 1957Dec 20, 1960Phillips Petroleum CoFluidized conversion and stripping apparatus
US3008896 *Sep 21, 1959Nov 14, 1961Phillips Petroleum CoCatalytic cracking of residual oils
US3351548 *Jun 28, 1965Nov 7, 1967Mobil Oil CorpCracking with catalyst having controlled residual coke
US3364136 *Dec 10, 1965Jan 16, 1968Mobil Oil CorpNovel cyclic catalytic process for the conversion of hydrocarbons
US3412013 *Feb 15, 1967Nov 19, 1968Mobil Oil CorpRegenerating a cracking catalyst by hydrogen and oxygen treatment
US3494858 *Nov 17, 1967Feb 10, 1970Exxon Research Engineering CoTwo-stage countercurrent catalyst regenerator
US3563911 *Dec 26, 1968Feb 16, 1971Pullman IncStaged fluidized catalyst regeneration process
US3647714 *May 14, 1969Mar 7, 1972Gulf Research Development CoCatalyst regeneration with transfer line combustion and disperse phase discharge into a regenerator
US3661799 *Jan 26, 1970May 9, 1972Standard Oil CoOxidative fluidized regeneration of petroleum conversion catalyst in separate dilute and dense phase zones
US3679576 *Jan 6, 1970Jul 25, 1972Commw Oil Refining Co IncFluidized catalytic cracking apparatus and process
US3696025 *Nov 9, 1970Oct 3, 1972Chevron ResCatalytic cracking by addition of titanium to catalyst
US3748251 *Apr 20, 1971Jul 24, 1973Mobil Oil CorpDual riser fluid catalytic cracking with zsm-5 zeolite
US3751359 *Sep 27, 1971Aug 7, 1973Texaco IncConversion of hydrocarbons
US3758403 *Oct 6, 1970Sep 11, 1973Mobil OilOlites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US3769202 *May 9, 1966Oct 30, 1973Mobil Oil CorpCatalytic conversion of hydrocarbons
US3838036 *Nov 29, 1972Sep 24, 1974Universal Oil Prod CoFluid catalytic cracking process employing a catalyst heating zone
US3843330 *May 30, 1972Oct 22, 1974Universal Oil Prod CoRegeneration apparatus
US3844973 *May 30, 1972Oct 29, 1974Universal Oil Prod CoFluidized catalyst regeneration by oxidation in a dense phase bed and a dilute phase transport riser
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3970587 *Jul 18, 1973Jul 20, 1976Mobil Oil CorporationCombustion regeneration of hydrocarbon conversion catalyst with recycle of high temperature regenerated catalyst
US4035284 *Jul 18, 1973Jul 12, 1977Mobil Oil CorporationMethod and system for regenerating fluidizable catalyst particles
US4051013 *Dec 3, 1975Sep 27, 1977Uop Inc.Fluid catalytic cracking process for upgrading a gasoline-range feed
US4057397 *Mar 8, 1976Nov 8, 1977Mobil Oil CorporationSystem for regenerating fluidizable catalyst particles
US4062759 *May 7, 1976Dec 13, 1977Texaco Inc.Fluidized catalytic cracking regeneration process
US4064039 *Jan 28, 1976Dec 20, 1977Mobil Oil CorporationPlatinum group metal modified catalyst
US4065269 *Apr 12, 1976Dec 27, 1977Uop Inc.Oxidation of coke
US4072600 *Jan 15, 1976Feb 7, 1978Mobil Oil CorporationCatalytic cracking process
US4088568 *Feb 19, 1976May 9, 1978Mobil Oil CorporationCatalytic cracking of hydrocarbons
US4147617 *Apr 6, 1978Apr 3, 1979Mobil Oil CorporationProcessing hydrocarbon feed of high carbon residue and high metals content
US4148751 *Jun 17, 1976Apr 10, 1979Uop Inc.Method of regenerating coke-contaminated catalyst with simultaneous combustion of carbon monoxide
US4159239 *Jan 27, 1978Jun 26, 1979Mobil Oil CorporationCatalytic cracking process
US4174272 *Jan 13, 1978Nov 13, 1979Mobil Oil CorporationBurning coke deposited on catalyst during cracking in presence of decomposable platinum group metal compound
US4176084 *Nov 11, 1977Nov 27, 1979Exxon Research & Engineering Co.Combustion of coke deposits to carbon dioxide with oxygen
US4197418 *Mar 1, 1979Apr 8, 1980Mobil Oil CorporationHeat disposed in lower alcohols and derivatives conversion to gasoline hydrocarbons in a crystaline zeolite fluidized bed
US4252632 *Apr 29, 1976Feb 24, 1981Atlantic Richfield CompanyCatalyst and process for conversion of hydrocarbons
US4253939 *Jun 21, 1976Mar 3, 1981Atlantic Richfield CompanyCatalyst and process for conversion of hydrocarbons
US4257875 *May 29, 1979Mar 24, 1981Uop Inc.Fluid catalytic cracking process
US4283273 *Nov 20, 1979Aug 11, 1981Mobil Oil CorporationCombining catalyst particles containing carbonaceous material with hot regenerated catalyst, combustion
US4312743 *Aug 20, 1980Jan 26, 1982Uop Inc.Fluidized catalytic cracking
US4312744 *Feb 9, 1981Jan 26, 1982Uop Inc.FCC Process using low coke-make FCC catalyst
US4333821 *Jun 1, 1981Jun 8, 1982Uop Inc.Fluid catalytic cracking, cationic polyacrylamide necessary to flocculate the colloidal particles
US4444651 *Nov 9, 1981Apr 24, 1984Ashland Oil, Inc.Carbo-metallic oil conversion with controlled CO:CO2 ratio in multistage regeneration
US4444722 *Nov 20, 1979Apr 24, 1984Mobil Oil CorporationSystem for regenerating fluidizable catalyst particles
US4481103 *Oct 19, 1983Nov 6, 1984Mobil Oil CorporationTo reduce emission of sulfur oxides to atmosphere
US4490241 *Apr 26, 1983Dec 25, 1984Mobil Oil CorporationSecondary injection of ZSM-5 type zeolite in catalytic cracking
US4584090 *Sep 7, 1984Apr 22, 1986Farnsworth Carl DMethod and apparatus for catalytically converting fractions of crude oil boiling above gasoline
US4591425 *Dec 14, 1984May 27, 1986Ashland Oil, Inc.Multistage
US4606810 *Apr 8, 1985Aug 19, 1986Mobil Oil CorporationFCC processing scheme with multiple risers
US4717466 *Sep 3, 1986Jan 5, 1988Mobil Oil CorporationConversion of hydrogen deficient heavy hydrocarbon feed to gasoline
US4752375 *Sep 3, 1986Jun 21, 1988Mobil Oil CorporationSingle riser fluidized catalytic cracking process utilizing a C3-4 paraffin-rich co-feed and mixed catalyst system
US4784745 *Nov 5, 1987Nov 15, 1988Mobil Oil CorporationFluid catalytic cracking with zeolite catalysts
US4787967 *Sep 3, 1986Nov 29, 1988Mobil Oil CorporationLarge and intermediate pore size zeolites, regeneration
US4789458 *Jun 15, 1987Dec 6, 1988Mobil Oil CorporationFluid catalytic cracking with plurality of catalyst stripping zones
US4802971 *Jan 14, 1988Feb 7, 1989Mobil Oil CorporationSingle riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4830728 *Feb 19, 1988May 16, 1989Mobil Oil CorporationUpgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture
US4861741 *Feb 8, 1988Aug 29, 1989Mobil Oil CorporationMixed catalyst system and catalytic conversion process employing same
US4865718 *Feb 8, 1988Sep 12, 1989Mobil Oil CorporationMaximizing distillate production in a fluid catalytic cracking operation employing a mixed catalyst system
US4871446 *Sep 2, 1987Oct 3, 1989Mobil Oil CorporationCatalytic cracking process employing mixed catalyst system
US4874503 *Dec 22, 1988Oct 17, 1989Mobil Oil CorporationMultiple riser fluidized catalytic cracking process employing a mixed catalyst
US4882039 *Jan 3, 1989Nov 21, 1989Mobil Oil CorporationCatalytic cracking of hydrocarbons with oxygen promoted alkali metal zeolite cracking catalyst
US4888103 *Sep 3, 1986Dec 19, 1989Herbst Joseph AProcess of stripping in a catalytic cracking operation employing a catalyst mixture which includes a shape selective medium pore silicate zeolite component
US4892643 *Apr 11, 1989Jan 9, 1990Mobil Oil CorporationUpgrading naphtha in a single riser fluidized catalytic cracking operation employing a catalyst mixture
US4966681 *Mar 30, 1989Oct 30, 1990Mobil Oil CorporationOligomerization of lighter products to high octane gasolines
US4990314 *Nov 15, 1988Feb 5, 1991Mobil Oil CorporationProcess and apparatus for two-phase fluid catalytic cracking system
US5009853 *Apr 18, 1990Apr 23, 1991Mobil Oil CorporationFluid catalytic cracking regeneration with reduction of nitrogen oxide
US5013425 *May 18, 1990May 7, 1991UopConversion of side by side FCC unit
US5066627 *Jun 8, 1990Nov 19, 1991Mobil Oil CorporationProcess for simultaneous heating and cooling a fast fluidized bed catalyst regenerator
US5069776 *Feb 21, 1990Dec 3, 1991Shell Oil CompanyProcess for the conversion of a hydrocarbonaceous feedstock
US5098553 *Sep 4, 1990Mar 24, 1992Mobil Oil CorporationFluidized beds catalyst with coke regenerated with oxygen
US5143874 *Feb 19, 1991Sep 1, 1992Mobil Oil CorporationCatalyst regenetation in high efficiency regenerator heated by indirect heat exchange
US5183558 *Dec 31, 1990Feb 2, 1993Mobil Oil CorporationHeavy oil catalytic cracking process and apparatus
US5198194 *Nov 18, 1991Mar 30, 1993Mobil Oil CorporationApparatus for simultaneous heating and cooling a fast fluidized bed catalyst regenerator
US5198590 *Jul 30, 1992Mar 30, 1993Arco Chemical Technology, L.P.Hydrocarbon conversion
US5202294 *Nov 25, 1991Apr 13, 1993Mobil Oil CorporationCombustion of coke on spent cracking catalyst using bubbling dense bed reactor having pressure drop windows
US5215720 *Mar 1, 1991Jun 1, 1993UopConversion of side by side FCC unit
US5332704 *Mar 19, 1993Jul 26, 1994Bar-Co Processes Joint VentureCatalysts
US5346613 *Sep 24, 1993Sep 13, 1994UopFluidized catalytic cracking of hydrocarbons
US5427745 *Aug 8, 1990Jun 27, 1995Mobil Oil CorporationSwirl-type
US5451313 *Mar 23, 1994Sep 19, 1995UopFluidized catalytic cracking for hydrocarbons
US5455010 *Apr 28, 1994Oct 3, 1995UopCatalyst regeneration
US5462652 *Aug 16, 1994Oct 31, 1995UopShort contact FCC process with catalyst blending
US5547910 *Feb 6, 1986Aug 20, 1996Mobil Oil CorporationMethod and system for controlling the activity of a crystalline zeolite cracking catalyst
US5584986 *Sep 13, 1994Dec 17, 1996Bar-Co Processes Joint VentureRegenerating the cracking catalysts in a dilute phase elongated riser stripper with water vapor and steam
US5597537 *Jun 6, 1995Jan 28, 1997UopFCC feed contacting with catalyst recycle reactor
US5858207 *Dec 5, 1997Jan 12, 1999Uop LlcFCC process with combined regenerator stripper and catalyst blending
US6162402 *Nov 23, 1998Dec 19, 2000Uop LlcFluidized bed catalytic cracking using a regenerator stripper to remove carbon monoxide and light hydrocarbons upstream of the regeneration zone that operates with a backmix addition of regenerated catalyst directly from the regeneration zone
US6635169Sep 20, 1999Oct 21, 2003Mobil Oil CorporationMethod for reducing gasoline sulfur in fluid catalytic cracking
EP0021616A1 *May 29, 1980Jan 7, 1981Mobil Oil CorporationCatalytic cracking process
EP0021787A1 *Jun 18, 1980Jan 7, 1981Mobil Oil CorporationOctane improvements in catalytic cracking
EP0144467A1 *Nov 29, 1983Jun 19, 1985THE PROCTER & GAMBLE COMPANYCatalyst system and its use in hydrogenation of N,N-disubstituted amides to amines
WO1990011340A1 *Mar 24, 1989Oct 4, 1990Mobil Oil CorpUpgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture
WO1993002794A1 *Aug 5, 1991Feb 18, 1993Mobil Oil CorpRegeneration of fluidized catalytic cracking catalyst
Classifications
U.S. Classification208/74, 208/159, 208/164, 502/40, 208/78, 208/147, 208/151, 208/120.15
International ClassificationB01J8/26, C10G11/18, B01J29/90, B01J29/06, B01J29/08
Cooperative ClassificationB01J29/90, C10G11/18, B01J2229/40, B01J29/084, B01J29/06, B01J8/26
European ClassificationB01J8/26, B01J29/06, B01J29/08Y, C10G11/18, B01J29/90