Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3940278 A
Publication typeGrant
Application numberUS 05/477,881
Publication dateFeb 24, 1976
Filing dateJun 10, 1974
Priority dateJun 10, 1974
Publication number05477881, 477881, US 3940278 A, US 3940278A, US-A-3940278, US3940278 A, US3940278A
InventorsWarren W. Wolf
Original AssigneeOwens-Corning Fiberglas Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fiber optics
US 3940278 A
Abstract
A boron-free glass composition for use in fiber optics is disclosed. In the field of fiber optics, light is transmitted from one point to another by small diameter fibers. These fibers are composed of a central core surrounded by an outer cladding or sheath. The glass compositions of this invention can be used as the core glass or the sheath glass.
Images(3)
Previous page
Next page
Claims(1)
I claim:
1. A boron-free glass composition capable of being the core glass or cladding glass in a light transmitting optical fiber product; said glass composition consisting essentially by weight of:
Ingredient         Weight Percent______________________________________SiO2          40 to 50Al2 O3   5 to 7BaO                30 to 50Na2 O          5 to 20Sb2 O3     0 to 0.05______________________________________
and having an index of refraction ranging from 1.55 to 1.65.
Description

This invention relates to fiber optics. More specifically this invention relates to improved core glass compositions for fiber optics.

In the field of fiber optics, light is transmitted from one point to another by small diameter fibers. These light transmitting fibers are composed of a central core surrounded by an outer cladding or sheath. The fibers or filaments are bundled together to form light pipes. These light pipes are flexible and can be curved around obstacles and placed in remote or hard to install areas.

Light pipes are useful as monitoring and lighting devices in automobiles, aircraft, appliances, computers and medical instruments. They are particularly useful where noncurrent carrying and therefore nonshorting or nonsparking light transmitting devices are required for safety.

Light pipes are used in some late model automobiles. They are run from the automobile headlights and tailights to the dashboard. As long as the headlight or tailight is operating, the light pipe transmits light and shows the driver that the lights are on. If one of the lights fails, no light is transmitted by the light pipe connected to that light. And the driver knows that the bulb is burned out.

Light transmitting or optical fibers are usually made of either plastic or glass. Glass fibers are preferred over plastic fibers because of their high heat resistance. The ability of glass to withstand adverse temperature and humidity conditions for long periods of time is also a factor in selecting glass fibers over plastic fibers. While plastic fibers become brittle and discolor at temperatures above about 175F or show a reduction in light transmission when exposed to long periods of high heat and humidity, glass light pipes are unaffected by high humidity and temperatures in excess of 550F. Individual optical fibers or filaments used in light pipes are composed of two essential parts, namely a central core and an outer cladding or sheath. The cladding surrounds the core. The index of refraction of the core is higher than the index of refraction of the cladding. Due to this difference between the index of refraction of the core and cladding, the light entering one end of a fiber is internally reflected along the length of the fiber. The principle of "total internal reflection" explains this result. This principle says that a light ray traveling from a material with a higher refractive index (core) to a material with a lower refractive index (cladding) will be reflected at the interface of the two materials.

The amount of light transmitted through a light pipe depends on the intensity of the light source, the cross sectional area of the cores of all the fibers, the losses at each end due to reflection, the absorption properties of the glass and the length of the light pipe.

In making commercially acceptable glass light pipes the chemical composition of the core and cladding is a key factor. In addition to having the proper indices of refraction the core and cladding glasses should have similar viscosities, and liquidus temperatures. These three properties control the ease with which the cladding glass can be laid over the core glass. And when conventional glass fiber forming processes are used to make optical fibers, compatability of the core and cladding is crucial.

Conventional glass fiber forming processes draw fine glass fibers from small holes in the bottom of a reservoir of molten glass. The usual problems of forming fibers the conventional way are multiplied when making optical glass fibers. Two supplies of molten glass are needed; one of the core glass and one of the cladding glass. Then a composite fiber, 80-90% core and 10-20% cladding, is pulled from the glass supplies. To be able to do this at commercial speeds and form commercially acceptable products the composition of the core and cladding glasses must be carefully chosen.

A highly useful optical fiber known in the art is composed of core and cladding glass fibers having the following compositions:Cladding GlassIngredient Weight Percent______________________________________SiO2 64.1Al2 O3 8.2B2 O3 11.2Na2 O 14.0LiO2 2.4Core GlassIngredient Weight Percent______________________________________SiO2 31.9Al2 O3 8.0B2 O3 6.1K2 O 6.1BaO 47.9Sb2 O3 0.05______________________________________

One problem with both of these glass compositions is that they contain boron. This element is detrimental in many uses of fiber optics because it absorbs gamma radiation. This radiation permanently darkens the boron-containing glasses. As a result, light transmission in the fiber optic product is reduced after exposure to the radiation.

I have now developed boron-free glass compositions which can be used as the core glass in optical fibers. The glass compositions of this invention also can be used as cladding glasses in fiber optics as long as the index of refraction of the core is higher than index of refraction of the cladding.

The boron-free glasses of this invention have the following composition:

Ingredient           Weight Percent______________________________________SiO2            40 to 60Al2 O3      5 to 10BaO                   0 to 50Na2 O            5 to 40Sb2 O3      0 to  0.05Preferred core glass compositions are: Ingredient          Weight Percent______________________________________SiO2            40 to 50Al2 O3      5 to  7BaO                  30 to 50Na2 O            5 to 20Sb2 O3      0 to  0.05______________________________________

These glass compositions have an index of refraction ranging from 1.50 to 1.65. The preferred core glass compositions have an index of refraction ranging from 1.55 to 1.65.

Two different glass compositions of this invention can be used together to form a fiber optic product. Or the glass compositions can be used as a core glass with cladding glasses falling outside the scope of this invention. Or these glass compositions can be used as a cladding glass with core glasses falling outside the scope of this invention. All of these combinations are operable as long as the index of refraction of the core is higher than the index of refraction of the cladding. Naturally, the differences in the indexes and fiber forming properties of the glass compositions also have to be considered.

Specific glass compositions embodying the principles of this invention are set forth in Examples 1 through 6.

Ingredients         Weight Percent          Example               1    2    3    4    5    6__________________________________________________________________________SiO2           42.1 44.5 47.1 50.1 53.5 57.4Al2 O3    6.0  6.3  6.7  7.1  7.6  8.1BaO                 44.6 37.8 30.0 21.3 11.4 --Na2 O          7.3  11.5 16.2 21.5 27.6 34.5Sb2 O3    0.05 0.05 0.05 0.05 0.05 0.05Liquidus Temperature, F               2062 1909 1643 1427 1437 1535Viscosity, Temperature, FLog Poise    2.00       2350 2405 2334 2332 2343 2380    2.25       2235 2272 2218 2208 2212 2245    2.50       2137 2153 2122 2089 2097 2130    2.75       2053 2053 2040 1978 2000 2025    3.00       1973 1953 1965      1915 1933Refractive Index    1.59 1.57 1.56 1.54 1.53 1.51__________________________________________________________________________

These boron-free glass compositions are not as sensitive to radiation damage as the boron-containing glass compositions of the prior art. Light transmitted by the boron-free glass compositions was a more true white: the amount of yellow here in the transmitted light was reduced.

The glass compositions of this invention can be used as core glass with the following cladding glass composition.

______________________________________EXAMPLE 7 (Cladding)Ingredients         Weight Percent______________________________________SiO2           64.1Al2 O3    8.2B2 O3     11.2Na2 O          14.0Li2 O          2.4______________________________________

Liquidus: No devitrification at 1455 to 1850F over a period of 64 hours.

______________________________________Log Viscosity             Temp., F______________________________________2.0                       24702.5                       21803.0                       1970______________________________________ Refractive Index 1.50?

Light transmitting optical fiber products were actually made from the following combinations of core and cladding glass compositions:

Core                     Cladding______________________________________Example 1                Example 7Example 1                Example 2Example 2                Example 7Example 2                Example 4______________________________________

I have described this invention in considerable detail and do not wish to be limited to the particular embodiments shown. Modifications and variations within the scope of the appended claims are inteded to be included.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1151911 *Oct 27, 1913Aug 31, 1915Corning Glass WorksGlass.
US2212879 *Aug 16, 1938Aug 27, 1940Gen ElectricElectric discharge lamp
US2664359 *Jun 1, 1951Dec 29, 1953Owens Corning Fiberglass CorpGlass composition
US3258352 *Jan 9, 1961Jun 28, 1966Saint GobainMethod for producing in a glass article stresses heterogeneously distributed
US3801344 *Jun 30, 1971Apr 2, 1974Owens Illinois IncTooth filling and facing compositions comprising a radiopaque glass and method of making the same
US3811853 *May 1, 1972May 21, 1974Corning Glass WorksDegradable glass suitable for containers
US3821004 *Nov 10, 1971Jun 28, 1974Philips CorpNio and coo containing glass for television display cathode-ray tubes
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3999836 *Aug 11, 1975Dec 28, 1976Owens-Corning Fiberglas CorporationFiber optics
US6151336 *Feb 11, 1998Nov 21, 2000Sorrento Networks, Inc.Time division multiplexing expansion subsystem
US6298103Jun 16, 1998Oct 2, 2001Sorrento Networks CorporationFlexible clock and data recovery module for a DWDM optical communication system with multiple clock rates
US6400478Apr 2, 1998Jun 4, 2002Sorrento Networks, Inc.Wavelength-division-multiplexed optical transmission system with expanded bidirectional transmission capacity over a single fiber
US6716781Jul 9, 2002Apr 6, 2004Schott GlasRefractive index; chemical resistance
US7169470Feb 24, 2004Jan 30, 2007Schott Agimaging, projections, optical recording media, telecommunication, light guides; refractive index; attenuation; ion exchanging
DE10133521C1 *Jul 10, 2001Sep 5, 2002Schott GlasLead-free optical glass contains oxides of silicon, aluminum, sodium, titanium, zirconium, niobium and tantalum, and fluorine
DE10309495A1 *Feb 25, 2003Sep 9, 2004Schott GlasAluminosilikatglas
DE10309495B4 *Feb 25, 2003Feb 16, 2006Schott AgAluminosilikatglas und dessen Verwendung
Classifications
U.S. Classification501/37, 385/144, 501/903, 385/142, 501/69
International ClassificationC03C3/085, C03C3/091, C03C13/04
Cooperative ClassificationY10S501/903, C03C3/085, C03C13/046, C03C3/091
European ClassificationC03C3/091, C03C3/085, C03C13/04D2
Legal Events
DateCodeEventDescription
Mar 16, 1992ASAssignment
Owner name: OWENS-CORNING FIBERGLAS TECHNOLOGY INC., ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE;REEL/FRAME:006041/0175
Effective date: 19911205
Jul 31, 1987ASAssignment
Owner name: OWENS-CORNING FIBERGLAS CORPORATION, FIBERGLAS TOW
Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501
Effective date: 19870730
Owner name: OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE
Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:4903/501
Nov 13, 1986ASAssignment
Owner name: WADE, WILLIAM, J., ONE RODNEY SQUARE NORTH, WILMIN
Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351
Effective date: 19861103
Owner name: WILMINGTON TRUST COMPANY, ONE RODNEY SQUARE NORTH,
Owner name: WILMINGTON TRUST COMPANY,DELAWARE
Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:4652/351
Owner name: WADE, WILLIAM, J.,DELAWARE
Owner name: WILMINGTON TRUST COMPANY, DELAWARE
Owner name: WADE, WILLIAM, J., DELAWARE