US3989988A - Interference suppression feed-through capacitor - Google Patents

Interference suppression feed-through capacitor Download PDF

Info

Publication number
US3989988A
US3989988A US05/631,080 US63108075A US3989988A US 3989988 A US3989988 A US 3989988A US 63108075 A US63108075 A US 63108075A US 3989988 A US3989988 A US 3989988A
Authority
US
United States
Prior art keywords
capacitor
conductor
feed
capacitor unit
hollow cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/631,080
Inventor
Juergen Puetz
Oskar Rawinsky
Heinz Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3989988A publication Critical patent/US3989988A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors

Definitions

  • This invention relates to a feed-through capacitor and in particular to a feed-through capacitor for suppressing both symmetrical and asymmetrical interference components.
  • Feed-through capacitors designed to suppress both symmetrical and asymmetrical interference components are described in the German Pat. No. 899,686 and the German Publication OS 22,48,700 which corresponds with U.S. Pat. No. 3,909,623.
  • Feed-through suppression capacitors are particularly suited for the supply conductors of electronic equipment and are also utilizable as line suppressors for shielded spaces.
  • An object of the present invention is to provide a structural design for dual suppression feed-through capacitors such that the interference suppression effect for both symmetrical and asymmetrical interference components is effective up to very high frequencies.
  • the present invention comprises a feed-through capacitor structure in which two roll-type capacitors are arranged coaxially, one within the other.
  • a first roll-type capacitor is wound about a first or central conductor.
  • a hollow cylindrical conductor surrounds the first capacitor and connects with a second conductor.
  • a second roll-type capacitor is wound about the hollow cylindrical conductor.
  • a cylindrical housing wall is arranged concentrically about the first or central conductor to surround the entire structure.
  • One side of the first capacitor is connected directly to the central conductor and the other side of the first capacitor is connected by a soldered plate to the hollow cylindrical conductor.
  • the second capacitor is connected by soldered plates on either end thereof to the hollow cylindrical conductor and the cylindrical housing wall.
  • the first or central conductor comprises a feed-through terminal rod and the hollow cylindrical conductor connects with terminals at both sides of the feed-through capacitor structure.
  • the housing comprises two parts soldered together so as to be impervious to high frequencies.
  • the feed-through capacitor in accordance with this invention has the advantage that it contains no inner inductances which would cause the impedance of the unit to increase at higher frequencies.
  • the lead-through capacitor of this invention can be secured in normal manner by threading the case and mounting to an isolation plate or wall.
  • the capacitor unit may be welded to an appropriate mounting surface.
  • the welding of the feed-through capacitor to a housing or wall may be facilitated by use of a sheet metal component which is part of the capacitor unit.
  • the sheet metal component may be mounted by bolts directly to the housing wall such that the structure becomes impervious to high frequency leak-through.
  • Connection terminals of the unit are held in position by ceramic feed-through insulators.
  • the drawing is a side view of the feed-through capacitor unit of this invention with an upper quadral portion of the unit illustrated in cross-section to show important structural detail within the interior of the unit.
  • a feed-through capacitor unit 20 has a first roll-type capacitor 2 and a second roll-type capacitor 4.
  • Each of these capacitors may comprise windings or layers 19a and 19b of paper with metal foils on either side thereof.
  • a synthetic material which is metalized on either one or both sides may be employed to provide conductor surfaces for the capacitors.
  • Sides of the capacitor rolls 2 and 4 are metalized and soldered over the entire side areas to metal discs 5 and 9 for the first capacitor 2, or metal discs 10 and 11 for the second capacitor 4.
  • alternate metal layers of the capacitors 2 and 4 are respectively connected to the side plates, a technique well known in the art.
  • the capacitor unit 20 has an outer housing comprising two parts 8 and 12 which are tightly soldered together.
  • the sheet metal component 13 connects with the capacitor housing to facilitate welding of the capacitor unit to a shielding wall 26.
  • the stud 21 provided on the sheet metal component 13 serves as a ground terminal. Alternatively, threads 29 may be provided for wall mounting.
  • a central or first rod-type conductor 1 is mounted by ceramic insulators 25c and 25d along a central axis of the cylindrical two part housing 8 and 12. This conductor is threaded on either end and provided with bolts 22a and 22b for connection to lead wires 27a and 27b.
  • the first capacitor 2 is wound about the central conductor 1.
  • Another circular plate 5 is soldered to the back side edge of the first capacitor 2.
  • the plate 5 connects with a second conductor 7 having a threaded terminal 7a with a bolt 23a mounted thereon for connecting with a lead wire 28a.
  • a hollow cylindrical conductor 3 surrounds the first capacitor 2 and connects with both the plate 5 and conductor 7.
  • a terminal 7b connects to the cylindrical conductor 3 at the front side of the capacitor unit 20. Connection bolts 23b are provided on terminal 7a for attachment to a lead wire 28b. Both terminals 7a and 7b are mounted to the housing portions 8 and 12 respectively by ceramic insulator units 25a and 25b.
  • a second capacitor 4 is wound coaxially about the first capacitor 2.
  • a front side edge of the capacitor 4 is soldered directly to a circular plate 11 which in turn connects around its outer periphery with the housing portion 8.
  • the back side edge of the second capacitor 4 is soldered to a circular plate 10 which has its inner periphery connected to the hollow cylindrical conductor 3.
  • a feed-through capacitor unit 20 having a first capacitor 2 between conductors 7 and 1 and a second capacitor 4 between conductor 7 and the two part housing 8 and 12, which is typically grounded.
  • power lines comprising a phase conductor, a neutral conductor, and ground are respectively connected to the central or first conductor 1, the second conductor 7, and the ground conductor 21. Symmetrical interference between the phase and neutral conductors is suppressed by the first capacitor 2 and asymmetrical interference components between the neutral conductor and ground is suppressed by the second capacitor 4.

Abstract

A feed-through capacitor is provided which has a first capacitance between a phase conductor and a neutral conductor for suppressing symmetrical interference components, and a second capacitance between said neutral conductor and ground for suppressing asymmetrical interference components. Terminal inductance is minimized by utilizing roll-type capacitors which are coaxially arranged, one within the other.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a feed-through capacitor and in particular to a feed-through capacitor for suppressing both symmetrical and asymmetrical interference components.
2. Description of the Prior Art
Feed-through capacitors designed to suppress both symmetrical and asymmetrical interference components are described in the German Pat. No. 899,686 and the German Publication OS 22,48,700 which corresponds with U.S. Pat. No. 3,909,623. Feed-through suppression capacitors are particularly suited for the supply conductors of electronic equipment and are also utilizable as line suppressors for shielded spaces.
Previously, two wire or multiple wire lines required multiple feed-through capacitors. In two wire installations, a phase conductor, neutral conductor, and ground conductor are employed. Symmetrical interference currents may exist between phase and neutral conductors and asymmetrical interference currents between the phase and neutral conductors and ground. The combination of several feed-through capacitors into a single feed-through capacitor arrangement is highly desirable. German Pat. No. 899,686 suggests a design in which two pole capacitors or noncoaxial four pole capacitors are employed. However, in such prior devices, the terminals in the conductors within the featured capacitors exhibit an increasing impedance near the resonant frequency due to excessive terminal inductances. Such feed-through capacitors are not fully operative at high frequencies.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a structural design for dual suppression feed-through capacitors such that the interference suppression effect for both symmetrical and asymmetrical interference components is effective up to very high frequencies.
The present invention comprises a feed-through capacitor structure in which two roll-type capacitors are arranged coaxially, one within the other. A first roll-type capacitor is wound about a first or central conductor. A hollow cylindrical conductor surrounds the first capacitor and connects with a second conductor. A second roll-type capacitor is wound about the hollow cylindrical conductor. Finally, a cylindrical housing wall is arranged concentrically about the first or central conductor to surround the entire structure. One side of the first capacitor is connected directly to the central conductor and the other side of the first capacitor is connected by a soldered plate to the hollow cylindrical conductor. The second capacitor is connected by soldered plates on either end thereof to the hollow cylindrical conductor and the cylindrical housing wall. The first or central conductor comprises a feed-through terminal rod and the hollow cylindrical conductor connects with terminals at both sides of the feed-through capacitor structure. The housing comprises two parts soldered together so as to be impervious to high frequencies.
The feed-through capacitor in accordance with this invention has the advantage that it contains no inner inductances which would cause the impedance of the unit to increase at higher frequencies.
The lead-through capacitor of this invention can be secured in normal manner by threading the case and mounting to an isolation plate or wall. Alternatively, the capacitor unit may be welded to an appropriate mounting surface.
The welding of the feed-through capacitor to a housing or wall may be facilitated by use of a sheet metal component which is part of the capacitor unit. The sheet metal component may be mounted by bolts directly to the housing wall such that the structure becomes impervious to high frequency leak-through.
Connection terminals of the unit are held in position by ceramic feed-through insulators.
BRIEF DESCRIPTION OF THE DRAWING
The drawing is a side view of the feed-through capacitor unit of this invention with an upper quadral portion of the unit illustrated in cross-section to show important structural detail within the interior of the unit.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the preferred embodiment of the invention shown in the drawing, a feed-through capacitor unit 20 has a first roll-type capacitor 2 and a second roll-type capacitor 4. Each of these capacitors may comprise windings or layers 19a and 19b of paper with metal foils on either side thereof. Alternatively, a synthetic material which is metalized on either one or both sides may be employed to provide conductor surfaces for the capacitors. Sides of the capacitor rolls 2 and 4 are metalized and soldered over the entire side areas to metal discs 5 and 9 for the first capacitor 2, or metal discs 10 and 11 for the second capacitor 4. By such construction, alternate metal layers of the capacitors 2 and 4 are respectively connected to the side plates, a technique well known in the art.
The capacitor unit 20 has an outer housing comprising two parts 8 and 12 which are tightly soldered together. The sheet metal component 13 connects with the capacitor housing to facilitate welding of the capacitor unit to a shielding wall 26. The stud 21 provided on the sheet metal component 13 serves as a ground terminal. Alternatively, threads 29 may be provided for wall mounting.
A central or first rod-type conductor 1 is mounted by ceramic insulators 25c and 25d along a central axis of the cylindrical two part housing 8 and 12. This conductor is threaded on either end and provided with bolts 22a and 22b for connection to lead wires 27a and 27b.
As shown in the drawing, the first capacitor 2 is wound about the central conductor 1. A circular plate 9, soldered to a front side edge of first capacitor 2, electrically connects to the central conductor 1. Another circular plate 5 is soldered to the back side edge of the first capacitor 2. The plate 5 connects with a second conductor 7 having a threaded terminal 7a with a bolt 23a mounted thereon for connecting with a lead wire 28a. A hollow cylindrical conductor 3 surrounds the first capacitor 2 and connects with both the plate 5 and conductor 7. A terminal 7b connects to the cylindrical conductor 3 at the front side of the capacitor unit 20. Connection bolts 23b are provided on terminal 7a for attachment to a lead wire 28b. Both terminals 7a and 7b are mounted to the housing portions 8 and 12 respectively by ceramic insulator units 25a and 25b.
A second capacitor 4 is wound coaxially about the first capacitor 2. A front side edge of the capacitor 4 is soldered directly to a circular plate 11 which in turn connects around its outer periphery with the housing portion 8. The back side edge of the second capacitor 4 is soldered to a circular plate 10 which has its inner periphery connected to the hollow cylindrical conductor 3.
With the structure of this invention, a feed-through capacitor unit 20 is provided having a first capacitor 2 between conductors 7 and 1 and a second capacitor 4 between conductor 7 and the two part housing 8 and 12, which is typically grounded. In one application of this invention, power lines comprising a phase conductor, a neutral conductor, and ground are respectively connected to the central or first conductor 1, the second conductor 7, and the ground conductor 21. Symmetrical interference between the phase and neutral conductors is suppressed by the first capacitor 2 and asymmetrical interference components between the neutral conductor and ground is suppressed by the second capacitor 4.
Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawing, it is to be understood that the invention is not limited to this precise embodiment, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention, as defined in the appended claims.

Claims (7)

We claim as our invention:
1. A feed-through capacitor unit adapted for combining minimum terminal conductor inductance with suppression of symmetrical interference components between first and second conductors and asymmetrical interference components between a second conductor and ground, comprising:
a. a central first conductor;
b. a first roll-type capacitor having a first side edge electrically connected to said first conductor;
c. a hollow cylindrical second conductor coaxially arranged about said first capacitor and electrically connected to a second side edge of said first capacitor;
d. a second roll-type capacitor coaxially arranged about said hollow cylindrical second conductor; and
e. a conductive cylindrical housing coaxially arranged about said second capacitor, a first side edge of said second capacitor being electrically connected to said housing and a second side edge of said second capacitor being electrically connected to said hollow cylindrical second conductor.
2. The feed-through capacitor unit of claim 1 in which the connections to said first and second side edges of said first and second capacitors are provided by circular plates soldered directly to metalized side portions of said first and second capacitors.
3. The feed-through capacitor unit of claim 1 in which said conductive cylindrical housing comprises first and second portions which are soldered together.
4. The feed-through capacitor unit of claim 1 in which said central first conductor has terminals on both ends thereof and said hollow cylindrical second conductor connects with terminals at both ends thereof.
5. The feed-through capacitor unit of claim 1 in which said central first conductor connects to a phase wire and said hollow cylindrical second conductor connects to a neutral wire.
6. The feed-through capacitor unit of claim 1 in which said conductive cylindrical housing connects to a sheet metal component for weld-mounting of the capacitor unit.
7. The feed-through capacitor unit of claim 1 in which the conductive cylindrical housing is threaded for mounting.
US05/631,080 1974-11-27 1975-11-12 Interference suppression feed-through capacitor Expired - Lifetime US3989988A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DT2456088 1974-11-27
DE19742456088 DE2456088A1 (en) 1974-11-27 1974-11-27 ELECTRIC DOUBLE RESTORING CAPACITOR

Publications (1)

Publication Number Publication Date
US3989988A true US3989988A (en) 1976-11-02

Family

ID=5931858

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/631,080 Expired - Lifetime US3989988A (en) 1974-11-27 1975-11-12 Interference suppression feed-through capacitor

Country Status (7)

Country Link
US (1) US3989988A (en)
DE (1) DE2456088A1 (en)
FR (1) FR2293048A1 (en)
IT (1) IT1049634B (en)
NL (1) NL7511966A (en)
NO (1) NO753517L (en)
SE (1) SE7513308L (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324047B1 (en) 2000-06-06 2001-11-27 Avx Corporation Symmetrical feed-thru
US20060018061A1 (en) * 2004-04-12 2006-01-26 Chan David Y Ground fault circuit interrupter with enhanced radio frequency interference suppression

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10240084A1 (en) * 2002-08-30 2004-03-25 Epcos Ag Feedthrough component, filter circuit with the feedthrough component and screen wall for shielded rooms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721311A (en) * 1950-03-07 1955-10-18 Sprague Electric Co High voltage low pass filters
US3106671A (en) * 1958-04-16 1963-10-08 Cornell Dubilier Electric Multifunctional capacitor construction
US3909623A (en) * 1972-10-04 1975-09-30 Siemens Ag Supply device for supply conductors of high frequency equipment and the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721311A (en) * 1950-03-07 1955-10-18 Sprague Electric Co High voltage low pass filters
US3106671A (en) * 1958-04-16 1963-10-08 Cornell Dubilier Electric Multifunctional capacitor construction
US3909623A (en) * 1972-10-04 1975-09-30 Siemens Ag Supply device for supply conductors of high frequency equipment and the like

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324047B1 (en) 2000-06-06 2001-11-27 Avx Corporation Symmetrical feed-thru
US20060018061A1 (en) * 2004-04-12 2006-01-26 Chan David Y Ground fault circuit interrupter with enhanced radio frequency interference suppression
US7375935B2 (en) * 2004-04-12 2008-05-20 Leviton Manufacturing Co., Inc. Ground fault circuit interrupter with enhanced radio frequency interference suppression
USRE42866E1 (en) * 2004-04-12 2011-10-25 Leviton Manufacturing Co., Inc. Ground fault circuit interrupter with enhanced radio frequency interference suppression

Also Published As

Publication number Publication date
DE2456088A1 (en) 1976-08-12
NL7511966A (en) 1976-05-31
IT1049634B (en) 1981-02-10
SE7513308L (en) 1976-05-28
NO753517L (en) 1976-05-31
FR2293048A1 (en) 1976-06-25

Similar Documents

Publication Publication Date Title
US3035237A (en) Feed-through capacitor
US2884605A (en) Electrical suppressor
US2221105A (en) Electric filter
US2171219A (en) High frequency condenser
US2260296A (en) Electrical filter
US2526321A (en) Artificial transmission line
RU2046427C1 (en) High-voltage instrument current transformer
US3989988A (en) Interference suppression feed-through capacitor
US4484085A (en) Spiral line voltage pulse generator characterized by secondary winding
US2905911A (en) Static shielding of transformer windings
US3141145A (en) Feed-through smoothing filter
US2383890A (en) Electrical filter
US2835874A (en) Electrical interference suppression filter
US3568109A (en) Variable or low pass filter
US4128818A (en) Electrical frequency responsive structure
US2092708A (en) Radio-frequency inductance unit
US3295055A (en) Combined unit of impedance
US3457527A (en) Compact capacitive-inductive impedance unit
US20240128009A1 (en) Magnetic device
GB2276982A (en) Multiple line capacitor
JPS5943717Y2 (en) Feedthrough capacitor
JPS5932123Y2 (en) Through electrode shield type electrolytic capacitor
US3596213A (en) Filter unit having a circumferential electrostatic shield
JPS63217906A (en) Gas insulated electric machine
JPH06505125A (en) Current transformer