Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4023028 A
Publication typeGrant
Application numberUS 05/498,888
Publication dateMay 10, 1977
Filing dateAug 20, 1974
Priority dateAug 20, 1974
Publication number05498888, 498888, US 4023028 A, US 4023028A, US-A-4023028, US4023028 A, US4023028A
InventorsGeorge M. Dillard
Original AssigneeThe United States Of America As Represented By The Secretary Of The Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for computing the discrete Fourier transform recursively
US 4023028 A
Abstract
A wholly digital system for computing the discrete Fourier transform of sequentially received data in a recursive fashion. Two parallel shift registers store and shift the real and imaginary components of the complex number Xk + iYk. The data in the parallel registers are successively shifted one bit per strobe in response to receipt of new data. Additional logic operates recursively on successive data inputs to compute the discrete Fourier transform.
Images(3)
Previous page
Next page
Claims(5)
What is claimed is:
1. An apparatus for computing the discrete Fourier transform of a waveform comprising:
input register means for receiving a series of digital data samples representative of said waveform;
subtract and hold means connected to said input register means for subtracting the oldest data sample stored in said input register from the newest data sample stored in said input register means;
an adder network connected to the output of said subtract and hold means;
a multiplier network having a first input connected to the output of said adder network and having a second input;
constants storage means connected to said second multiplier network input for outputting to said multiplier network a series of predetermined digital constants;
output register means having an input connected to said multiplier network and an output connected to said adder network second input;
timing means for gating said input and output register means, said subtract and hold means, said adder network, said multiplier network and said constants storage means at predetermined intervals.
2. The apparatus of claim 1 wherein:
said input register means comprises first and second input register means for receiving the real and imaginary components respectively of said digital data samples;
said subtract and hold means comprises first and second subtract and hold means;
said adder network comprises first and second adders;
said constants storage means comprises first and second constants storage devices; and
said output register means comprises first and second output register means.
3. The apparatus of claim 2 wherein said first constants storage device holds the real part of e2.sup.πij/N, j = 0, 1 . . . , N-1 and said second constants storage device holds the imaginary part of e2.sup.πij/N, j = 0, 1 . . . , N-1 where i = √ -1, j = an index indicating a particular Fourier coefficient and N = the number of digital samples stored in said input register means minus 1.
4. The apparatus of claim 3 wherein said timing means simultaneously gates said first and second input registers in response to each digital data sample;
said timing means simultaneously gates said first and second subtract and hold means subsequent to each gate to said input registers;
said timing means simultaneously gates said first and second adders and said multiplier network with a first series of pulses subsequent to each gate to said first and second subtract and hold means; and
said timing means gates said constants storage means and said output registers with a second series of pulses, each pulse of said second series of pulses following a pulse of said first series of pulses;
whereby in response to the receipt of each digital data sample, said first output register contains a series of the real part of Fourier coefficients and said second output register contains a series of the imaginary part of Fourier coefficients.
5. A method of computing the discrete Fourier transform of a waveform comprising the steps of:
receiving a series of digital data representative of said waveform;
storing sequentially said series of digital data representative of said waveform;
subtracting the oldest stored data from the newest stored data to obtain a difference each time a data is received;
generating a series of predetermined constants;
providing an output shift storage means;
adding sequentially each of the data stored in said output shift storage means to said difference to produce a series of addition signals;
multiplying each addition signal by a predetermined constant from said series of predetermined constants to obtain a series of products;
sequentially storing said series of products in said output shift storage means;
whereby said output shift storage means contains a series of Fourier coefficients.
Description
BACKGROUND OF THE INVENTION

The Fourier transform is used for characterizing linear systems when continuous waveforms are involved. However, for sampled data the discrete Fourier transform (DFT) is the tool that is applied. The fast Fourier transform is simply an efficient computational method for obtaining the DFT.

For a sequence Z0, . . . , ZN -1, of sampled waveform data (either real or complex), the DFT is defined as ##EQU1## For j = 0, 1, . . . , N- 1. (Some authors include a factor 1/N in the definition of W(j). An implicit assumption in the definition of W(j) is that the samples are obtained at equally spaced time intervals T0. The fundamental frequency is f0 = 1/T, where T = NT0, and the frequency corresponding to each index j is jf0. Several other properties of the DFT and FFT are described in "A Guided Tour of the Fast Fourier Transform," G. D. Bergland, IEEE Spectrum, Volume 6, p. 41-52, July 1969.

SUMMARY OF THE INVENTION

Applicant's invention pertains to a simple recursive method that can be applied in the computation of the DFT. In certain practical situations, the data Z0, . . . , ZN -1, are received sequentially, and computation of the DFT (either the fast or slow DFT) cannot be completed until the final datum ZN -1 is received. However, if the DFT is computed recursively as described below, only a small number of operations need be made after the receipt of ZN -1 (an operation is defined herein as the performance of a complex addition followed by a complex multiplication). Even if the method of computing the DFT recursively requires many more total operations than would the FFT, the required time measured from receipt of Z0, might be insignificantly different.

To implement the technique of the present invention, Applicant has derived the "moving-window" discrete Fourier transform (MWDFT) as described below.

Rather than treat the special case where the DFT of the sequence Z0, Z1, . . . , ZN -1 is computed, Applicant treats a more general situation described as follows. Let Z0, Z1, . . . , Zm, . . . , be an infinite sequence of sampled waveform data, where Zk (possibly complex) is the value of the function Z(t) obtained at time t = KTo. Assume that for each n = 0, 1, . . . , the DFT of Zn, Zn +1, . . . , Zn +N -1 is of interest. That is, the "moving-window" discrete Fourier transform (MWDFT) is computed. A recursive method of computing the MWDFT is derived below. This recursive method will, of course, also apply to the computation of the DFT of Z0, . . . , ZN -1, i.e. the DFT of a finite data input.

For each N = 0, 1, . . . the MWDFT W(j,n) is defined herein as ##EQU2## for j = 0, 1, . . . , N-1. From (2) it follows that ##EQU3## and ##EQU4##

A manipulation of (3b) gives the desired recursive formula

(4a) W(j,n+1)= [W(j,n)+ZN +n -Zn ] e2.sup.πij/N

(4b)P W(j,0)= W(j),

where W(j) is defined in (1) above.

The present invention provides an apparatus for computing the MWDFT as derived in equation (4) above. It should be noted that for each n the calculation of ZN +n -Zn is independent of the index j of the Fourier coefficients being computed. Thus, the total number of operations, as defined previously, for each n is just N, neglecting the one-time calculation of ZN +n -Zn. Accordingly, the present invention provides the basic requirement of computational speed. In some cases not all of the Fourier coefficients are of interest. In such cases the total number of operations to be performed are decreased and the time per operation can be increased accordingly. Also, the recursive method of the present invention does not require that N be a power of 2; the number of operations for computing all coefficients is merely N.

The recursive method of equation (4) requires computation of the initial value W(j,0) = W(j), which is defined in (1). This can be accomplished by the recursive formula

(5a) W'(j,m+1)= [W'(j,m)+Zm +1 ] e2.sup.πij/N

and

(5b) W'(j,0)= Z0 e2.sup.πij/N

m = 0, 1, . . . , N-2. The desired initial value is W(j,0) = W' (j,N-1). Equation (5) can be verified by applying (4) to the sequence obtained by inserting N-1 zeros at the beginning of the sequence Z0, Z1, . . . , .

STATEMENT OF THE OBJECTS OF INVENTION

It is a primary object of the present invention to provide a novel technique and apparatus for computing the DFT.

It is another object of the present invention to provide a method and apparatus for computing the DFT in a "moving-window" fashion.

It is another object of the present invention to provide a method and means for computing the DFT in a recursive fashion.

Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a network diagram of the recursive Fourier transform computer of the instant invention.

FIG. 2 is a network diagram of the complex multiply network of FIG. 1.

FIG. 3 is a network diagram of the timing generator of the present invention.

FIG. 4 is a timing diagram of the timing pulses produced by the timing generator of FIG. 3.

FIG. 5 is a network diagram of an alternative method of obtaining the complex constants of the instant invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The DFT to be computed recursively is defined in equations (2) through (4) above. A block diagram of this invention is shown in FIG. 1 to which the timing diagram of FIG. 4 relates as indicated below. Referring to FIG. 1, X and Y registers 10 and 11 are registers that are capable of storing and shifting N+1 multi-bit data obtained as digital input data from suitable input sources such as A/D converters 1 and 2. The digital input data are assumed to consist of b-bits each. For example, registers 10 and 11 could consist of b parallel (N+1)-bit shift registers. The U and V registers 18 and 19 are also capable of storing and shifting N multi-bit data that are obtained as a result of the arithmetical operations described below. The CR and CI registers 16 and 17 are for storage of N digital (binary) constants. These registers may consist of parallel shift registers, as indicated above for registers 10 and 11, or may comprise programmable read-only memories (PROMS), addressable core storage, etc. Feedback paths 165 and 175 are provided for registers 16 and 17, respectively, for the purpose of regeneration of the stored constants.

Referring to the block diagram of FIG. 1 and the timing diagram of FIG. 4, the recursive computation is performed by the apparatus of the instant invention as follows. Upon occurrence of the data-available strobe from A/D converter 1, registers 10 and 11 are shifted right one bit and the new digital data are inserted as the left most data in the registers. Those data which, prior to shifting, were the right most data in the registers are discarded as belonging to the previous "window" of data. Thus, after each SXY pulse, registers 10 and 11 contain the N+1 previously obtained data Xn, Xn +1, . . . , Xn +N ; Yn, Yn +1, . . . Yn +N. The data (Xk, Yk) are considered as components of the complex number Xk + IYk,i= √ -1. At the occurrence of strobe S, the subtract and hold circuits 12 and 13 compute the differences XN +n -Xn and YN +n -Yn and hold these differences for use in future computations described below. The two subtract and hold circuits 12 and 13 together perform the calculation of ZN + n -Zn indicated in equation (4a). By definition herein Zk = Xk +i Yk. At the occurrence of each add and multiply strobe (AM), adder networks 14 and 15 add the contents of the subtract and hold networks to the left most data in the U and V registers 18 and 19. This is the computation of W(j,n)+ ZN +n indicated in equation (4a) above. The results of these additions, labeled ZR and ZI in FIG. 1 are multiplied by the constants CR and CI in the complex multiply network 20. The complex multiplier outputs are defined as Un +1 = CR ZR -CI ZI and Vn +1 = CR ZR + CI ZR. The constants CR and CI are the real and imaginary parts, respectively, of e2.sup.πij/N, where the index j denotes the number of SUVC (shift U, V, and C) pulses that have occurred prior to the current multiplication being performed. After each multiplication is performed, a SUVC pulse occurs, thus causing new constants CR and CI to be available for the next multiply cycle, causing new data to appear as the left most data in the registers 18 and 19, and causing the results of the complex multiplication just performed to be entered as the right most data of the registers 18 and 19. After the Nth SUVC pulse, the registers 18 and 19 contain the real and imaginary parts respectively of W(j,n+ 1), j = 0, 1, . . . , N-1, where W(j,N+ 1) is defined in equation (4a) above. As described above, computation of the initial value W(j, 0) is accomplished by inserting N-1 zeros at the beginning of the sequence Z0, Z1, . . . , .

The details of the complex multiply network 20 are illustrated in FIG. 2. It is readily apparent that component ZR is multiplied by component CR in multiplier unit 24 to obtain product ZR CR. Likewise, the component ZI is multiplied by the component CI in multiplier 25 to obtain the product ZI CI which is subtracted from ZR CR in summing unit 26. Similarly, the quantity ZR CI + ZI CR is obtained by processing the components ZR, ZI, CI, and CR through adder 23 and multipliers 21 and 22.

The CI and CR registers 16 and 17 each hold N constants. The CI register 17 holds the imaginary part of e2.sup.πij/N, j = 0, 1, . . . , N-1, and the CR register 16 holds the real part of e2.sup.πij/N, j = 0, 1, . . . , N-1. For a shift register implementation of 16 and 17, these constants are read in initially through parallel shift register inputs, by programmable switches, or by any other conventional means of inserting data into shift registers. Similarly, for an addressable core storage, the constants are initially inserted in any conventional manner for reading data into a core storage. For PROM implementation, the constants are inserted as a part of the "programming" of the PROM.

The details of the timing generator for producing the timing signals illustrated in FIG. 4 are shown in FIG. 3. As seen in FIG. 3, the data available strobe is input to the monostable multivibrator M1 which generates a pulse (labelled "A") of some specified length (the length of the pulse depends upon the rate at which computations are made and may differ from one application to the next). This pulse is inverted by inverter 31 and the end of pulse A causes multivibrator M2 to generate pulse C which is output as the SXY pulse of FIG. 1 and is also inverted by inverter 32 to produce pulse D to trigger multivibrator M3. Multivibrator M3 generates pulse E which is output as strobe S and is also used to set Flip Flop G. Flip Flop G gates the clock oscillator 33 output F into the binary counter 36 through AND gate 35 and into multivibrator M4. The binary counter 36 counts the number of pulses H at its output and when the count reaches N, comparator 37 produces pulse J which resets Flip Flop G. Thus, exactly N output pulses H are produced. Outputs H are furnished to multivibrator M4 to produce outputs K which are the add and multiply (AM) pulses of FIG. 1. Outputs H are also inverted by inverter 38 to produce output L which in turn triggers multivibrator M5 to produce outputs M which are furnished as the SUVC pulses of FIG. 1.

In the discussion above, it was assumed that all N coefficients W(j,n), j = 0, 1, . . . N-1 are of interest. If only K (K<N) are of interest, then only those K corresponding constants need be stored, and the size of the registers 18 and 19 can be decreased accordingly. Also if the input data are real, only the X register 10 is necessary for the input data and the V register 19 would be connected directly to the complex multiply circuit 20, i.e., ZI = Vn.

An alternative for generating the complex constants CR and CI is shown in FIG. 5. Instead of storing all of the constants, they are generated as needed. Since the jth constant is defined as e2.sup.πij/N, it follows that the (j+1)th constant can be found by the simple complex multiplication e2.sup.πi(j+1)/N = e2.sup.πi/N e2.sup.πij/N. But, by definition, e2.sup.πi/N = cos (2π/N)+i sin (2π/N), i = √ -1; also, e2.sup.πij/N = cos (2πj/N)+i sin (2πj/N) for j = 0, 1, . . . , N-1. Thus, if CR and CI are initially set to 0 and 1 respectively, and if ER and EI are the stored constants cos 2π /N and sin 2π/N, respectively, then, the appropriate constants can be found by the complex multiplication indicated in FIG. 5.

Alternatives to the embodiments illustrated include alternate methods of data storage, e.g., core storage instead of shift registers. Also parallel adder/complex multipliers can be used so that all N (or fewer if desired) DFT coefficients can be computed simultaneously.

The advantage of the present invention is that the computation of the DFT for sequentially received data requires very little time after the receipt of the final datum for which the transforms are computed. Also, the instant invention provides the capability of computing the DFT in a "moving-window" fashion. This is significant in radar and communications applications where unknown signal arrival times makes "moving-window" detection necessary. Another advantage of the present invention is that the circuitry for performing the computations is all digital, thus lending to simplicity, reliability, and commonality.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims the invention may be practiced otherwise than is specifically described.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3586843 *Dec 26, 1968Jun 22, 1971AmpexComputer system for producing various fourier analyses in real time
US3778606 *Feb 23, 1972Dec 11, 1973Sanders Associates IncContinuously updating fourier coefficients every sampling interval
US3816729 *Nov 24, 1971Jun 11, 1974Raytheon CoReal time fourier transformation apparatus
US3851162 *Apr 18, 1973Nov 26, 1974NasaContinuous fourier transform method and apparatus
Non-Patent Citations
Reference
1G. M. Dillard, "Recursive Computation of the DFT, With Applications to a se-Doppler Radar System", Comput. and Elec. Engng., vol. 1, No. 1, pp. 143-152, June, 1973.
2 *G. M. Dillard, "Recursive Computation of the DFT, With Applications to a se-Doppler Radar System", Comput. and Elec. Engng., vol. 1, No. 1, pp. 143-152, June, 1973.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4156920 *Jun 30, 1977May 29, 1979International Business Machines CorporationComputer system architecture for performing nested loop operations to effect a discrete Fourier transform
US4225937 *Sep 18, 1978Sep 30, 1980Xerox CorporationMethod and apparatus for suppression of error accumulation in recursive computation of a discrete Fourier transform
US4231277 *Oct 30, 1978Nov 4, 1980Nippon Gakki Seizo Kabushiki KaishaProcess for forming musical tones
US4326258 *Jan 31, 1980Apr 20, 1982Ncr Canada Ltd - Ncr Canada LteeMethod and apparatus for reducing the gray scale resolution of a digitized image
US4486850 *Dec 27, 1976Dec 4, 1984Hyatt Gilbert PData processing system
US4551816 *Sep 27, 1982Nov 5, 1985Hyatt Gilbert PFilter display system
US4553213 *Sep 27, 1982Nov 12, 1985Hyatt Gilbert PCommunication system
US4553221 *Sep 27, 1982Nov 12, 1985Hyatt Gilbert PDigital filtering system
US4581715 *Sep 28, 1982Apr 8, 1986Hyatt Gilbert PFourier transform processor
US4686655 *Sep 27, 1982Aug 11, 1987Hyatt Gilbert PFiltering system for processing signature signals
US4744042 *Nov 30, 1984May 10, 1988Hyatt Gilbert PTransform processor system having post processing
US4764974 *Sep 22, 1986Aug 16, 1988Perceptics CorporationApparatus and method for processing an image
US4929954 *Sep 23, 1986May 29, 1990Thomson-CsfDevice for computing a sliding and nonrecursive discrete Fourier transform and its application to a radar system
US4944036 *Aug 10, 1987Jul 24, 1990Hyatt Gilbert PSignature filter system
US5053983 *Apr 4, 1986Oct 1, 1991Hyatt Gilbert PFilter system having an adaptive control for updating filter samples
US5459846 *Dec 2, 1988Oct 17, 1995Hyatt; Gilbert P.Computer architecture system having an imporved memory
US6023719 *Sep 4, 1997Feb 8, 2000Motorola, Inc.Signal processor and method for fast Fourier transformation
US6343304Mar 9, 1999Jan 29, 2002National Science CouncilApparatus with selective fixed-coefficient filter for performing recursive discrete cosine transforms
US6611567 *Jan 29, 1999Aug 26, 2003Agere Systems, Inc.Method and apparatus for pulse shaping
US6735610Apr 28, 2000May 11, 2004Walter E. PeltonApparatus, methods, and computer program products for determining the coefficients of a function with decreased latency
US6820104Jun 11, 2001Nov 16, 2004Walter Eugene PeltonApparatus, methods, and computer program products for reducing the number of computations and number of required stored values for information processing methods
US6922712Feb 26, 2001Jul 26, 2005Walter E. PeltonApparatus, methods, and computer program products for accurately determining the coefficients of a function
US6952710Jun 11, 2001Oct 4, 2005Walter Eugene PeltonApparatus, methods and computer program products for performing high speed division calculations
US7120659Apr 12, 2004Oct 10, 2006Pelton Walter EApparatus, methods, and computer program products for determining the coefficients of a function with decreased latency
US8005883Oct 9, 2006Aug 23, 2011Pelton Walter EApparatus, methods, and computer program products for determining the coefficients of a function with decreased latency
EP0080266A2 *Oct 21, 1982Jun 1, 1983Itt Industries Inc.Discrete fourier transform circuit
EP1168192A2 *Jun 29, 2001Jan 2, 2002Viktor Company of Japan Ltd.Recursive discrete fourier transformation
EP1176516A2 *Jul 18, 2001Jan 30, 2002Victor Company Of Japan LimitedRecursive discrete fourier transformation apparatus
WO2005111857A2 *May 9, 2005Nov 24, 2005Walter E PeltonRotational sliding aperture fourier transform
Classifications
U.S. Classification708/405
International ClassificationG06F17/14
Cooperative ClassificationG06F17/141
European ClassificationG06F17/14F