US4048135A - Polyester molding compositions of reduced flammability - Google Patents

Polyester molding compositions of reduced flammability Download PDF

Info

Publication number
US4048135A
US4048135A US05/665,062 US66506276A US4048135A US 4048135 A US4048135 A US 4048135A US 66506276 A US66506276 A US 66506276A US 4048135 A US4048135 A US 4048135A
Authority
US
United States
Prior art keywords
antimony
support
molding composition
weight
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/665,062
Inventor
Rolf Wurmb
Bernd Leutner
Wolfgang Seydl
Hans-Ulrich Schlimper
Hans-Josef Sterzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Application granted granted Critical
Publication of US4048135A publication Critical patent/US4048135A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • This invention relates to polyester molding compositions containing halogenous flameproofing agents and antimony trioxide to reduce flammability.
  • German Published Application 2,158,432 recommends that an aromatic halide as flameproofing agent and long-fiber reinforcing fillers, preferably asbestos, should be added.
  • asbestos fibers have the serious drawback that they involve toxicological hazards.
  • German Published Application 2,242,509 the release of buring drops is prevented by the addition of finely divided colloidal silicon dioxide. This substance, however, is very voluminous on account of its low bulk density and therefore difficult to meter for incorporation into molten polyester using conventional processing machines.
  • antimony trioxide When halogenous flameproofing agents are used, particularly organic halogen compounds, it is generally necessary for antimony trioxide to be used as synergist, the amount necessary being from 2 to 10% by weight. However, in order to obtain formulations which show no dripping tendencies, it is necessary to use at least 4 to 8% by weight of antimony trioxide. The use of antimony trioxide in such amounts is uneconomical on account of its price and is known to have a degrading effect on linear polyesters. In addition, an unduly high content of foreign substance reduces the mechanical strength.
  • thermoplastic molding compositions consisting of
  • said antimony trioxide having been prepared in an aqueous suspension of an inorganic support by precipitation onto said support from an aqueous antimony (III) halide solution by the addition of an aqueous solution of a base to increase the pH to from 6 to 8, followed by separation from the aqueous phase.
  • the antimony trioxide contained in the molding compositions of the invention may be obtained by adding the antimony (III) salt to the aqueous suspension of the inorganic support and then neutralizing.
  • the antimony (III) salt solution and the aqueous solution of the base may be added simultaneously to maintain a pH of from 6 to 8 in the reaction mixture.
  • the inorganic supports used may include any inorganic substance which is water-soluble and is compatible with the polyesters with which they are to be mixed.
  • the supports should preferably not be too hard and abrasive so as not to damage the processing equipment during processing with the polyesters.
  • they have a Mohs hardness of from 1 to 8 and preferably of from 1 to 6.
  • Suitable supports are silicic acid and silicates such as leaf silicates, e.g. kaolin and talc, and also aluminum oxide and aluminum hydroxides, particulate amorphous or crystalline silicon dioxide, titanium dioxide and calcium carbonate.
  • the supports are conveniently used in particle sizes of from 0.1 to 100 ⁇ m and preferably from 1 to 20 ⁇ m.
  • the concentration of the supporting material in the suspension depends, inter alia, on the type of support used, since for example leaf silicates such as kaolin and talc swell and thus make only low concentrations possible. In general, the concentration of the suspension is at least 1.5% by weight.
  • the antimony (III) halide solutions are usually employed in the form of 1M to 3M solutions. It is also advantageous to add up to 1 mole of sodium halide per mole of antimony (III) halide and/or the corresponding amount of hydrogen halide, since this favors the hydrolysis of the antimony (III) halide.
  • ammonia solutions are used as base, concentrations of from 10 to 33% by weight are suitable, and in the case of caustic alkali metal solutions, e.g. caustic soda or caustic potash, concentrations of from 10 to 50% by weight are suitable.
  • reaction rate should not be too high. For this reason, it is advantageous to effect neutralization by adding not more than 0.36n moles of a base having a valency of n per liter of suspension of the support per minute.
  • the reaction mixture is allowed to react for from 10 to 60 minutes after the addition of all of the reactants, before the solids are separated from the solution.
  • the pH may fall during this post-reaction period, in which case it must be readjusted to the desired value of from 6 to 8 before isolation of the solids.
  • the reaction may be carried out at room temperature (20° C) or at elevated temperatures. It is advantageous to carry out the reaction at temperatures of from 30° to 80° C.
  • the antimony trihalide is used in amounts relative to the inorganic support such that the filler finally has an antimony (III) oxide content of from 30 to 60% by weight.
  • antimony trioxide obtained in the above manner means that the amount of antimony oxide required is at most half of that required in the prior art.
  • the concentration of Sb 2 O.sub. 3 -enveloped fillers in the compositions of the invention is from 2 to 15% and preferably from 4 to 10%, by weight.
  • the preferred linear saturated polyester to be used in the invention is polybutylene terephthalate, although the additives are similarly effective with polyethylene terephthalate and polypropylene terephthalate.
  • the polybutylene terephthalate should be substantailly composed of terephthalic acid and 1,4-butanediol, although up to 15% molar of the terephthalic acid may be replaced by other dicarboxylic acids such as isophthalic, naphthalenedioic, adipic and sebacic acids, and up to 15% of the butanediol may be replaced by other glycols such as ethylene glycol, propylene glycol and neopentyl glycol.
  • the K values of the polyesters should preferably be from 55 to 80 and in particular from 60 to 75.
  • the glass fibers used for reinforcing the compositions may be in the form of chopped strands or of rovings. They may be pretreated with conventional sizes and adhesion promoters based on organosilanes such as glycidoxypropyl triethoxysilane.
  • the average length of the glass fibers in the mixture should preferably be from 0.05 to 1 mm and more preferably from 0.10 to 0.4 mm. They are used in amounts of from 10 to 60% and preferably from 10 to 35%, by weight of the molding composition.
  • the glass fibers are preferably of so-called E-glass, although fibers of A-glass or C-glass are also suitable.
  • reinforcing fibers and fillers may be used in the present invention, if desired, for example carbon fibers, asbestos fibers, potassium titanate fibers, glass spheres and polytetrachloroethylene resins having particle sizes of from 0.2 to 0.8 mm.
  • Suitable flameproofing agents are halogenous compounds, particularly organic halogenous compounds which are thermally stable at the processing temperatures of the polyesters.
  • halogenated aromatic compounds such as pentabromotoluene, hexabromobiphenyl, decabromobiphenyl, decabromobiphenyl ether, and bromine-containing aromatic compounds such as are obtained in the reaction of tetrabromobisphenol-A and epichlorohydrin.
  • the adducts obtained by reacting hexachlorocyclopentadiene with dienes such as cyclooctadiene. Their concentration is from 4 to 20% and preferably from 6 to 15%, by weight.
  • the molding compositions of the invention may contain conventional stabilizers, processing auxiliaries, lubricants, dyes and pigments. Incorporation of the additives into the polyester material may be carried out using conventional machines such as extruders, rollers and kneaders. It is sometimes advantageous to premix the additives or to form a masterbatch of the additive in small amounts of the polyester and then to mix this with the bulk of the polyester.
  • Polybutylene terephthalate having a K-value of 72 is melted in a twin-shaft extruder at temperatures of about 250° C.
  • the glass fibers and other additives are added through a downstream port as described in U.S. Pat. No. 3,304,282.
  • the amounts added are listed in Table 1 below.
  • the mixture is extruded through a die and the extrudate is granulated.
  • the granules are injection molded to specimens measuring 63.5 ⁇ 12.5 ⁇ 3.2 mm.
  • the flammability is tested in a manner similar to that described in Underwriter Laboratories method 94, the vertically suspended specimens being flamed for 10 seconds with a Bunsen flame.
  • the burning time and dripping properties are determined on 10 specimens in each case. The results are listed in Table 2 below.
  • Test 2 is a comparative test.
  • compositions of the invention having a constant content of Sb 2 0 3 exhibit much better burning properties than in the comparative test in which only Sb 2 0 3 was added. Using the latter method, good burning properties are virtually only obtainable when twice the amount of Sb 2 0 3 is used.

Abstract

Thermoplastic, linear, saturated polyesters containing flameproofing agents consisting of halogen compounds and an antimony trioxide which has been prepared in an aqueous suspension of an inorganic support using an aqueous antimony(III) halide solution and adding an aqueous solution of a base to raise the pH to from 6 to 8 with precipitation of the antimony compound onto the support, followed by separation of the solids from the aqueous phase.

Description

This invention relates to polyester molding compositions containing halogenous flameproofing agents and antimony trioxide to reduce flammability.
It is well known that the mechanical properties, particularly the rigidity, of polyester molding compositions may be improved by the addition of glass fibers. Such additions, however, increase the flammability of the molding compositions. For this reason, a variety of flameproofing agents, particularly those based on halogen or phosphorus compounds, have been added to glass-fiber-reinforced poly-ester molding compositions. Although this reduces the flammability of the plastics material, contact thereof with an open flame will cause a melt of relatively low viscosity to form, which means that burning material can drip from the composition and ignite flammable material present below. This release of burning drops of material is particularly evident on relatively thin shaped articles of glass-fiber-reinforced polyester molding compositions. To avoid this phenomenon, German Published Application 2,158,432 recommends that an aromatic halide as flameproofing agent and long-fiber reinforcing fillers, preferably asbestos, should be added. However, asbestos fibers have the serious drawback that they involve toxicological hazards. According to German Published Application 2,242,509, the release of buring drops is prevented by the addition of finely divided colloidal silicon dioxide. This substance, however, is very voluminous on account of its low bulk density and therefore difficult to meter for incorporation into molten polyester using conventional processing machines.
When halogenous flameproofing agents are used, particularly organic halogen compounds, it is generally necessary for antimony trioxide to be used as synergist, the amount necessary being from 2 to 10% by weight. However, in order to obtain formulations which show no dripping tendencies, it is necessary to use at least 4 to 8% by weight of antimony trioxide. The use of antimony trioxide in such amounts is uneconomical on account of its price and is known to have a degrading effect on linear polyesters. In addition, an unduly high content of foreign substance reduces the mechanical strength.
It is an object of the invention to obviate the drawbacks of the prior art.
This object is achieved by thermoplastic molding compositions consisting of
A. a linear saturated polyester,
B. from 6 to 30% by weight, based on the total weight of the molding composition, of a flameproofing additive comprising halogen compounds and antimony trioxide, and, optionally,
C. from 5 to 60% by weight, based on the total weight of the molding composition, of reinforcing fillers,
said antimony trioxide having been prepared in an aqueous suspension of an inorganic support by precipitation onto said support from an aqueous antimony (III) halide solution by the addition of an aqueous solution of a base to increase the pH to from 6 to 8, followed by separation from the aqueous phase.
The antimony trioxide contained in the molding compositions of the invention, to which no claim is made herein, may be obtained by adding the antimony (III) salt to the aqueous suspension of the inorganic support and then neutralizing. Alternatively, particularly where supports are used which are not stable under acid conditions, the antimony (III) salt solution and the aqueous solution of the base may be added simultaneously to maintain a pH of from 6 to 8 in the reaction mixture.
The inorganic supports used may include any inorganic substance which is water-soluble and is compatible with the polyesters with which they are to be mixed. The supports should preferably not be too hard and abrasive so as not to damage the processing equipment during processing with the polyesters. Advantageously, they have a Mohs hardness of from 1 to 8 and preferably of from 1 to 6.
Suitable supports are silicic acid and silicates such as leaf silicates, e.g. kaolin and talc, and also aluminum oxide and aluminum hydroxides, particulate amorphous or crystalline silicon dioxide, titanium dioxide and calcium carbonate. The supports are conveniently used in particle sizes of from 0.1 to 100 μm and preferably from 1 to 20 μm.
The concentration of the supporting material in the suspension depends, inter alia, on the type of support used, since for example leaf silicates such as kaolin and talc swell and thus make only low concentrations possible. In general, the concentration of the suspension is at least 1.5% by weight.
The antimony (III) halide solutions are usually employed in the form of 1M to 3M solutions. It is also advantageous to add up to 1 mole of sodium halide per mole of antimony (III) halide and/or the corresponding amount of hydrogen halide, since this favors the hydrolysis of the antimony (III) halide.
Where ammonia solutions are used as base, concentrations of from 10 to 33% by weight are suitable, and in the case of caustic alkali metal solutions, e.g. caustic soda or caustic potash, concentrations of from 10 to 50% by weight are suitable.
The ensure that precipitation is as complete as possible, the reaction rate should not be too high. For this reason, it is advantageous to effect neutralization by adding not more than 0.36n moles of a base having a valency of n per liter of suspension of the support per minute.
Advantageously, the reaction mixture is allowed to react for from 10 to 60 minutes after the addition of all of the reactants, before the solids are separated from the solution. The pH may fall during this post-reaction period, in which case it must be readjusted to the desired value of from 6 to 8 before isolation of the solids.
The reaction may be carried out at room temperature (20° C) or at elevated temperatures. It is advantageous to carry out the reaction at temperatures of from 30° to 80° C.
The antimony trihalide is used in amounts relative to the inorganic support such that the filler finally has an antimony (III) oxide content of from 30 to 60% by weight.
The use, according to the present invention, of antimony trioxide obtained in the above manner means that the amount of antimony oxide required is at most half of that required in the prior art.
The concentration of Sb2 O.sub. 3 -enveloped fillers in the compositions of the invention is from 2 to 15% and preferably from 4 to 10%, by weight.
The preferred linear saturated polyester to be used in the invention is polybutylene terephthalate, although the additives are similarly effective with polyethylene terephthalate and polypropylene terephthalate. The polybutylene terephthalate should be substantailly composed of terephthalic acid and 1,4-butanediol, although up to 15% molar of the terephthalic acid may be replaced by other dicarboxylic acids such as isophthalic, naphthalenedioic, adipic and sebacic acids, and up to 15% of the butanediol may be replaced by other glycols such as ethylene glycol, propylene glycol and neopentyl glycol. The K values of the polyesters (measured by the method proposed by H. Fikentscher in Cellulosechemie 13, 1932, p. 58, at 25° C on a solution having a concentration of 0.5 g per 100 ml of a mixture of phenol and o-dichlorobenzene) should preferably be from 55 to 80 and in particular from 60 to 75.
The glass fibers used for reinforcing the compositions may be in the form of chopped strands or of rovings. They may be pretreated with conventional sizes and adhesion promoters based on organosilanes such as glycidoxypropyl triethoxysilane. The average length of the glass fibers in the mixture should preferably be from 0.05 to 1 mm and more preferably from 0.10 to 0.4 mm. They are used in amounts of from 10 to 60% and preferably from 10 to 35%, by weight of the molding composition. The glass fibers are preferably of so-called E-glass, although fibers of A-glass or C-glass are also suitable. Alternatively, other reinforcing fibers and fillers may be used in the present invention, if desired, for example carbon fibers, asbestos fibers, potassium titanate fibers, glass spheres and polytetrachloroethylene resins having particle sizes of from 0.2 to 0.8 mm.
Suitable flameproofing agents are halogenous compounds, particularly organic halogenous compounds which are thermally stable at the processing temperatures of the polyesters. Specific examples are halogenated aromatic compounds such as pentabromotoluene, hexabromobiphenyl, decabromobiphenyl, decabromobiphenyl ether, and bromine-containing aromatic compounds such as are obtained in the reaction of tetrabromobisphenol-A and epichlorohydrin. Also particularly suitable are the adducts obtained by reacting hexachlorocyclopentadiene with dienes such as cyclooctadiene. Their concentration is from 4 to 20% and preferably from 6 to 15%, by weight.
In addition to the above additives, the molding compositions of the invention may contain conventional stabilizers, processing auxiliaries, lubricants, dyes and pigments. Incorporation of the additives into the polyester material may be carried out using conventional machines such as extruders, rollers and kneaders. It is sometimes advantageous to premix the additives or to form a masterbatch of the additive in small amounts of the polyester and then to mix this with the bulk of the polyester.
In the following Examples the parts and percentages are by weight.
EXAMPLE 1 Preparation of fillers
260 cm3 of a 600 g/l solution of antimony (III) chloride solution in hydrochloric acid are mixed with a suspension of 100 g of kaolin in 1.9 liters of water with vigorous stirring. A 19% ammonia solution is then added to the suspension at a rate of 0.205 mole of NH3 /minute, equivalent to an addition rate of 0.108 mole of NH3 /minute per liter of suspension. To complete hydrolysis, the pH is readjusted after from 5 to 10 minutes and the suspension is then filtered and the solids are washed free of chloride. After drying for 12 hours at 120° C, the solids have the following analytical composition:
support (%): 50.0 ± 2
Sb2 03 (%): 50.0 ± 2
chloride (%): < 0.2
EXAMPLE 2 Preparation of molding compositions
Polybutylene terephthalate having a K-value of 72 is melted in a twin-shaft extruder at temperatures of about 250° C. The glass fibers and other additives are added through a downstream port as described in U.S. Pat. No. 3,304,282. The amounts added are listed in Table 1 below. The mixture is extruded through a die and the extrudate is granulated.
The granules are injection molded to specimens measuring 63.5 × 12.5 × 3.2 mm. The flammability is tested in a manner similar to that described in Underwriter Laboratories method 94, the vertically suspended specimens being flamed for 10 seconds with a Bunsen flame. The burning time and dripping properties are determined on 10 specimens in each case. The results are listed in Table 2 below.
The following fillers, prepared as described in Example 1, were used:
precipitated silicic acid with 50% of Sb2 03 : sample A
kaolin with 50% of Sb2 03 :sample B
talc with 50% of Sb2 03 : sample C.
TABLE 1 1.
8% decabromodiphenyl oxide
8% sample A equivalent to 4% Sb2 03 and 4% precipitated silicic acid
30% glass fibers.
2.
13% adduct of 2 moles hexachlorocyclopentadiene and 1 mole cyclooctadiene
7% Sb2 03
30% glass fibers.
3.
13% halogen compound as used in test 2
8% sample C equivalent ot 4% Sb2 03 and 4% talc
30% glass fibers.
4.
13% halogen compound as used in test 2
8% sample B equivalent to 4% Sb2 03 and 4% kaolin
30% glass fibers.
5.
13% halogen compound as used in test 2
8% sample C equivalent to 4% Sb2 03 and 4% talc.
6.
9% decabromodiphenyl
7% sample B equivalent to 3.5% Sb2 03 and 3.5% kaolin
9% potassium titanate fibers.
7.
9% decabromodiphenyl
6% sample B equivalent to 3% Sb2 03 and 3% kaolin
5% polytetrafluoroethylene resin.
Test 2 is a comparative test.
              TABLE 2                                                     
______________________________________                                    
Burning properties of the specimens                                       
Test No.                                                                  
       % of Sb.sub.2 O.sub.3                                              
                 % of filler   burning properties                         
______________________________________                                    
1      4         4 precipitated silicic                                   
                               extinguishes without                       
                 acid          dripping                                   
2      7             --        burning drops are                          
                               released                                   
3      4         4 talc        extinguishes without                       
                               dripping                                   
4      4         4 kaolin         "                                       
5      4         4 talc           "                                       
6      3.5       9 potassium titanate                                     
                                  "                                       
                 fibers                                                   
7      3         5 polytetrachloro-                                       
                                  "                                       
                 ethylene resin                                           
______________________________________                                    
It may be clearly seen that the compositions of the invention having a constant content of Sb2 03 exhibit much better burning properties than in the comparative test in which only Sb2 03 was added. Using the latter method, good burning properties are virtually only obtainable when twice the amount of Sb2 03 is used.

Claims (6)

We claim:
1. Thermoplastic molding composition composed of
A. a linear saturated polyester, and
B. from 6 to 30% by weight, based on the total weight of the molding composition, of a flameproofing additive of an organic halogen compound and antimony trioxide,
said antimony trioxide having been precipitated onto a support from an aqueous antimony (III) halide solution by the addition of an aqueous solution of a base to increase the pH to from 6 to 8, followed by isolation of the solids from the aqueous phase, said support
2. A molding composition as set forth in claim 1 wherein said support is talc or kaolin.
3. A molding composition as set forth in claim 1 wherein said composition further contains from 10 to 60% by weight, based on the total weight of the molding composition, of reinforcing fillers.
4. A molding composition as set forth in claim 2 wherein said support has a particle size range of from 0.1 to 100 μm.
5. A molding composition as set forth in claim 1 wherein the amount of said support antimony (III) oxide by weight in said composition is from 2 to 15%.
6. A molding composition as set forth in claim 5 wherein said composition has an antimony (III) oxide content of from 30 to 60% by weight relative to the support.
US05/665,062 1975-03-21 1976-03-08 Polyester molding compositions of reduced flammability Expired - Lifetime US4048135A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19752512504 DE2512504A1 (en) 1975-03-21 1975-03-21 POLYESTER MOLDING COMPOUNDS WITH REDUCED COMBUSTIBILITY
DT2512504 1975-03-21

Publications (1)

Publication Number Publication Date
US4048135A true US4048135A (en) 1977-09-13

Family

ID=5942073

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/665,062 Expired - Lifetime US4048135A (en) 1975-03-21 1976-03-08 Polyester molding compositions of reduced flammability

Country Status (5)

Country Link
US (1) US4048135A (en)
BE (1) BE839857A (en)
DE (1) DE2512504A1 (en)
FR (1) FR2304647A1 (en)
NL (1) NL7602790A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102853A (en) * 1974-10-17 1978-07-25 Teijin Limited Fire-retardant thermoplastic polyester resin compositions and method for imparting fire retardancy to polyester resins
US4342678A (en) * 1979-07-17 1982-08-03 Ciba-Geigy Corporation Glass-reinforced polyester moulding compounds
US4743644A (en) * 1979-11-03 1988-05-10 Raychem Limited Stabilized-alumina filled thermoplastics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662837B2 (en) * 1984-09-10 1994-08-17 ポリプラスチックス株式会社 Flame-retardant polybutylene terephthalate composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741893A (en) * 1971-10-08 1973-06-26 Air Prod & Chem Flame retardant comprising supported antimony tetroxide
US3764576A (en) * 1971-12-15 1973-10-09 Celanese Corp Moldable polybutylene terephthalate compositions containing acicular calcium metasilicate
US3810864A (en) * 1971-06-01 1974-05-14 J Schwarcz Translucent polyvinylchloride plastic composition and method for preparing same
US3859246A (en) * 1969-10-20 1975-01-07 Eastman Kodak Co Butanediol polyester compositions containing talc and having improved heat-distortion temperatures
US3947421A (en) * 1973-01-19 1976-03-30 Basf Aktiengesellschaft Self-extinguishing polyester molding compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859246A (en) * 1969-10-20 1975-01-07 Eastman Kodak Co Butanediol polyester compositions containing talc and having improved heat-distortion temperatures
US3810864A (en) * 1971-06-01 1974-05-14 J Schwarcz Translucent polyvinylchloride plastic composition and method for preparing same
US3741893A (en) * 1971-10-08 1973-06-26 Air Prod & Chem Flame retardant comprising supported antimony tetroxide
US3764576A (en) * 1971-12-15 1973-10-09 Celanese Corp Moldable polybutylene terephthalate compositions containing acicular calcium metasilicate
US3947421A (en) * 1973-01-19 1976-03-30 Basf Aktiengesellschaft Self-extinguishing polyester molding compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102853A (en) * 1974-10-17 1978-07-25 Teijin Limited Fire-retardant thermoplastic polyester resin compositions and method for imparting fire retardancy to polyester resins
US4342678A (en) * 1979-07-17 1982-08-03 Ciba-Geigy Corporation Glass-reinforced polyester moulding compounds
US4743644A (en) * 1979-11-03 1988-05-10 Raychem Limited Stabilized-alumina filled thermoplastics

Also Published As

Publication number Publication date
BE839857A (en) 1976-09-22
FR2304647A1 (en) 1976-10-15
NL7602790A (en) 1976-09-23
DE2512504A1 (en) 1976-10-07
FR2304647B1 (en) 1981-12-18

Similar Documents

Publication Publication Date Title
US3963669A (en) Glass-fiber-reinforced polyester molding compositions of reduced flammability
US4284550A (en) Flame retarding resin composition
US4370438A (en) Polyester blend compositions exhibiting suppression of transesterification
US4048135A (en) Polyester molding compositions of reduced flammability
US4377506A (en) Fire retardant polymer compositions containing a borate-sulfate mixture
JPS6158496B2 (en)
US4076682A (en) Flameproof nylon molding compositions
US3875107A (en) Flame-resistant thermoplastic molding compositions and moldings made therefrom
IE42477B1 (en) Polyamide compositions with improved heat stability
US3705128A (en) Flame resistant polymers containing amide complexes of metal salts
KR0163032B1 (en) Flame retardant compositions
CA1158381A (en) Thermally stable smoke suppressant additives to polymeric compositions
US4356281A (en) Polyethylene terephthalate molding composition having reduced flammability, and molded products made therefrom
US4049609A (en) Process for modifying unsaturated polyester systems
US4201704A (en) Flame-retarded thermoplastic polyester compositions having improved arc resistance and process for preparing same
JPS5910697B2 (en) Reinforced flame-retardant resin composition with improved electrical properties
JPS58108248A (en) Flame retardant polyester resin composition
US3810864A (en) Translucent polyvinylchloride plastic composition and method for preparing same
JPS61235454A (en) Flame-retardant resin composition stable against melt heat
US4508638A (en) Agent and method for the stabilization of polyvinyl chloride against heat and light
US3883474A (en) Flame resistant thermoplastic polyesters
GB1593102A (en) Flameproof nylon moulding compositions
US4144082A (en) Sulfur plasticizing composition
JPS62230844A (en) Flame-retardant resin composition
JPS5841306B2 (en) Flame retardant resin composition