Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4059552 A
Publication typeGrant
Application numberUS 05/625,297
Publication dateNov 22, 1977
Filing dateOct 23, 1975
Priority dateJun 21, 1974
Publication number05625297, 625297, US 4059552 A, US 4059552A, US-A-4059552, US4059552 A, US4059552A
InventorsMaurice L. Zweigle, Jack C. Lamphere
Original AssigneeThe Dow Chemical Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cross-linked water-swellable polymer particles
US 4059552 A
Abstract
Cross-linked water-swellable polymers are described, having a particle size of less than 4 microns. They are used as thickening agents for aqueous dispersions or solutions, particularly useful where high shear conditions are encountered in the application.
Images(5)
Previous page
Next page
Claims(15)
We claim:
1. A method for thickening an aqueous medium to obtain a composition having the properties of a viscous short solution and being resistant to viscosity degradation under conditions of high shear which comprises the step of thoroughly dispersing in said medium from about 0.1 to about 2 percent by weight of microbeads of a water-insoluble, water-swellable polymer of a water-soluble vinyl monomer or mixture of water-soluble vinyl monomers, cross-linked with a difunctional cross-linking agent copolymerizable with said monomer or monomers, said microbeads having diameters of from about 0.2 to about 4 microns and having a gel capacity of at least about 10 grams per gram in aqueous 0.27 molar sodium chloride solution, said cross-linking agent being present in an amount from about 50 to 1000 parts by weight of cross-linking agent per million parts of vinyl monomer or monomers in the polymer.
2. A method according to claim 1 wherein the polymer is cross-linked with from about 100 to 400 parts by weight of cross-linking agent per million parts of vinyl monomer or monomers in the polymer.
3. A method according to claim 2 wherein the vinyl monomer is acrylamide.
4. A method according to claim 2 wherein the polymer is a copolymer of acrylamide and acrylic acid with the cross-linking agent.
5. A method according to claim 2 wherein the polymer is a copolymer of acrylamide and sodium acrylate with the cross-linking agent.
6. The method of claim 1 wherein the cross-linking agent is divinylbenzenesulfonate, ethyleneglycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, allyl acrylae, diallyl ethylene glycol ether, divinyl ether, dially ether, divinyl ether of ethylene glycol, divinyl ether of diethylene glycol, divinyl ether of triethylene glycol, N,N'-methylene-bis-acrylamide, N,N'-methylene-bis-methacrylamide and other lower alkylidene-bis-acrylamides wherein the alkylidene group has up to 4 carbons.
7. The method of claim 1 wherein the vinyl monomer is proponderantly acrylamide and the cross-linking agent is N,N'-methylene-bis-acrylamide, N,N'-methylene-bis-methacrylamide and other lower alkylidene-bis-acrylamides wherein the alkylidene group has up to 4 carbons.
8. A viscous, short aqueous composition comprising an aqueous medium having dispersed therein from about 0.1 to about 2 percent by weight of microbeads of a water-insoluble, water-swellable polymer of a water-soluble vinyl monomer or mixture of water-soluble vinyl monomers, cross-linked with a difunctional cross-linking agent copolymerizable with said monomer or monomers, said microbeads having diameters of from about 0.2 to about 4 microns and having a gel capacity of at least about 10 grams per gram in aqueous 0.27 molar sodium chloride solution, said polymer being cross-linked with from about 50 to 1000 parts by weight of cross-linking agent per million parts of vinyl monomer or monomers in the polymer.
9. A composition according to claim 8 wherein the polymer is cross-linked with from about 100 to 400 parts by weight of cross-linking agent per million parts of vinyl monomer or monomers in the polymer.
10. A composition according to claim 9 wherein the vinyl monomer consists preponderantly of acrylamide.
11. A composition according to claim 10 wherein the polymer is a copolymer of acrylamide and acrylic acid with the cross-linking agent.
12. A composition according to claim 9 wherein the polymer is a copolymer of acrylamide and sodium acrylate with the cross-linking agent.
13. The composition according to claim 8 wherein the cross-linking agent is divinylbenzenesulfonate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, allyl acrylate, diallyl ethylene glycol ether, divinyl ether, diallyl ether, divinyl ether of ethylene glycol, divinyl ether of diethylene glycol, divinyl ether of triethylene glycol, N,N'-methylene-bis-acrylamide, N,N'-methylene-bis-methacrylamide and other lower alkylidene-bis-acrylamide wherein the alkylidene group has up to 4 carbons.
14. The composition of claim 8 wherein the the vinyl monomer is proponderantly acrylamide and the cross-linking agent is N,N'-methylene-bis-acrylamide, N,N'-methylene-bis-methacrylamide and other lower alkylidene-bis-acrylamides wherein the alkylidene group has up to 4 carbons.
15. An aqueous composition comprising an aqueous medium having dispersed therein microbeads of a water-insoluble water-swellable polymer of a water-soluble vinyl monomer or mixture of water-soluble vinyl monomers, cross-linked with from about 50 to 1000 parts by weight of a difunctional cross-linking agent per million parts of vinyl monomer or monomers in the polymer, said agent being copolymerizable with said monomer or monomers, said microbeads having a gel capacity at least 10 grams per gram in aqueous 0.27 molar sodium chloride solution diameters from about 0.2 to about 4 microns and being present in an amount sufficient to thicken the aqueous medium to a viscous, short aqueous composition.
Description
CROSS REFERENCE TO RELATED APPLICATION

This is a continuation-in-part of our copending application, Ser. No. 481,598, filed June 21, 1974, now abandoned.

BACKGROUND

The present invention relates to improved water-swellable, cross-linked polymers and an improved method of thickening aqueous media therewith.

Techniques have been disclosed whereby high molecular weight linear polymers have been made utilizing a water-in-oil emulsion polymerization process in which a water-soluble monomer is emulsified in an oil phase and polymerized therein. Such a process is revealed in U.S. Pat. No. 3,284,393. Inverse suspension polymerization of water-soluble unsaturated monomers is taught in U.S. Pat. No. 2,982,749 wherein linear polymer beads ranging in size between 10 microns and 2 millimeters in diameter are formed. The polymeric products of these processes have been found to be useful as binders in coating compositions, and as flocculating, suspending or thickening agents.

These processes produce linear polymers which have virtually no gel strength. Gel strength refers to that property of the water-swollen polymers which resists viscosity change as the result of mechanical working or milling.

U.S. Pat. No. 3,247,171 reveals a process which produces a water-swellable polymer with high gel capacity obtained by the use of controlled cross-linking and hydrolysis. This process produces bulk gel polymer through the use of bulk solution polymerization. The resulting polymer may be dried and ground to a fine powder. However, the particles of polymer so prepared are still of substantial size so that aqueous slurries prepared therefrom are shear sensitive. Consequently in applications such as paper coating where the use of rolls and doctor blades produces a shear of from 100,000 to 200,000 reciprocal seconds, the polymer particles are degraded and thereby lose much of their thickening and water-holding properties. Similarly, where colloid mills are used such as in the making of paints, the linear polymers made according to the first two mentioned patents and the polymer particles of the last mentioned patent must be added to the paint after the step employing the colloid mills or degradation of the polymers will occur.

STATEMENT OF THE INVENTION

It has now been discovered that by utilizing water-in-oil emulsion or suspension polymerization processes, cross-linked, water-insoluble but highly water-swellable polymer particles of less than 4 microns in size can be made. These novel high-molecular-weight polymer particles although highly water-swellable have no appreciable solubility in water and are substantially insensitive to mechanical shearing in aqueous media. Consequently such polymer particles can be used for a variety of applications where high mechanical working or milling is required. Unlike high molecular weight polymers currently available which thicken well but also give solutions which are stringy, the polymer particles of this invention are effective thickening agents which do not exhibit this problem. These particles when swollen in the solvent to be thickened, exhibit pseudoplastic rheology and "short" solution characteristics. By "short" solution characteristics is meant that the solution or micro-suspension does not produce threads or strings of such aqueous medium when two surfaces wetted with the medium are contacted and then pulled apart.

A novel process involving water-in-oil suspension polymerization of water-soluble monomers with the use of cross-linking agents and controlled homogenization is hereinafter described for producing the novel polymer particles. A novel process involving water-in-oil emulsion polymerization of water-soluble monomers with the use of cross-linking agents similarly produces the novel particles. Because of the uniform small particle size and high gel capacity of the cross-linked product the latter is particularly suited for uses where rapid sorption of aqueous fluid is desired, for example in sanitary articles such as diapers, bed pads and the like, or for uses where the swelling properties in water are employed, for example, in the plugging of finely porous, permeable formations in the soil or in subterranean strata.

GENERAL DESCRIPTION

The water-soluble ethylenically unsaturated monomers which ca be polymerized by the polymerization processes of this invention are well known. Such monomers, which readily undergo vinyl polymerization, include acrylamide, methacrylamide, acrylic acid, methacrylic acid, vinylbenzyl-trimethylammonium chloride, alkali metal and ammonium salts of 2-sulfoethyl-acrylate, 2-aminoethyl methacrylate hydrochloride, alkali metal and ammonium salts of vinylbenzene sulfinate, and the like.

SUSPENSION METHOD

When the suspension route is used to make the polymer particles, aqueous solutions of the monomers to be polymerized can be varied widely in monomer content, i.e., from about 5 to 80 weight percent of monomer in water, depending upon the monomer and the polymerization temperature. The ratio of aqeous monomer phase to oil phase is also widely variable, advantageously from about 5 to 75 weight parts of aqueous phase to correspndingly 95 to 25 parts of oil phase.

The suspending agent is a solid or liquid substance having a low hydrophile-lyophile balance i.e., being preponderantly hydrophobic. Suspending agents suitable for use are described in U.S. Pat. No. 2,982,749. A preferred suspending agent is an organic polymer which, while predominantly hydrophobic, has hydrophilic substituents such as amine, sulfone, sulfonate, carboxy, and the like, groups. The suspending agent should be employed in an amount sufficient to assure the desired degree of subdivision of the aqueous monomer phase, usually from about 0.4 to about 1 percent by weight, based on the weight of said aqueous phase.

The oil phase can be any inert hydrophobic liquid which does not take part in the polymerization reaction and can be separated readily from the polymeric product. Of such liquids the hyrocarbons and chlorinated hydrocarbons such as toluene, xylene, o-dichlorobenzene, ethylbenzene, monochlorobenzene, propylene dichloride, carbon tetrachloride, 1,1,1,trichoroethane,, tetrachloroethylene, methylene chloride etc., are advantageously used. Toluene, xylene, and chlorinated hydrocarbons are preferred as oil phase liquids.

Organic compounds having two ethylenic groups copolymerizable with the water-soluble monomers can be used as the cross-linking agents. Exemplary cross-linkers include divinylbenzenesulfonate, ethyleneglycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, allyl acrylate, diallyl ethylene glycol ether, divinyl ether, diallyl ether, divinyl ether of ethylene glycol, divinyl ether of diethylene glycol, divinyl ether of triethylene glycol, and the like difunctional organic monomers containing two CH2 =C< groupings which organic materials are soluble to the extent of at least about 0.05% in the aqueous monomer solutions. Preferred cross-linking agents are N,N'-methylene-bis-acryamide, N,N'-methylene-bis-methacrylamide and other lower alkylidene-bis-acrylamides wherein the alkylidene group has up to 4 carbons. It is among the advantages of the invention that only very small amounts of cross-linking agents are required to produce the desired water-insoluble but highly water-swellable polymeric microbeads. Good results have ben obtained when employing from about 50 to 1000 parts, preferably from about 100 to 400 parts, by weight of cross-linker per million parts of vinyl monomer in the polymerization recipe.

Polymerization initiators including peroxide catalysts such as t-butyl hydroperoxide and dimethane sulfonyl peroxide and redox systems such as t-butyl hydroperoxide or alkali metal or ammonium persulfates in combination with usual reducing agents such as a sulfite or bisulfite can be used in the practice of this invention. Alternatively free radicals can be generated in situ by ultraviolet or X-rays.

In practice, the water-in-oil suspending agent is dissolved in the oil phase and an aqueous solution of monomer or mixed monomers with a cross-linker and with or without added polymerization initiator is then mixed with the oil phase and then sheared with vigorous agitation through the use of a Waring Blendor, homogenizer, colloid mill or other means to disperse the aqueous phase thoroughly as micro-droplets in the oil phase. An advantageous method is to homogenize the mixture thoroughly before beginning polymerization. This is done by the use of a homogenizer which is set at a certain pressure setting and hereby obtains a shear that will determine the particle size. A Manton-Gaulin Laboratory Homogenizer which is a single plunger positive displacement unit can be employed for this purpose. Homogenization is accomplished by forcing the mixture of liquids through an adjustable valve orifice under pressure in such a manner as to apply very high shear to the two phase mixture. In the present system, the water solution of monomer is sheared into very small droplets dispersed in the continuous hydrocarbon phase. Other commercial homogenizers or shearing colloid mills can likewise be employed. This shearing agitation is applied until the aqueous solution is suspended in the oil phase as globules ranging between about 1 micron and about 50 microns in diameter. The stirred mixture is purged with nitrogen or other inert gas and the reaction temperature is then raised to between 30 and 80 C. as desired, preferably with continued vigorous agitation to prevent separation of phases or adhesion of polymer beads. Polymerization is initiated by an added free radical generator such as a peroxide catalyst or by ultraviolet or x-radiation as indicated. The order of addition of reaction media ingredients is not important. Th reaction is continued, generally with good agitation, until conversion is substantialy complete. Polymeric beads are thereby formed, which are separated from the reaction medium, washed and dried.

If a cationic product is desired, the polymer, prior to removal from solution, can be modified by reaction with formaldehyde and amines to produce cationic polymers in the manner disclosed in U.S. Pat. No. 3,539,535, or it can be produced by copolymerization of cationic comonomer with acrylamide.

The products, upon being uniformly dispersed in water, quickly thicken the water to give a viscous, "short" pseudoplastic dispersion.

SPECIFIC EMBODIMENTS

The following examples show ways in which the invention has been practiced using the suspension method.

EXAMPLE 1 Crosslinked Acrylamide-Sodium Acrylate Copolymer

168 grams of acrylamide, 42 grams of acrylic acid, 63 grams of Na2 CO3, 0.21 gram of pentasodium (carboxymethylimino)bis(ethylene-nitrilo)tetraacetic acid (Versenex 80), 0.042 gram of methylene-bisacrylamide, 0.105 gram of sodium metabisulfite and 0.105 gram of tertiary butyl hydroperoxide are dissolved in 1050 grams of deionized water and sufficient sodium hydroxide added thereto to bring the mixture to a pH of 9.5. The resulting solution is mixed with an oil phase consisting of 31.5 grams of acrylic acid and 6.3 grams of a suspending agent, consisting of a chloromethylated polystyrene-dimethylamine reaction product wherein about 5-10 percent of th aromatic rings are aminated, dissolved in 1575 milliliters of xylene. The resulting mixture is sheared at high speed in a Waring Blender for two minutes, placed in an agitated reactor and purged with nitrogen. The temperature of the reaction vessel and contents is raised to 63 C. over a period of one hour and thereafter held at about 52 C for an additional 2.5 hours to complete the polymerization raction. A portion of the resulting slurry is then dewatered by azeotropic distillation and the resulting suspension filtered to separate the copolymer in the form of microbeads. The latter were washed with acetone and dried. The sorptive power of the beads to swell in aqueou fluid was measured and it was found that the copolymer held 82 grams of aqueous 0.27 molar sodium chloride solution per gram of copolymer. To a further 55 gram portion of the above copolymer slurry were added 27.7 milliliters of dimethylamine and then 14.8 grams of paraformaldehyde slurried in a little xylene. The resulting mixture was heated to 40 C. for 1.5 hours, filtered, and dried by acetone extraction to give cationic, cross-linked polyacrylamide microbeads, ranging in size between 0.2 and 4 microns in diameter. The product absorbed 50 grams of aqueous 0.27M NaCl solution per gram of product. The grams of aqueous fluid absorbed and held by one gram of dry polymer beads is hereinafter referred to as the "gel capacity" of the polymer. The product upon being uniformly dispersed in water, quickly thickened the water to give a viscous, "short," pseudo-plastic dispersion.

In the above and succeeding recipes "Versenex 80" is a trademark of The Dow Chemical Company for a chelating agent in which the active chelant is pentasodium (carboxymethylimino)bis(ethylenenitrilo)tetracetic acid. Also the expression "ppm BOM" is hereafter employed to denote parts per million based on monomers, that is, parts by weight of the indicated ingredient per million parts by weight of water-soluble, ethylenically unsaturated monomers in the recipe. Hereinafter tertiary-butyl hydroperoxide will be abbreviated "t-BHP."

EXAMPLE 2 Cross-linked polyacrylamide Microbead

______________________________________Recipe:______________________________________Water PhaseAcrylamide           210 g.Methylene bis acrylamide                .042 g.Versenex 80 Chelant  1000 ppm BOMNaOH to pH 11.5Water                840 g.Na2 S2 O8                500 ppm BOMt-BHP                500 ppm BOMOil PhaseXylene               1575 ml.Aminated ChloromethylatedPolystyrene          6.3 g.Methanol             20 ml.______________________________________

The process was similar to that of the previous example. The product was dewatered by azeotropic distillation, separated by filtration, washed with acetone and dried. It was found to have a gel capacity of 30 in aqueous 0.27M NaCl solution.

EXAMPLE 3 Cross-linked Partially Hydrolyzed Polyacrylamide Microbead

______________________________________Recipe:______________________________________Water PhaseAcrylamide           106 g.Methylene bis acrylamide                .025 g.Water                463 g.Na2 CO3    61.3 g.Versenex 80 Chelant  1000 ppm BOMNa2 S2 O8                 500 ppm BOMt-BHP                 500 ppm BOMOil PhaseXylene               945 ml.Suspending Agent of Ex. 2                3.78 g.Acrylic acid         20 g.______________________________________

The process was similar to that of the previous examples. The product exhibited similar properties and had a gel capacity of 75 in aqueous 0.27M NaCl solution.

Emulsion Method

When the emulsion route is used to make the novel polymer particles, the ratio of monomer phase (liquid monomer or aqueous solution of monomer) to oil phase, the emulsifying agents, the oil phase, the initiators, temperatures and pressures are all generally found in U.S. Pat. No. 3,284,393. The cross-linking agents described above in connection with the suspension method can be similarly advantageously used herein.

The practice, the water-in-oil emulsifying agent is dissolved in the oil phase, while the free radical initiator, when one is use, is dissolved in the oil or monomer phase, depending upon whether an oil- or water-soluble initiator is used. An aqueous solution of monomer or mixed monomers or a monomer per se is then added to the oil phase along with the cross-linking agent with agitation until the monomer phase is emulsified in the oil phase. The reaction is initiated by purging the reaction medium of inhibitory oxygen and continued with agitation until conversion is substantially complete. A polymeric latex is thereby obtained. The polymer is separated from the reaction medium advantageously by adding a flocculating agent and filtering, and is then washed and dried. Alternatively, the latex reaction product can be used as such.

______________________________________Specific EmbodimentsExample of emulsion technique:Ingredients          Amount______________________________________Aqueous PhaseAcrylamide           525 g.Acrylic acid         225 g.NaOH                 120 g.Deionized water      695 g.Methylene bis acrylamide                0.150 g.Versenex 80          1000 ppm BOMt-BHP                 350 ppm BOMNa2 S2 O5                 700 ppm BOMOil PhaseDe-odorized kerosene 1500 g.Di-stearyl dimethyl   75 g.ammonium chloride(Arquad 2HT-100)______________________________________

The water phase, less t-BHP and Na2 S2 O5, was mixed with the oil phase and homogenized in a Manton-Gaulin homogenizer, placed in the reactor, and purged for 45 minutes with nitrogen. t-BHP and Na2 S2 O5, both as 1.5% aqueous solutions, were added portion-wise, a third of the total at a time, resulting in polymerization. The product was azeotropically distilled at 40 mm pressure from 40 to 110 C. to remove water and give a product having particles size less than two microns. The microbead polymeric product thickened water instantly on being dispersed in water.

In using the cross-linked microbeads as thickening agents, it is generally desirable to assure that the microbeads are rapidly and thoroughly dispersed throughout the aqueous medium in which thickening is desired. Thus, for example, in employing solid microbeads to thicken a styrene-butadiene copolymer latex for use in a paper-coating composition it has been found that direct introduction of the dry, solid microbeads into the latex may cause lumping or even coagulation. In practice it is desirable to dilute the microbeads in an inert medium before mixing them with a latex. For example, the microbeads can be thoroughly mixed with the finely divided mineral pigment, such as calcium carbonate or titanium dioxide, employed in such coating compositions and the resulting mixture be rapidly dispersed in the latex. Alternatively, the microbeads may be dispersed in a water-miscible liquid in which the beads are not swelled appreciably and then be rapidly dispersed in the aqueous medium to be thickened. For example, microbeads prepared as in Example 1 are moistened with methanol and dispersed in tripropylene glycol to produce a surry containing 30 percent by weight of microbeads. Sufficient of this slurry is dispersed in a latex composition based on a styrene-butadiene-itaconic acid copolymer to provide one percent by weight of microbeads in the finished composition and to produce a composition having a viscosity of about 6000 centipoises and suitable for use as a carpet backing. Good thickening results have been obtained using from about 0.1 to about 2.0 percent by weight of the microbeads in various aqueous media.

It should be noted that the gel capacity of the water-swellable microbeads varies with the ionic strength of the aqueous medium to be thickened. Thus, a given preparation of the beads may sorb 5 to 10 times as much deionized water as they will in a salt solution. The preferred microbeads have gel capacities of at least 10, preferably at least 20, grams per gram in aqueous 0.27M sodium chloride solution.

In a representative operation a carpet backsizing composition is prepared by thoroughly blending 350 parts of finely ground calcium carbonate with 293 parts of a styrene-butadiene copolymer latex containing 100 parts of latex solids. One part by weight of the microbeads of the initial preparation of Example 1 is mixed with the last 150 parts of the calcium carbonate before the latter is blended into the composition with vigorous stirring. The viscosity of the composition begins to build almost immediately when the microbeads are incorporated and on completion of the mixing the composition is found to have a viscosity of about 6000 centipoises as measured with a Brookfield viscometer using the No. 5 spindle at 20 rpm. When subjected to shear of up to 1320 reciprocal seconds in a Rotovisko rotational viscometer, the composition shows very low hysteresis and substantially 100 percent recovery of viscosity when shearing is discontinued.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2205355 *Aug 22, 1939Jun 18, 1940Rohm & HaasTreatment of leather
US2982749 *Jul 15, 1957May 2, 1961Dow Chemical CoInverse suspension polymerization of water soluble unsaturated monomers
US3104231 *Apr 8, 1960Sep 17, 1963Du PontAqueous emulsion of cross-linked terpolymers free of microgel and method of making same
US3247171 *Apr 8, 1963Apr 19, 1966Dow Chemical CoProcess for hydrolyzing a cross-linked acrylamide polymer and the product thereby
US3252904 *Jul 9, 1962May 24, 1966Dow Chemical CoAcidizing and hydraulic fracturing of wells
US3284393 *Nov 4, 1959Nov 8, 1966Dow Chemical CoWater-in-oil emulsion polymerization process for polymerizing watersoluble monomers
US3539535 *Nov 4, 1968Nov 10, 1970Dow Chemical CoCationic carbamoyl polymers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4093776 *Sep 23, 1977Jun 6, 1978Kao Soap Co., Ltd.Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers
US4167502 *Dec 5, 1977Sep 11, 1979Rohm And Haas CompanyCarboxylic polymeric thickeners
US4172066 *Sep 26, 1977Oct 23, 1979The Dow Chemical CompanyCross-linked, water-swellable polymer microgels
US4179367 *Feb 10, 1978Dec 18, 1979Chemische FabrikThickening urinary and intestinal tract excrement
US4182417 *Jul 8, 1977Jan 8, 1980The Dow Chemical CompanyMethod for controlling permeability of subterranean formations
US4272422 *Jul 10, 1979Jun 9, 1981Japan Exlan Company LimitedAqueous microhydrogel dispersions, processes for producing the same, and processes for producing microhydrogels
US4282928 *Sep 17, 1979Aug 11, 1981The Dow Chemical Co.Method for controlling permeability of subterranean formations
US4288582 *Oct 29, 1979Sep 8, 1981Milchem IncorporatedAqueous drilling fluid additive, composition and process
US4497930 *Aug 26, 1983Feb 5, 1985Kao CorporationProcess for producing highly water absorptive polymer
US4521494 *Oct 19, 1983Jun 4, 1985The Dow Chemical CompanyStyrene-acrylic latex containing a hetero-unsaturated monomer and paper-coating compositions produced therefrom
US4525527 *Jan 21, 1983Jun 25, 1985American Colloid CompanyProduction process for highly water absorbable polymer
US4554018 *Feb 1, 1984Nov 19, 1985Allied Colloids LimitedProduction of polymeric thickeners and their use in printing
US4572295 *Aug 13, 1984Feb 25, 1986Exotek, Inc.Method of selective reduction of the water permeability of subterranean formations
US4647637 *Sep 18, 1985Mar 3, 1987Basf AktiengesellschaftPreparation of insoluble polymer powders which are only slightly swellable
US4658002 *Sep 18, 1985Apr 14, 1987Basf AktiengesellschaftPreparation of insoluble polymer powders which are only slightly swellable
US4670501 *May 16, 1985Jun 2, 1987Allied Colloids Ltd.Polymeric compositions and methods of using them
US4673704 *Jun 27, 1985Jun 16, 1987Allied Colloids LimitedAqueous polymer dispersions
US4681634 *Oct 16, 1985Jul 21, 1987Coatex S.A.Composition cimentaire hydraulique a prise retardee pour cimentation a hautes temperature et pression
US4690971 *Mar 3, 1986Sep 1, 1987Allied Colloids LimitedWater absorbing polymers
US4798744 *Jul 22, 1986Jan 17, 1989Beghin-Say S.A.Fixation of polymers retaining liquids in a porous structure
US4815813 *Oct 30, 1987Mar 28, 1989American Telephone And Telegraph CompanyWater resistant communications cable
US4867526 *Oct 30, 1987Sep 19, 1989American Telephone And Telegraph Company, At&T Bell LaboratoriesWater resistant communications cable
US4880858 *Aug 31, 1987Nov 14, 1989Allied Colloids LimitedWater absorbing polymers
US4909592 *Sep 29, 1988Mar 20, 1990American Telephone And Telegraph Company, At&T Bell LaboratoriesCommunication cable having water blocking provisions in core
US4916182 *Dec 15, 1988Apr 10, 1990Borden, Inc.Adhesive emulsion composition and accompanying coated substrates, such as prepasted wall coverings
US4973410 *Nov 29, 1989Nov 27, 1990Air Products And Chemicals, Inc.Crosslinked vinylamine polymer in enhanced oil recovery
US5082719 *Jul 12, 1989Jan 21, 1992At&T Bell LaboratoriesWater resistant communications cable
US5093030 *Mar 26, 1991Mar 3, 1992Agency Of Industrial Science And TechnologyMethod for production of dispersion containing minute polymer beads possessing thermosensitive characteristic
US5141679 *Dec 1, 1989Aug 25, 1992Fuji Photo Film Co., Ltd.Oily droplet of hydrophobic material, microcapsule, and processes for preparing the same
US5163115 *Oct 30, 1991Nov 10, 1992At&T Bell LaboratoriesCables such as optical fiber cables including superabsorbent polymeric materials which are temperature and salt tolerant
US5171781 *Jan 27, 1989Dec 15, 1992Allied Colloids LimitedPolymeric compositions
US5183879 *Oct 19, 1989Feb 2, 1993Canon Kabushiki KaishaPolymer gel manufacturing methods
US5292800 *Aug 13, 1992Mar 8, 1994Basf AktiengesellschaftWater-in-oil polymer emulsions
US5346986 *Aug 9, 1993Sep 13, 1994Basf AktiengesellschaftAgglomerated polymer particles of finely divided, water-soluble or water-swellable polymers, the preparation thereof and the use thereof
US5354290 *Oct 5, 1993Oct 11, 1994Kimberly-Clark CorporationPorous structure of an absorbent polymer
US5384343 *Jul 20, 1992Jan 24, 1995Allied Colloids LimitedWater absorbing polymers
US5403870 *Sep 20, 1993Apr 4, 1995Kimberly-Clark CorporationProcess for forming a porous particle of an absorbent polymer
US5419956 *Jun 22, 1993May 30, 1995The Procter & Gamble CompanyAbsorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials mixed with inorganic powders
US5422169 *Nov 8, 1993Jun 6, 1995The Procter & Gamble CompanyAbsorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials in relatively high concentrations
US5505718 *Sep 20, 1993Apr 9, 1996The Procter & Gamble CompanyAbsorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials
US5531993 *Sep 15, 1994Jul 2, 1996L'orealStable acidic oil-in-water type emulsions and compositions containing them
US5543446 *Nov 23, 1994Aug 6, 1996Hercules IncorporatedWater-soluble acrylamide/acrylic acid polymers and their use as dry strength additives for paper
US5684107 *Apr 4, 1994Nov 4, 1997Basf AktiengesellschaftAgglomerated polymer particles of finely divided, water-soluble or water-swellable polymers, the preparation thereof and the use thereof
US5795926 *Nov 21, 1991Aug 18, 1998Basf AktiengesellschaftPreparation of finely divided polymer powders
US5807489 *Nov 12, 1996Sep 15, 1998Cytec Technology Corp.High performance polymer flocculating agents
US5863545 *Mar 25, 1996Jan 26, 1999L'orealStable acidic oil-in-water type emulsions and compositions containing them
US5879564 *Nov 12, 1996Mar 9, 1999Cytec Technology Corp.High performance polymer flocculating agents
US5968879 *May 12, 1997Oct 19, 1999Halliburton Energy Services, Inc.Polymeric well completion and remedial compositions and methods
US6001379 *Sep 21, 1998Dec 14, 1999L'orealStable acidic oil-in- water type emulsions and compositions containing them
US6117938 *Feb 6, 1998Sep 12, 2000Cytec Technology Corp.Polymer blends for dewatering
US6333051Sep 3, 1998Dec 25, 2001Supratek Pharma, Inc.Nanogel networks and biological agent compositions thereof
US6620878 *Feb 28, 2000Sep 16, 2003Ciba Speciality Chemicals Water Treatments LimitedAqueous polymeric emulsion compositions
US6696089Dec 21, 2001Feb 24, 2004Board Of Regents Of The University Of NebraskaNanogel networks including polyion polymer fragments and biological agent compositions thereof
US6825301Sep 6, 2000Nov 30, 2004Atofina, Elf Atochem, S.A.Water-in-oil polymer emulsion and method for making same
US7300973 *Sep 20, 2002Nov 27, 2007Nalco CompanyComposition for recovering hydrocarbon fluids from a subterranean reservoir
US7578354Jun 11, 2007Aug 25, 2009E2Tech LimitedDevice and method to seal boreholes
US8337778Mar 17, 2010Dec 25, 2012President And Fellows Of Harvard CollegeMethod and apparatus for fluid dispersion
US8389446 *Mar 5, 2013Conocophillips CompanySwellable polymers with hydrophobic groups
US8528589Mar 23, 2010Sep 10, 2013Raindance Technologies, Inc.Manipulation of microfluidic droplets
US8535889Feb 11, 2011Sep 17, 2013Raindance Technologies, Inc.Digital analyte analysis
US8592221Apr 18, 2008Nov 26, 2013Brandeis UniversityManipulation of fluids, fluid components and reactions in microfluidic systems
US8640774Feb 18, 2008Feb 4, 2014Wsp Chemicals & Technology, LlcMethod of treating a formation
US8658430Jul 20, 2012Feb 25, 2014Raindance Technologies, Inc.Manipulating droplet size
US8674000 *Oct 23, 2007Mar 18, 2014Lg Chem, Ltd.Multi-layered paper coating latex having high swelling and contraction property, method for preparing the same, and paper coating composition containing the same
US8765485Feb 23, 2006Jul 1, 2014President And Fellows Of Harvard CollegeElectronic control of fluidic species
US8772046Feb 6, 2008Jul 8, 2014Brandeis UniversityManipulation of fluids and reactions in microfluidic systems
US8841071May 31, 2012Sep 23, 2014Raindance Technologies, Inc.Sample multiplexing
US8871444Dec 4, 2012Oct 28, 2014Medical Research CouncilIn vitro evolution in microfluidic systems
US8986628Nov 16, 2012Mar 24, 2015President And Fellows Of Harvard CollegeMethod and apparatus for fluid dispersion
US9012390Aug 7, 2007Apr 21, 2015Raindance Technologies, Inc.Fluorocarbon emulsion stabilizing surfactants
US9017623Jun 3, 2014Apr 28, 2015Raindance Technologies, Inc.Manipulation of fluids and reactions in microfluidic systems
US9029083Oct 10, 2005May 12, 2015Medical Research CouncilVitro evolution in microfluidic systems
US9038919Oct 7, 2005May 26, 2015President And Fellows Of Harvard CollegeFormation and control of fluidic species
US9068699Nov 4, 2013Jun 30, 2015Brandeis UniversityManipulation of fluids, fluid components and reactions in microfluidic systems
US9074242Feb 11, 2011Jul 7, 2015Raindance Technologies, Inc.Digital analyte analysis
US9150852Feb 16, 2012Oct 6, 2015Raindance Technologies, Inc.Compositions and methods for molecular labeling
US9155549Sep 30, 2013Oct 13, 2015Dow Global Technologies LlcHydrophobically modified alkali soluble emulsion composition with polymeric beads
US9186643Dec 3, 2012Nov 17, 2015Medical Research CouncilIn vitro evolution in microfluidic systems
US9228229Mar 12, 2013Jan 5, 2016Raindance Technologies, Inc.Digital analyte analysis
US9273308Sep 27, 2012Mar 1, 2016Raindance Technologies, Inc.Selection of compartmentalized screening method
US20030149212 *Sep 20, 2002Aug 7, 2003Kin-Tai ChangComposition for recovering hydrocarbon fluids from a subterranean reservoir
US20060106154 *Oct 30, 2003May 18, 2006Batty Norman SThickening agents comprising a crosslinked polymer powder
US20080000646 *Jun 11, 2007Jan 3, 2008Neil ThomsonDevice and method to seal boreholes
US20080042106 *Jun 2, 2005Feb 21, 2008Basf AktiengesellschaftMethod for Marking Materials
US20080097019 *Oct 23, 2007Apr 24, 2008Lg Chem, Ltd.Multi-layered paper coating latex having high swelling and contraction property, method for preparing the same, and paper coating composition containing the same
US20100292109 *Nov 18, 2010Conocophillips CompanySwellable polymers with hydrophobic groups
USRE36780 *Dec 18, 1997Jul 18, 2000Cytec Technology Corp.Mannich acrylamide polymers
USRE36884 *Sep 12, 1997Sep 26, 2000Cytec Technology Corp.Mannich acrylamide polymers
USRE37037May 16, 1997Jan 30, 2001Cytec Technology Corp.Emulsified mannich acrylamide polymers
CN1085982C *Nov 23, 1995Jun 5, 2002赫尔克里斯有限公司Process for preparing dry strength additive for paper and use thereof
CN100567331CJun 2, 2005Dec 9, 2009巴斯福股份公司Method for marking materials
DE3343053A1 *Nov 29, 1983Jun 28, 1984Coatex SaUmweltfreundlicher verfluessiger fuer bohrschlaemme auf der basis von salz- oder suesswasser
DE3641700A1 *Dec 6, 1986Jun 25, 1987Basf AgProcess for the preparation of water-in-oil emulsions of crosslinked, water-soluble polymers, and the use of these emulsions
EP0003043A1 *Dec 23, 1978Jul 25, 1979Agfa-Gevaert AGPhotographic material
EP0038426A2 *Mar 19, 1981Oct 28, 1981Hoechst AktiengesellschaftPaint composition containing a hydrocolloidal agent and process for its preparation
EP0161038A1 *Jan 16, 1985Nov 13, 1985Allied Colloids LimitedUse of polymeric thickeners in printing
EP0344630A2 *May 26, 1989Dec 6, 1989Henkel Kommanditgesellschaft auf AktienUse of polyacryl amide polymers in wall-paper looseners
EP0395282A2 *Apr 17, 1990Oct 31, 1990Allied Colloids LimitedThickened aqueous compositions
EP0484617A1 *Apr 15, 1991May 13, 1992Cytec Technology Corp.Cross-linked anionic and amphoteric polymeric microparticles
EP2592097A1Dec 21, 2007May 15, 2013S.P.C.M. SaPolymeric thickener composition
WO1987000438A1 *Jul 22, 1986Jan 29, 1987Beghin-Say SaFixation of polymers retaining liquids in a porous structure
WO2005118650A2 *Jun 2, 2005Dec 15, 2005Basf AktiengesellschaftMethod for marking materials
WO2005118650A3 *Jun 2, 2005Mar 2, 2006Basf AgMethod for marking materials
WO2013113705A1Jan 29, 2013Aug 8, 2013Unilever PlcHair composition with improved rheology
Classifications
U.S. Classification524/555, 524/547, 526/203, 524/915, 604/368, 507/225, 526/207, 526/306, 524/916, 526/201, 507/224, 526/81, 507/935, 507/902
International ClassificationC08F2/32, C09D7/00, C08J3/12
Cooperative ClassificationC08L33/062, C08F2/32, C08J3/12, Y10S507/902, Y10S524/915, Y10S507/935, C08L33/26, C08J2300/14, Y10S524/916, C09D7/002
European ClassificationC08J3/12, C08F2/32, C09D7/00D