Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4159205 A
Publication typeGrant
Application numberUS 05/808,950
Publication dateJun 26, 1979
Filing dateJun 22, 1977
Priority dateJul 23, 1976
Also published asCA1099871A1, DE2732290A1, DE2732290C2
Publication number05808950, 808950, US 4159205 A, US 4159205A, US-A-4159205, US4159205 A, US4159205A
InventorsKenichiro Miyahara, Nobuji Nakayama
Original AssigneeThe Carborundum Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fiberizing basic aluminum chloride, to aluminum oxide
US 4159205 A
Abstract
A process for the manufacture of an aluminum oxide or zirconium oxide fiber comprising fiberizing a liquid containing lactic acid and an oxidizable compound selected from basic aluminum chloride, zirconium acetate and zirconium oxychloride and the resulting fibers. The liquid optionally also contains colloidal silica.
Images(5)
Previous page
Next page
Claims(16)
What is claimed is:
1. A process for the manufacture of oxide fiber comprising:
(a) fiberizing a liquid having a viscosity between about 1 and about 1000 poise, said liquid containing 40 to about 70 weight percent of basic aluminum chloride, and containing from about 2 to about 50 percent of lactic acid by weight of aluminum chloride;
(b) drying the resulting fiber; and
(c) heating said dried fiber for a sufficient time and at a sufficient temperature to convert the aluminum chloride to aluminum oxide.
2. The process of claim 1, wherein said sufficient temperature is from about 700 C. to about 2000 C., said sufficient time is in excess of about 15 minutes, said fiber is heated in an oxygen containing atmosphere and said fiberizing is accomplished by spinning said liquid.
3. The process of claim 2, wherein said sufficient time is in excess of 1 hour.
4. The process of claim 3, wherein said sufficient temperature is between about 850 and about 1500 C.
5. The process of claim 3, wherein said liquid contains from about 50 to about 60 weight percent of basic aluminum chloride.
6. The process of claim 5, wherein the basic aluminum chloride has a ratio of aluminum to chlorine between 1.7 to 1 and 2.1 to 1.
7. The process of claim 6, wherein the liquid has a viscosity below about 300 poises.
8. The process of claim 1, wherein said liquid contains from about 5 to about 15 percent by weight of said compound of lactic acid.
9. The process of claim 6, wherein said viscosity is between about 70 and about 300 poises.
10. The process of claim 1, wherein from about 1 to about 20 weight percent colloidal silica is added to the liquid.
11. The process of claim 10, wherein said liquid contains basic aluminum chloride.
12. The process of claim 11, wherein the heated fiber comprises a mixture of aluminum oxide and silicon dioxide.
13. The process of claim 12, wherein the weight ratio of aluminum oxide to silicon dioxide is in between 55 to 45 and 98 to 2.
14. The process of claim 13, wherein said ratio is preferably between 70 to 30 and 75 to 25.
15. The process of claim 11, wherein said basic aluminum chloride has an atomic ratio of aluminum to chlorine of between 1.7 to 1 and 2.1 to 1.
16. The process of claim 10, wherein said silicon dioxide is in the form of colloidal silica suspension.
Description
BACKGROUND OF THE INVENTION

This invention relates to a process for producing oxide fibers and more particularly relates to a method for producing polycrystalline oxide fibers from basic aluminum chloride, zirconium acetate, zirconium oxychloride or mixtures thereof and the resulting fibers.

It is known in the prior art that certain oxide precursors may be dissolved in liquid and spun to form a fiber and the resulting fiber heated in an oxygen containing atmosphere to form an oxide fiber. For example, basic aluminum chloride may be dissolved in water and the resulting solution spun to form a basic aluminum chloride fiber which upon heating converts to a polycrystalline aluminum oxide fiber. Difficulties were encountered in prior art processes for the manufacture of polycrystalline oxide fibers. In particular, it was frequently not possible to dissolve sufficient oxide precursor in the liquid without obtaining viscosities which were too high for spinning. The dissolving of insufficient oxide precursor in the spinning liquid results in a solution which yields inferior fibers, if any.

Prior art polycrystalline fibers had insufficient strength and flexibility for many applications.

In the prior art, it was found that the addition of acetic acid to the spinning liquid substantially reduced its viscosity; however, the resulting fiber was still too brittle for many applications.

BRIEF DESCRIPTION OF THE INVENTION

In accordance with this invention there is provided a process for the manufacture of oxide fibers which comprises fiberizing a liquid having a viscosity between about 1 and 1000 poise. The liquid contains from about 40 to about 70 weight percent of an oxidizable compound selected from basic aluminum chloride, zirconium acetate, zirconium oxychloride and mixtures thereof and in addition contains from about 2 to about 50 percent by weight of said compound of lactic acid. The liquid may also optionally contain colloidal silica. "Colloidal silica" as used herein means particulate silicon dioxide having particle sizes small enough to form a colloid which dispersed in water. The presence of colloidal silica has been found to reduce shrinkage in the finished oxide fiber. After the liquid is fiberized, preferrably by spinning, the resulting fiber is dried and heated; often in an oxygen containing atmosphere for a sufficient time and at a sufficient temperature to convert the compound to aluminum oxide, zirconium oxide, or mixtures thereof.

The incorporation of the lactic acid into the spinning solution permits the spinning of liquids which contain a higher percentage of basic aluminum chloride, zirconium acetate, zirconium oxychloride or mixtures thereof or mixtures of these compounds and colloidal silica than was obtained in the prior art without the use of acetic acid and results in a fiber having greater flexibility than prior art aluminum oxide or zirconium oxide fibers. The invention further comprises the fiber manufactured in accordance with the process of the invention.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the invention, the liquid is fiberized by any convenient method. For example, centrifugal spinning, drawing, blowing, tack-spinning, extrusion of the liquid through a spinneret or suitable combinations thereof.

The viscosity of the liquid is preferrably one suitable to the fiberizing method employed and is usually between about 1 and about 1000 poise for spinning operation and is preferrably between about 70 and 300 poise. Lower viscosities, particularly when the liquid is fiberized by means of spinning, may result in very poor fiber, if any, which includes a high percentage of shot which may actually be the sole product. Higher viscosities become difficult to spin partly because very high pressures are required to force the liquid through a spinneret.

The fiber is dried by any suitable means, for example, by heating the fiber at a temperature from about 30 to about 150 C., optionally under a reduced pressure. Any other suitable means for drying the fiber may be employed, for example, by circulating dehumidified air or gas around the fiber. Very high temperatures can be used to dry the resulting fiber but are not generally preferred due to greater energy requirements. Drying temperatures as high as 1,200 C. may however, be used.

The dried fiber is heated for a sufficient time and at a sufficient temperature to oxidize the lactic acid and to convert the aluminum chloride, zirconium acetate or zirconium oxychloride to aluminum oxide, zirconium oxide or mixtures thereof. The heating may occur in an oxygen free atmosphere since the presence of water in the spinning liquid is believed to convert basic aluminum chloride, zirconium acetate or zirconium oxychloride to hydrates which convert to oxides upon heating. The atmosphere may however, contain oxygen and may be pure oxygen. The preferred heating environment is an atmosphere of dry air.

The heating temperature is preferrably between about 700 and about 2000 C. and more preferrably between about 850 and about 1500 C. The heating time is in excess of about 15 minutes and is preferrably in excess of about 1 hour.

The spinning liquid contains from about 40 to about 70 weight percent of basic aluminum chloride, zirconium acetate, zirconium oxychloride or mixtures thereof or mixtures of these compounds and colloidal silica as previously discussed. In the preferred embodiment the spinning solution contains basic aluminum chloride having a ratio of aluminum to chlorine of between 1.7 to 1 and 2.1 to 1 or mixtures of basic aluminum chloride having this ratio and colloidal silica. Such a zpinning solution can contain up to about 20 weight percent colloidal silica which silica can replace up to about 45 weight percent of the aluminum oxide in the finished fiber. Desirably, the fiberizable liquid, which is preferrably a spinning liquid, contains from about 50 to about 60 weight percent basic aluminum chloride.

The fiberizable liquid contains from about 2 to about 50 percent lactic acid by combined weight of oxidizable compound which is preferrably basic aluminum chloride with colloidal silica. The most desirable percentage of lactic acid is from about 5 to about 15 weight percent of said compound.

Fiber produced in accordance with the invention has excellent refractoriness and flexibility and is believed to comprise a fiber which is either non-crystalline or which contains small inter-connecting or inter-twined crystallites. Such crystallites in the case of aluminum oxide are believed to be in the eta form. Such fibers, produced in accordance with this invention, may be referred to herein as polycrystalline fibers.

Fibers manufactured in accordance with this invention, particularly fibers containing between about 25 and 30 weight percent silica, are found to retain excellent flexibility even when they are exposed to temperatures of 1500 C. or higher.

The diameter of fibers produced in accordance with this invention is desirably between about 0.5 and about 500 microns and preferrably between about 2 and about 15 microns. Such diameters are determined by the fiberizing conditions, e.g. the size of the spinneret orifices and by the characteristics of the liquid being fiberized, particularly the viscosity of the liquid and the percentages of oxidizable compound and lactic acid in the liquid. Higher viscosities and higher solids content in the liquid results in larger diameters.

Any means apparent to those skilled in the art may be used for spinning the liquid. For example, the spinning liquid may be placed in a centrifugal ejection spinning machine in the form of a cylinder having a plurality of nozzle orifices in its peripheral surface. Rotation of the spinning machine at a high speed causes the spinning solution to be ejected through the nozzle orifices into a drying atmosphere to convert the liquid into fiberous form. Thereafter the resulting fiberous material is dried to remove water and calcined, i.e. heated at a high temperature, e.g. between 700 and about 1500 C., to produce a polycrystalline fiber.

Alternatively, the liquid may be placed in a container having nozzle orifices and allowed to fall onto a rapidly revolving disc located under the container. As a result, the falling spinning solution is blown off into a drying atmosphere and thereby spun or converted into fiberous form. The resulting fibers are dried and heated as previously discussed. In another example, the liquid is placed in a container having nozzle orifices and allowed to fall while supplying a high speed gas stream in a transverse direction. As a result, the falling spinning solution is blown off into a drying atmosphere and thereby converted into fiberous form.

The following examples serve to illustrate and not limit the invention. Unless otherwise indicated all parts and percentages are by weight.

EXAMPLE 1

A basic aluminum chloride aolution having a solids content of 52 percent, a viscosity of 80 poise at 19 C. and an atomic ratio of aluminum to chlorine of 2 to 1 is prepared by heating a solution of anhydrous aluminum chloride in water and causing aluminum metal powder to react with and dissolve in the solution. The solution is employed as a spinning material. To this basic aluminum chloride solution, various organic acids as shown in Table 1 are added in an amount of 8.8 weight percent based on the total solids of the basic aluminum chloride solution. 2.5 hours after mixing, the viscosities of the spinning solutions are obtained. The results are set forth in Table 1.

              TABLE 1______________________________________              Viscosity of SpinningOrganic Acid Added Solution (poises)______________________________________No additive        80Lactic acid         2Acetic acid         3Oxalic acid        28Malic acid         70Citric acid        GellingTartaric acid      GellingMaleic acid        GellingSuccinic acid      Gelling______________________________________

An examination of Table 1 clearly shows that lactic acid and acetic acid are the only additives tested which substantially reduce the viscosity of the solution. When acetic acid is used, the odor of acetic acid is found to be irritating; whereas, when lactic acid is used, the odor is minimal.

EXAMPLE 2

Lactic acid in varying proportions is added to a basic aluminum chloride solution having a viscosity of 72 poise at 21 C., a solids content of 55 weight percent and an atomic ratio of aluminum to chlorine of 2 to 1. The viscosity of the resulting solutions are measured after 2.5 hours. The results show that the viscosity of the basic aluminum chloride solution can be effectively reduced by adding lactic acid thereto in amounts of 2 percent by weight or more and preferrably above 6 percent by weight based on the total solids. Amounts of lactic acid in excess of 12 percent result in only a slight additional reduction in viscosity.

EXAMPLE 3

Two basic aluminum chloride solutions, each having a viscosity of 1000 poise at 20 C. and an atomic ratio of aluminum to chlorine of 2 to 1 are prepared. One of the solutions contains 8.9 percent by weight of lactic acid and the other solution contains no additive. The solution which contains no additive has a solids content of 53.75 percent whereas the solution containing lactic acid has a solids content of 55.65 percent demonstrating that increased solids can be obtained and tolerated when lactic acid is used as an additive.

EXAMPLE 4

A basic aluminum chloride-colloidal silica spinning solution having a solids content of 55 percent is prepared. The silica (SiO2) is present in an amount of about 3 percent and the solution has a viscosity of 52 poise at 20 C. The basic aluminum chloride has an atomic ratio of aluminum to chlorine of 2 to 1. A series of spinning solutions are then prepared by adding lactic acid to the basic aluminum chloride-colloidal silica solution in varying proportions. The results show that the viscosity of the basic aluminum chloride-colloidal silica solution in varying proportions. The results show that the viscosity of the basic aluminum chloride-colloidal silica solution is effectively reduced by adding lactic acid to the solution in an amount of 3 percent by weight or more and that a substantial reduction is obtained when the amount of lactic acid is in excess of 6 percent. Additions of lactic acid in excess of 12 percent provide only a slight further decrease in viscosity.

EXAMPLE 5

The procedure of Example 4 is followed except that a zirconium acetate-zirconium oxychloride solution is used as a spinning solution having a viscosity of 50 poise at 20 C. Solids in the solution consist of 70 percent zirconium acetate and 30 percent zirconium oxychloride. The results show that the addition of 2 percent lactic acid reduces the viscosity of the solution and 3 percent substantially reduces its viscosity. A very large reduction in viscosity is observed when the lactic acid is present in the amount of 6 percent or more. As in previous examples, additions of lactic acid in excess of 12 percent provide only a slight further decrease in viscosity.

EXAMPLE 6

A basic aluminum chloride solution is prepared from a reagent grade aluminum chloride and aluminum metal in water to obtain a viscosity of 150 poise at room temperature. Differing aluminum to chlorine ratios are prepared. The results are shown in Table 2.

              TABLE 2______________________________________             Properties of             Aluminum Oxide             Fibers obtainedIntended  Observations  after CalcinationEx-  Atomic   during        Shot   Number ofperi-AvCl     Concentration Content                              Flexingsment Ratio    by Heating    (%)    to Break______________________________________1    0.83     Insoluble salts                       --     --         precipitated.2    1.16     Insoluble salts                       --     --         precipitated.3    1.50     Water-clear during                       52.1    0         and after concen-         tration.4.   1.70     Water-clear during                       100    --         and after concen-         tration.5    1.85     Insoluble salts                       --     --         precipitated.6.   2.00     Water-clear during                       49.6   12         and after concen-         tration.7    2.20     Insoluble salts                       --     --         precipitated.______________________________________

This example shows that within a certain narrow range of aluminum to chlorine ratio, the solution can be concentrated to an extent which permits fiberizing. It is evident from Table 2 that the properties of the aluminum oxide fibers obtained from such solutions are unsatisfactory. Attempts were made to form fibers with each solution by introducing the solution into a centrifugal spinning device provided with a plurality of holes having 0.5 mm diameters and spinning the device at 900 rmp to fiberize the solutions. The only solutions which could be fiberized are those having aluminum to chlorine ratios of 1.5 to 1, 1.7 to 1 and 2.0 to 1. The remaining solutions have insoluble precipitated salts. The only ratios which provided a weight ratio of fiber to shot which provides enough fiber for testing are the atomic ratios of aluminum to chlorine of 1.5 to 1 and 2 to 1. The fibers obtained from each of these two solutions are calcined (oxidize) at 900 C. and shaped into a specimen in the form of a blanket about 12 mm thick. The resulting blanket is then flexed by hand in order to determine the number of flexings to break (hereinafter referred to as "flexibility"). The flexibility of each of the blankets is extremely poor.

EXAMPLE 7

Example 6 is essentially repeated except various proportions of acetic acid are added to a technical-grade basic aluminum chloride solution containing about 50 percent of basic aluminum chloride (Al2 (OH)5 Cl.2.4H2 O). The atomic ratio of aluminum to chlorine is about 2 to 1. The solution is then heated to concentrate the mixture to obtain a viscosity of about 150 poise. The results are given in Table 3.

              TABLE 3______________________________________                Properties of                Aluminum Oxide                Fibers ObtainedBasic                      after CalcinationAluminum          Observations                            Shot FlexibilityEx-  Chloride  Acetic  during    Con- (No.peri-Solution  Acid    Concentration                            tent of Flexingsment (parts)   (parts) by Heating                            (%)  to Break______________________________________1    2,000     200     Insoluble salts                            --   --                  precipitated2    2,000     170     Insoluble salts                            --   --                  precipitated3    2,000     150     Insoluble salts                            --   --                  precipitated4    2,000     125     Insoluble salts                            --   --                  precipitated5    2,000     100     Water-clear                             5   96                  during and after                  concentration6    2,000      45     Water-clear                            12   48                  during and after                  concentration______________________________________

This example shows that high ratios of acetic acid to basic aluminum chloride results in the precipitation of insoluble salts. At low ratios of acetic acid to basic aluminum chloride, an improvement is observed both in a reduction in shot content and in increased flexibility. The flexibility however, is still not as great as desired, i.e., a flexibility of at least 200 flexings.

EXAMPLE 8

The procedure of Example 7 is followed except acetic acid is eliminated from the solutions and lactic acid is added in varying ratios to basic aluminum chloride solution at varying atomic ratios of aluminum to chloride. The results are set forth in Table 4.

              TABLE 4______________________________________Atomic      Parts of Fiber Properties   Al/Cl   Lactic   Shot ContentExperiment   Ratio   Acid*    %        Flexibility**______________________________________1       1.85    12.3     11.4     More than 2002       1.95    27.1     8.7      More than 2003       1.92    56.8     3.5      More than 2004       2.10    96.8     2.9      More than 2005       2.18    141.5    11.0     136       2.0     4.5      11.7     407       1.5     4.9      18.7     158       1.7     4.9      11.9     More than 2009       1.7     8.6      4.1      More than 20010      1.85    23.7     7.0      More than 20011      2.0     24.4     1.1      More than 20012      1.85    40.1     3.8      More than 200______________________________________ *Parts per 100 of basic aluminum chloride solids obtained by evaporating the solution at 100 C. **Number of flexings of calcined fibers to break.

In all experiments shown in Table 4, the solutions are water clear initially, during and after concentration.

The results indicate that the use of lactic acid provides superior flexibility to the fibers. The results further indicate that the atomic ratio of alumina to chlorine should be above about 1.5 and that the percentage of lactic acid should be at least about 5 parts and less than about 100 parts of lactic acid per 100 parts of basic aluminum chloride solids, i.e., about 5 percent to about 50 percent lactic acid by weight of basic aluminum chloride solids.

EXAMPLE 9

Colloidal silica is added in varying proportions to aluminum chloride solutions which contain about 50 percent basic aluminum chloride (Al2 (OH)5 Cl.2.4H2 O), in the form of a colloidal silica suspension containing about 20 weight percent of SiO2. Then lactic acid is added to each solution in the proportion of about 10.5 weight percent to total solids in the solutions. The solutions are concentrated by heating until their viscosity is about 150 poise at room temperature. The solutions are then fiberized by the same procedure as shown in Example 6. After drying, the fibers are calcined at 1250 C. for 30 minutes then heated to about 1500 C. in air for 24 hours. The resulting fibers are tested by the same procedures as shown in Example 6. The results are shown in Table 5.

                                  TABLE 5__________________________________________________________________________                 ApproximateParts of              Al2 O3 /SiO2                           FlexibilityBasic                 Weight Ratio                           Number ofAluminum    Parts of            Parts of                 In Finally                           FlexingsChloride    Lactic            Colloidal                 Heated Fiber                           To BreakExperiment Solution       Acid Silica                  Al2 O3 -l %                      SiO2 %                           1500 C.__________________________________________________________________________1     2000  120  123  95    5   632     2000  123  260  90   10   213     2000  127  413  85   15   324     2000  131  585  80   20   525     2000  136  781  75   25   More than 2006     2000  139  911  72   28   More than 2007     2000  141  1004 70   30   More than 2008     2000  147  1262 65   35   15__________________________________________________________________________

The results indicate that, when practicing this invention at 1500 C., the resulting fibers have excellent flexibility when the fibers have a weight ratio of aluminum oxide to silicon dioxide of between 70 to 30 and 75 to 25.

In using lactic acid, it has been further discovered that the concentrated spinning solution can be readjusted to the most desirable viscosity by introducing lactic acid just prior to spinning whereas acetic acid may not be introduced just prior to spinning due to acetic acid solubility limits in the spinning solution. Furthermore, it has been found that fibers may be prepared in ordinary room air with proper ventilation when lactic acid is used as an additive; whereas, when acetic acid is used, the atmosphere should not have a relative humidity higher than 60 percent and preferably 20 to 30 percent. Fiber prepared when acetic acid is used as an additive, must be stored in an atmosphere having a low relative humidity; whereas, fibers prepared when lactic acid is used as an additive, may be placed in a plastic bag and stored under ambient conditions. The above advantages are in addition to the previously discussed advantages for the use of lactic acid, i.e., the odor of vaporized acetic acid is avoided when lactic acid is used as the spinning solution additive and unexpectedly the use of lactic acid provides low shot content and extremely high flexibility; whereas, the use of acetic acid results in the fiber having low flexibility.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2915475 *Dec 29, 1958Dec 1, 1959Du PontFibrous alumina monohydrate and its production
US3180741 *Nov 29, 1960Apr 27, 1965Horizons IncLiquid polymers, solid articles made therefrom and methods of preparing same
US3270109 *Mar 15, 1963Aug 30, 1966Horizons IncPreparation of inorganic oxide monofilaments
US3357791 *Jul 20, 1964Dec 12, 1967Continental Oil CoProcess for producing colloidal-size particles of alumina monohydrate
US3790495 *Jan 31, 1972Feb 5, 1974Bayer AgProcess for the manufacture of colloidal fibrous boehmite
GB1360197A * Title not available
GB1360200A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4277269 *Dec 19, 1979Jul 7, 1981Kennecott CorporationRotation
US4296057 *Sep 2, 1980Oct 20, 1981Conoco Inc.Method of making alumina fibers
US4753904 *Aug 20, 1986Jun 28, 1988E. I. Du Pont De Nemours And CompanyTetragonal phase, tensile strength
US5002750 *Sep 19, 1989Mar 26, 1991Sumitomo Chemical Company, LimitedProcess for producing alumina-based fiber
US5037579 *Feb 12, 1990Aug 6, 1991Nalco Chemical CompanyMixing zirconium acetate with acetic acid; heating solution; monodispersed submicron particles for use in ceramics and surface coatings
US5569629 *Jun 6, 1995Oct 29, 1996Unifrax CorporationHigh temperature stable continuous filament glass ceramic fibers
US5580532 *Nov 3, 1994Dec 3, 1996Unifrax CorporationUsed for treatment of exhaust gases
US5585312 *Dec 21, 1995Dec 17, 1996Unifrax CorporationHigh temperature stable continuous filament glass ceramic fiber
US5666726 *Jun 6, 1995Sep 16, 1997Unifrax CorporationMethod of making a mounting mat for fragile structures such as catalytic converters
US5767022 *Dec 17, 1996Jun 16, 1998Unifrax CorporationReinforcement material of high temperature stable continuous glass fiber containing oxides of silicon, aluminum, magnesium, titanium and optional zirconium ; high tensile strength
US5811063 *Sep 8, 1997Sep 22, 1998Unifrax CorporationMounting mat for fragile structures such as catalytic converters
US7033412Sep 24, 2003Apr 25, 2006Unifrax Corporationmelt-drawn, leached glass fibers high in silica content are used to form non-intumescent mounting mats for catalytic converters and other exhaust gas-treating devices
US7261864Jun 21, 2002Aug 28, 20073M Innovative Properties Companyinorganic fibers having a mullite ratio in the range of 60% to 70%.
US7971357Jun 29, 2005Jul 5, 2011Unifrax I LlcExhaust gas treatment device and method for making the same
US7998422Mar 2, 2009Aug 16, 2011Unifrax I LlcExhaust gas treatment device
US8017085Aug 28, 2008Sep 13, 2011Unifrax I LlcSubstrate mounting system
US8163377Nov 8, 2006Apr 24, 2012The Morgan Crucible Company PlcHigh temperature resistant fibres
US8182752Jan 31, 2011May 22, 2012Unifrax I LlcExhaust gas treatment device
US8236277Dec 18, 2007Aug 7, 20123M Innovative Properties CompanyProcess for producing nanoparticles
US8383682Dec 16, 2008Feb 26, 20133M Innovative Properties CompanyMixed ligand surface-modified nanoparticles
US8404187Apr 28, 2000Mar 26, 2013Unifrax I LlcSupport element for fragile structures such as catalytic converters
US8524161Aug 12, 2010Sep 3, 2013Unifrax I LlcMultiple layer substrate support and exhaust gas treatment device
US8834832Dec 16, 2008Sep 16, 20143M Innovative Properties CompanyProcess for producing nanoparticles
US8951323Sep 24, 2010Feb 10, 2015Unifrax I LlcMultiple layer mat and exhaust gas treatment device
EP0039587A2 *May 1, 1981Nov 11, 1981Kennecott CorporationFire resistant sealing system for holes in fire resistant building partitions and method of forming the system
EP1533409A1 *Jun 26, 2003May 25, 2005Denki Kagaku Kogyo Kabushiki KaishaInorganic staple fiber accumulation for holding material, process for producing the same and holding material
EP1842590A1 *Jun 21, 2002Oct 10, 20073M Innovative Properties CompanyCatalyst carrier holding material and catalytic converter
WO2003000414A1 *Jun 21, 2002Jan 3, 20033M Innovative Properties CoCatalyst carrier holding material and catalytic converter
WO2011019394A1Aug 12, 2010Feb 17, 2011Unifrax I LlcMultiple layer substrate support and exhaust gas treatment device
WO2011037634A1Sep 24, 2010Mar 31, 2011Unifrax I LlcMultiple layer mat and exhaust gas treatment device
WO2011060259A1Nov 12, 2010May 19, 2011Unifrax I LlcMulti-layer fire protection material
WO2011060421A1Nov 16, 2010May 19, 2011Unifrax I LlcIntumescent fire protection material
WO2011084487A1Dec 15, 2010Jul 14, 2011Unifrax I LlcMounting mat for exhaust gas treatment device
Classifications
U.S. Classification501/153, 423/608, 423/625
International ClassificationD01F9/08, C04B35/622
Cooperative ClassificationC04B35/62236, C04B35/6225
European ClassificationC04B35/622F2B, C04B35/622F2F
Legal Events
DateCodeEventDescription
Oct 19, 2000ASAssignment
Owner name: UNIFRAX CORPORATION, NEW YORK
Free format text: RELEASE OF PATENT COLLATERAL SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT FOR ITSELF AND OTHER LENDERS (FORMERLY KNOWN AS BANK OF AMERICA ILLINOIS);REEL/FRAME:011238/0639
Effective date: 20001005
Owner name: UNIFRAX CORPORATION 2351 WHIRLPOOL STREET NIAGARA
Nov 7, 1996ASAssignment
Owner name: BANK OF AMERICA ILLINOIS, AS AGENT, ILLINOIS
Free format text: SECURITY AGREEMENT;ASSIGNOR:UNIFRAX CORPORATION;REEL/FRAME:008126/0173
Effective date: 19961030
Jun 25, 1987ASAssignment
Owner name: KENNECOTT MINING CORPORATION
Free format text: CHANGE OF NAME;ASSIGNOR:KENNECOTT CORPORATION;REEL/FRAME:004815/0036
Effective date: 19870220
Owner name: STEMCOR CORPORATION, 200 PUBLIC SQUARE, CLEVELAND,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENNECOTT MINING CORPORATION;REEL/FRAME:004815/0091
Effective date: 19870320
Jul 1, 1981ASAssignment
Owner name: KENNECOTT CORPORATION
Free format text: MERGER;ASSIGNORS:BEAR CREEK MINING COMPANY;BEAR TOOTH MINING COMPANY;CARBORUNDUM COMPANY THE;AND OTHERS;REEL/FRAME:003961/0672
Effective date: 19801230