Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4248302 A
Publication typeGrant
Application numberUS 06/033,514
Publication dateFeb 3, 1981
Filing dateApr 26, 1979
Priority dateApr 26, 1979
Also published asCA1122519A1
Publication number033514, 06033514, US 4248302 A, US 4248302A, US-A-4248302, US4248302 A, US4248302A
InventorsRonald K. Churchman
Original AssigneeOtis Engineering Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for recovering viscous petroleum from tar sand
US 4248302 A
Abstract
A method of recovering viscous petroleum from tar sand formations utilizing a deviated steam injection well with pump-down (through the flow line) completion. The steam injection well may use side pocket mandrels with constant flow or orifice regulators to control steam injection rates into the surrounding viscous petroleum formation. A plurality of pumping wells are situated along the drill path of the steam injection well and substantially above injection points for recovery of the fluidized petroleum.
Images(2)
Previous page
Next page
Claims(13)
What is claimed is:
1. A method of recovering petroleum from subterranean viscous petroleum tar sands comprising drilling an injection well whose drill path is deviated from the perpendicular, and extends for a major portion of its length into said subterranean viscous petroleum tar sand, inserting casing within said injection well to at least a point just beyond a site determined to be a terminal injection point, perforating said casing at selected locations, running into the bore of said perforated casing a dual tubing string providing a circulation path for the use of through the flowline service tools, at least one of said dual tubing strings having a plurality of spaced apart side pocket mandrels, providing means for packing off the tubing casing annulus situated between the uppermost side pocket mandrel and the surface of the well, providing means in said side pocket mandrels for regulating the flow of fluids from the bore of the tubing to the outside thereof, drilling and completing a plurality of production wells into said subterranean viscous petroleum tar sands positioned above and along the length of said injection well, circulating a heated fluid through said injection well, said heated fluid flowing through said flow regulator means into said subterranean viscous petroleum tar sands to reduce the viscosity of the petroleum contained therein, and recovering said reduced viscosity petroleum by said production wells.
2. The method of claim 1, wherein there is provided a constant flow regulator in said side pocket mandrels for regulating the flow of fluids from the bore of the tubing to the outside thereof.
3. The method of claim 1, wherein there is provided an orifice regulator in said side pocket mandrels for regulating the flow of fluids from the bore of the tubing to the outside thereof.
4. The method of claim 1, additionally providing a plurality of means, positioned along said dual tubing string for packing off the tubing casing annulus between said side pocket mandrels.
5. The method of claim 4, wherein there is flowed a heated fluid through preselected regulator means into said subterranean viscous petroleum tar sands.
6. The method of claim 1, wherein there is drilled a plurality of injection wells whose drill paths are deviated from the perpendicular, each radiating from essentially the same, central drill point, and each such deviated drill paths extending for a major portion of their length into said subterranean viscous petroleum tar sand.
7. The method of claim 1, wherein there is drilled a plurality of production wells into said subterranean viscous petroleum tar sands and positioned above and along the length of said injection well, each such production well being drilled to substantially the vicinity of a side pocket mandrel of the injection well.
8. A system for recovering petroleum from subterranean viscous petroleum tar sands comprising:
at least one injection well which is deviated from the perpendicular and extends for at least a portion of its length into said subterranean viscous petroleum tar sand, said injection well having disposed therein:
a casing lining said well, and being perforated at at least one site therein,
a dual tubing string disposed within said casing providing a circulation path for the use of through the flowline service tools, at least one of said dual tubing strings having a plurality of spaced apart side pocket mandrels, with means therein for regulating the flow of fluids from the bore of said tubing to the outside thereof,
means for packing off the tubing casing annulus situated between the uppermost side pocket mandrel and the surface of the well, and
at least one production well extending from the surface into said subterranean viscous petroleum tar sands positioned above and along the length of said injection well, whereby a heated fluid circulated through said injection well exits said well through said flow regulator means into said subterranean viscous petroleum tar sands to reduce the viscosity of the petroleum contained therein, which is recovered through said production well.
9. The system of claim 8, wherein there is one production well located essentially above and at a site which is essentially at the terminal point of the injection well.
10. The system of claim 8, wherein said means, in said side pocket mandrels, for regulating the flow of fluids from the bore of the tubing to the outside thereof, comprises a constant flow regulator.
11. The system of claim 8, wherein said means, in said side pocket mandrels, for regulating the flow of fluids from the bore ot the tubing to the outside thereof, comprises an orifice regulator.
12. The system of claim 8, additionally including a plurality of means, positioned along said dual tubing string, for packing off the tubing-casing annulus between said side pocket mandrels.
13. The system of claim 12, wherein said packing off means are a steam packer.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the recovery of viscous petroleum from tar sands. More particularly, the invention relates to use of steam injected into a tar sand using pumpdown completion techniques, with recovery of the petroleum by means of production wells spaced along the deviated path of the steam injection well.

2. The Prior Art

There is continuing effort to discover a commercially practical method of recovering significant quantities of petroleum from "viscous" deposits. By "viscous" is meant petroleum deposits having a viscosity on the order of 100,000 to 1,000,000 centipoise (cp) at reservoir temperatures, such as found in the Athabasca deposits.

A major problem for economic recovery from such formations is the establishment of a suitable flow path between a source of heat and means for recovering liquid products. There are numerous patents claiming methods that have been discovered to allegedly achieve this goal.

A recent patent, U.S. Pat. No. 4,037,658, issued to Donald J. Anderson, utilizes the flow of a hot fluid through a conduit, connecting two vertical wells, to fluidize the surrounding viscous petroleum. Steam is injected into one of the wells to drive the fluidized petroleum along the path of the conduit to the second well, from wich the petroleum is recovered. While the patentee uses a deviated injection well as a source of heat, he intersects the producing well to provide a continuous flow path for "heating" steam that is conducted through conduit. A second source of steam is injected into the formation, through casing perforations in the injection well, above the packer, to drive fluidized petroleum horizontally along the path of conduit into the producer well.

U.S. Pat. No. 3,960,213, issued to John H. Striegler, et al, teaches and claims a method for recovering viscous petroleum from tar sand formations utilizing a deviated steam injection well. The tar sand formation is penetrated by a horizontally deviated injection well and a plurality of production wells positioned above and along the injection well. This patent claims use of perforated, continuous liner in the injection well. A companion patent, U.S. 3,960,214, claims casing the injection well and perforations provided where it is in contact with the formation.

Other patents in this field are U.S. Pat. Nos. 3,994,340; 3,020,901; 3,986,557 and 4,007,788. A somewhat older patent in the field is U.S. Pat. No. 3,386,508 issued to W. J. Bielstein et al. However, none of these patents are directed to the possible use of pumpdown completion techniques wherein it is possible to use controlled release of steam through valve regulated side pocket mandrels.

A recognized problem, in using steam to fluidize viscous petroleum is the difficulty of establishing and maintaining communication between the injection sites and the means for recovering the fluidized petroleum. Also, there is the problem of maintaining a sufficiently high temperature in the rejection region to maintain the petroleum in a fluidized state until it can be flowed from the production well.

These and other related disadvantages have been overcome in the present invention, which is described and claimed hereinafter.

It is therefore an object of the present invention to provide a deviated, steam-injection well that will utilize through the flowline (TFL) completion to inject steam into a viscous petroleum deposit for fluidizing same.

It is a further object to provide for recovery of such fluidized viscous petroleum by use of production wells situated essentially along and above the steam injection sites.

Yet another object is to provide variable flow steam injection sites along the steam injection well tubing path.

Another object is to provide regulated steam injection sites along the steam injection well tubing path.

SUMMARY OF THE INVENTION

A method of recovering petroleum from subterranean viscous petroleum tar sands comprising drilling an injection well whose drill path is deviated from the perpendicular, and extends for a major portion of its length into said subterranean viscous petroleum tar sand, inserting casing within said injection well to at least a point just beyond a site determined to be a terminal injection point, perforating said casing at selected locations, running into the bore of said perforated casing a dual tubing string providing a circulation path for the use of through the flowline (TFL) service tools, at least one of said dual tubing strings having a plurality of spaced apart side pocket mandrels, packing off the tubing casing annulus situated between the uppermost side pocket mandrel and the surface of the well, providing means in said side pocket mandrel for regulating the flow of fluids from the bore of the tubing to the outside thereof, drilling and completing a plurality of production wells into said subterranean viscous petroleum tar sands positioned above and along the length of said injection well, circulating a heated fluid through said injection well, said heated fluid flowed through said flow regulator means into said subterranean viscous petroleum tar sands to reduce the viscosity of the petroleum contained therein, and recovering said reduced viscosity petroleum by said production wells.

DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic representation of the present invention showing a dual tubing circulation path for a TFL completed injection well deviated through a subterranean viscous petroleum tar sand, with a series of production wells drilled and positioned along the injection well.

FIG. 2 is a schematic representation of one embodiment of the invention whereby pack off means are placed between steam injection points.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the drawing, FIG. 1, there is shown schematically a deviated well 12 drilled diagonally through a subterranean deposit 10 of a viscous petroleum, such as the Athabasca deposits of Canada. Preferably, a perforated casing or liner 14 is run into the well to a point at least just below the farthest point it is desired to inject steam into the deposit 10.

A "dual" string 16 and 18 of well tubing is then run into the well 12, with suitable packers 28 and an H-member 20 to provide a circulation path for TFL completion. TFL completion is described in the Composite Catalogue of Oil Field Equipment and Services, 1974-75 Edition, published by World Oil, Houston, Tex., pages 4069-80. Dual completion packers are illustrated and described therein at page 4076. However, packers useful in the present invention would have to be modified, by use of high temperature resistant elastomers or asbestos as sealing elements, in order to withstand the steam injected into the tubing 16 and 18.

Steam is to be injected into the viscous petroleum deposit 10 through the tubing 18 via ports (not shown) in side pocket mandrels made up in the tubing string 18. Suitable side pocket mandrels suitable for this purpose are shown on page 4079 of the Composite Catalogue, and are manufactured by Otis Engineering Corporation.

The flow of the steam is metered into the deposit 10 by use of constant flow or orifice regulators set in the side pocket mandrels 22, 23, 24, 26 and 27. One such suitable flow regulator is illustrated on page 589 of the Composite Catalogue, and is identified as a Model "BF" downhole flow regulator and is manufactured by Baker Oil Tools. Kickover tools, for setting and retrieving TFL flow regulators, are illustrated on page 4079 of the Composite Catalogue.

Use of either constant flow or orifice regulators is dictated by injection requirements of the well operator. Generally, constant flow regulators will permit the flow of steam at a constant rate regardless of fluctuations of tubing pressure. Orifice regulators generally provide metering at a rate dependent on internal tubing pressure, and are thus variable in flow.

An H-member 20 would be installed beyond the last side pocket mandrel 22 and at a point above the terminal sites 17 and 19 of the tubing strings 16 and 18, respectively. The H-member is a key component in a TFL completion equipment package.

The H-member provides the dual circulation paths necessary for pumpdown operations. A suitable H-member, for use in the present invention is manufactured by Otis Engineering Corporation and is illustrated on page 4076 of the Composite Catalogue. The particular models useful herein are the "double bypass" and the regular "H" cross-over. Cross-over or H-members satisfactory for use with the present invention are shown in U.S. Pat. No. 3,664,427 and U.S. Pat. No. Re. 28,588. Both patents are incorporated by reference for all purposes in this written description.

While FIG. 1 shows a single packer 28 set between the surface of the well and the uppermost side pocket mandrel 24, if desired, dual hydraulic steam packers could be placed between the steam injection points, as shown in FIG. 2. This would provide increased selectivity in steam injection of each fluidized zone. Thus, a series of flow regulators could be placed sequentially in the side pocket mandrels to permit injection into selected zones without injecting into all zones.

Production wells 34 are drilled and completed above each steam injection zone, along the path of the deviated steam injection wells 12. As the petroleum is fluidized by the action of the steam, the fluidized petroleum is brought to the surface using the production well 34.

It is recognized that a series of deviated wells could be drilled off the same vertical entry point. Thus, one could produce at many points radiating from a single injection site. There could be optimum recovery from such single injection well by utilization of the multi-path deviation, since only a single steam generation source 32 would be required to service a relatively large area.

Various modifications could be made in one or more of the individual features described herein without departing from the scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2497868 *Oct 10, 1946Feb 21, 1950David DalinUnderground exploitation of fuel deposits
US3386508 *Feb 21, 1966Jun 4, 1968Exxon Production Research CoProcess and system for the recovery of viscous oil
US3456730 *Aug 22, 1967Jul 22, 1969Deutsche Erdoel AgProcess and apparatus for the production of bitumens from underground deposits having vertical burning front
US3960213 *Jun 6, 1975Jun 1, 1976Atlantic Richfield CompanyProduction of bitumen by steam injection
US3960214 *Jun 6, 1975Jun 1, 1976Atlantic Richfield CompanyRecovery of bitumen by steam injection
US3986557 *Jun 6, 1975Oct 19, 1976Atlantic Richfield CompanyProduction of bitumen from tar sands
US3994340 *Oct 30, 1975Nov 30, 1976Chevron Research CompanyMethod of recovering viscous petroleum from tar sand
US4007788 *Jun 6, 1975Feb 15, 1977Atlantic Richfield CompanyReducing viscosity with heated fluid
US4037658 *Oct 30, 1975Jul 26, 1977Chevron Research CompanyMethod of recovering viscous petroleum from an underground formation
US4099783 *Dec 5, 1975Jul 11, 1978Vladimir Grigorievich VertyMethod for thermoshaft oil production
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4368781 *Oct 20, 1980Jan 18, 1983Chevron Research CompanyMethod of recovering viscous petroleum employing heated subsurface perforated casing containing a movable diverter
US4595057 *May 18, 1984Jun 17, 1986Chevron Research CompanyParallel string method for multiple string, thermal fluid injection
US4598770 *Oct 25, 1984Jul 8, 1986Mobil Oil CorporationThermal recovery method for viscous oil
US4607888 *Dec 19, 1983Aug 26, 1986New Tech Oil, Inc.Method of recovering hydrocarbon using mining assisted methods
US4627493 *Jan 27, 1986Dec 9, 1986Mobil Oil CorporationSteamflood recovery method for an oil-bearing reservoir in a dipping subterranean formation
US4640355 *Mar 26, 1985Feb 3, 1987Chevron Research CompanyLimited entry method for multiple zone, compressible fluid injection
US4682652 *Jun 30, 1986Jul 28, 1987Texaco Inc.Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells
US4714117 *Apr 20, 1987Dec 22, 1987Atlantic Richfield CompanyDrainhole well completion
US4754811 *Aug 24, 1987Jul 5, 1988Institution Pour Le Developpement De La Gazeification SouterraineControlled retracting gasifying agent injection point process for UCG sites
US4878539 *Aug 2, 1988Nov 7, 1989Anders Energy CorporationMethod and system for maintaining and producing horizontal well bores
US5133410 *Dec 31, 1990Jul 28, 1992Institut Francais Du PetroleMethod and device for stimulating production of a subterranean zone of injection of a fluid from a neighboring zone via fracture made from a deflected drain drilled in an intermediate layer separating the zones
US5133411 *Dec 31, 1990Jul 28, 1992Institut Francais Du PetroleMethod and device for stimulating a subterranean zone through the controlled injection of a fluid coming from a neighbouring zone which is connected to the subterranean zone by a drain
US5186255 *Jul 16, 1991Feb 16, 1993Corey John CFlow monitoring and control system for injection wells
US5211240 *Nov 4, 1991May 18, 1993Institut Francais Du PetroleMethod for favoring the injection of fluids in producing zone
US5431482 *Oct 13, 1993Jul 11, 1995Sandia CorporationHorizontal natural gas storage caverns and methods for producing same
US5450902 *May 14, 1993Sep 19, 1995Matthews; Cameron M.Method and apparatus for producing and drilling a well
US5655605 *Jun 7, 1995Aug 12, 1997Matthews; Cameron M.Method and apparatus for producing and drilling a well
US5803171 *Sep 29, 1995Sep 8, 1998Amoco CorporationModified continuous drive drainage process
US5826655 *Apr 25, 1996Oct 27, 1998Texaco IncMethod for enhanced recovery of viscous oil deposits
US6050335 *Oct 26, 1998Apr 18, 2000Shell Oil CompanySystem for in-situ bitumen production comprising steam injection well system comprising lateral sections traversing bitumen bearing formation above thief zone such that tip of each lateral section protrudes from formation into thief zone
US6070663 *May 15, 1998Jun 6, 2000Shell Oil CompanyMulti-zone profile control
US6186232Oct 21, 1998Feb 13, 2001Alberta Oil Sands Technology And Research AuthorityEnhanced oil recovery by altering wettability
US7451814Jan 12, 2006Nov 18, 2008Halliburton Energy Services, Inc.System and method for producing fluids from a subterranean formation
US7775271Jul 11, 2008Aug 17, 2010Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US7775277Jun 24, 2008Aug 17, 2010Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US7784543Jul 11, 2008Aug 31, 2010Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US7789139Jun 23, 2008Sep 7, 2010Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US7793714Jun 23, 2008Sep 14, 2010Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US7814974Jun 17, 2008Oct 19, 2010Baker Hughes IncorporatedSystems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US7819187Oct 23, 2008Oct 26, 2010Halliburton Energy Services, Inc.System and method for producing fluids from a subterranean formation
US7819190Jun 17, 2008Oct 26, 2010Baker Hughes IncorporatedSystems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US7823645 *Aug 21, 2007Nov 2, 2010Baker Hughes IncorporatedDownhole inflow control device with shut-off feature
US7878270Mar 12, 2010Feb 1, 2011Halliburton Energy Services, Inc.Methods and apparatus for drilling, completing and configuring U-tube boreholes
US7891430Oct 19, 2007Feb 22, 2011Baker Hughes IncorporatedWater control device using electromagnetics
US7913755Jul 11, 2008Mar 29, 2011Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US7913765Oct 19, 2007Mar 29, 2011Baker Hughes IncorporatedWater absorbing or dissolving materials used as an in-flow control device and method of use
US7918272Oct 19, 2007Apr 5, 2011Baker Hughes IncorporatedPermeable medium flow control devices for use in hydrocarbon production
US7918275Nov 19, 2008Apr 5, 2011Baker Hughes IncorporatedWater sensitive adaptive inflow control using couette flow to actuate a valve
US7931081Jun 17, 2008Apr 26, 2011Baker Hughes IncorporatedSystems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US7942206Aug 14, 2008May 17, 2011Baker Hughes IncorporatedIn-flow control device utilizing a water sensitive media
US7992637Apr 2, 2008Aug 9, 2011Baker Hughes IncorporatedReverse flow in-flow control device
US8056624Jul 19, 2007Nov 15, 2011Uti Limited PartnershipIn Situ heavy oil and bitumen recovery process
US8056627Jun 2, 2009Nov 15, 2011Baker Hughes IncorporatedPermeability flow balancing within integral screen joints and method
US8069919Nov 11, 2010Dec 6, 2011Baker Hughes IncorporatedSystems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US8069921Apr 2, 2009Dec 6, 2011Baker Hughes IncorporatedAdjustable flow control devices for use in hydrocarbon production
US8096351Oct 19, 2007Jan 17, 2012Baker Hughes IncorporatedWater sensing adaptable in-flow control device and method of use
US8113292Dec 15, 2008Feb 14, 2012Baker Hughes IncorporatedStrokable liner hanger and method
US8132624Jun 2, 2009Mar 13, 2012Baker Hughes IncorporatedPermeability flow balancing within integral screen joints and method
US8146685Jan 10, 2011Apr 3, 2012Halliburton Energy Services, Inc.Methods and apparatus for drilling, completing and configuring U-tube boreholes
US8151875Nov 15, 2010Apr 10, 2012Baker Hughes IncorporatedDevice and system for well completion and control and method for completing and controlling a well
US8151881Jun 2, 2009Apr 10, 2012Baker Hughes IncorporatedPermeability flow balancing within integral screen joints
US8159226Jun 17, 2008Apr 17, 2012Baker Hughes IncorporatedSystems, methods and apparatuses for monitoring and recovery of petroleum from earth formations
US8272447Dec 15, 2011Sep 25, 2012Halliburton Energy Services, Inc.Methods and apparatus for drilling, completing and configuring U-tube boreholes
US8312931Oct 12, 2007Nov 20, 2012Baker Hughes IncorporatedFlow restriction device
US8544548Oct 19, 2007Oct 1, 2013Baker Hughes IncorporatedWater dissolvable materials for activating inflow control devices that control flow of subsurface fluids
US8550166Jul 21, 2009Oct 8, 2013Baker Hughes IncorporatedSelf-adjusting in-flow control device
US8555958Jun 19, 2008Oct 15, 2013Baker Hughes IncorporatedPipeless steam assisted gravity drainage system and method
US8646535Aug 7, 2012Feb 11, 2014Baker Hughes IncorporatedFlow restriction devices
EP0197566A1 *Jan 29, 1986Oct 15, 1986Institution pour le Développement de la Gazéification SouterraineMethod for the controlled withdrawal of the injection point of gasification agents in the seam during the underground gasification of coal
EP0287735A2 *Nov 3, 1987Oct 26, 1988Atlantic Richfield CompanyMethod for completing a drainhole well
WO1995003476A1 *Jul 23, 1993Feb 2, 1995Gabdrashit Sultan AbdrakhmanovMethod of finishing wells
WO2006053434A1 *Nov 17, 2005May 26, 2006Halliburton Energy Serv IncMethods and apparatus for drilling, completing and configuring u-tube boreholes
WO2008011704A1 *Jul 19, 2007Jan 31, 2008Jennifer Jane AdamsIn situ heavy oil and bitumen recovery process
Classifications
U.S. Classification166/272.1, 166/269, 166/52, 166/50
International ClassificationE21B43/24, E21B43/30, E21B43/16
Cooperative ClassificationE21B43/162, E21B43/305, E21B43/24
European ClassificationE21B43/30B, E21B43/24, E21B43/16D
Legal Events
DateCodeEventDescription
Jun 4, 2012ASAssignment
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DDJ CAPITAL MANGEMENT, LLC;REEL/FRAME:028311/0669
Owner name: APPLIED EXTRUSION TECHNOLOGIES, INC., DELAWARE
Effective date: 20120529
Effective date: 20120531
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION (SUCCESSOR BY MERGER TO WACHOVIA BANK, NATIONAL ASSOCIATION, AS SUCCESSOR BY MERGER TO CONGRESS FINANCIAL CORPORATION), AS AGENT;REEL/FRAME:028310/0441
Aug 29, 2007ASAssignment
Owner name: WACHOVIA BANK, NATIONAL ASSOCIATION, NEW YORK
Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED EXTRUSION TECHNOLOGIES, INC.;REEL/FRAME:019754/0444
Effective date: 20070821
Owner name: WACHOVIA BANK, NATIONAL ASSOCIATION,NEW YORK