Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4274062 A
Publication typeGrant
Application numberUS 05/866,522
Publication dateJun 16, 1981
Filing dateJan 3, 1978
Priority dateJan 5, 1977
Also published asDE2700292A1, DE2700292C2
Publication number05866522, 866522, US 4274062 A, US 4274062A, US-A-4274062, US4274062 A, US4274062A
InventorsUwe Brinkmann, Helmut Telle, Roderich Raue, Carl-Wolfgang Schellhammer
Original AssigneeBayer Aktiengesellschaft
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Dyestuff laser
US 4274062 A
Abstract
Laser light in the wavelength range of 400 - 480 Nm is obtained with a dyestuff laser containing a dyestuff of the general formula ##STR1## wherein E denotes one of the radicals ##STR2## R1 -R4 independently of one another denote hydrogen, alkyl, trifluoromethyl, alkoxy, aralkoxy, halogen, alkenyloxy, the carboxyl, cyano, alkylsulphone, arylsulphone, carboxamide or sulphonamide group or the carboxylic acid ester group, or R1 and R2, or R3 and R4, conjointly represent a fused benzene ring and m and n independently of one another denote 0, 1 or 2, with the proviso that the radical E contains at least one sulphonic acid group if m and n represent 0,
and wherein
the radical E can be further substituted, in a solvent which does not interfere with the emission, at a concentration, which emits laser beams, of, preferably, 10-2 to 10-5 mols/liter.
Images(4)
Previous page
Next page
Claims(6)
We claim:
1. Dyestuff laser consisting of a reservoir, with a laser dyestuff solution contained therein, and a pump light source connected thereto, which is capable of exciting the dyestuff solution to produce an emission, characterised in that the dyestuff solution contains a dyestuff which, in the form of the free acid corresponds to the formula ##STR10## wherein R1 ' and R3 ' independently of one another represent hydrogen, methyl or chlorine and
n' and p each represent 1,
in a solvent which does not interfere with the emission, at a concentration, which emits laser beams, of, preferably, 10-2 to 10-5 mols/liter.
2. A dyestuff laser according to claim 1 which in the free acid form has the following formula: ##STR11##
3. Dyestuff laser consisting of a reservoir, with a laser dyestuff solution contained therein, and a pump light source connected thereto, which is capable of exciting the dyestuff solution to produce an emission, characterised in that the dyestuff solution contains a dyestuff which, in the form of the free acid corresponds to the formula ##STR12## in a solvent which does not interfere with the emission, at a concentration, which emits laser beams, of, preferably, 10-2 to 10-4 mols/liter.
4. A process for producing an emission which comprises pumping light into a reservoir containing a laser dyestuff solution, the dyestuff of said solution being one which, in the form of the free acid corresponds to the general formula ##STR13## wherein R1 ' and R3 ' independently of one another represent hydrogen, methyl or chlorine and
n' and p each represent 1,
whereby there is produced a coherent laser emission in the wave length range of 400 to 480 nm.
5. A process according to claim 4 wherein the dyestuff in the free acid form corresponds to the formula: ##STR14##
6. A process for producing an emission which comprises pumping light into a reservoir containing a laser dyestuff solution, the dyestuff of said solution being one which, in the form of the free acid corresponds to the general formula ##STR15## wherein there is produced a coherent laser emission in the wave length range of 400 to 480 nm.
Description

The subject of the invention is a process for the production of coherent monochromatic radiation (laser light), the frequency of which can be changed, by means of a dyestuff laser which consists of a reservoir for the dyestuff solution and an energy source, associated therewith, which is capable of exciting the dyestuff solution to produce an emission, the radiation produced being in the wavelength range of 400-480 nm.

A laser is a light intensification device by means of which it is possible to produce coherent monochromatic light of a high spectral and geometric intensity density. The laser consists of an optical resonator which contains the liquid laser-active material in a thin-walled quartz cylinder. The cylinder is usually part of a closed system through which the dyestuff solution is circulated by pumping whilst the laser is in operation. This avoids localised overheating, which leads to optical inhomogeneities.

The excitation of the dyestuffs is effected with the aid of energy sources, by means of electrons or light, and the dyestuff laser can also be excited by a gas laser, for example a nitrogen laser or argon laser.

The excitation, which is also termed optical pumping, has the effect of raising the electrons of the molecule of the laser dyestuff from their normal state to a high energy state, from which a radiation transition takes place. If the number of molecules present in the excited state exceeds that of the molecules in lower states, this gives rise to stimulated transitions, by means of which the light is intensified in the optical resonator.

If one of the laser mirrors is partially transparent to light, a part of the radiation leaves the apparatus in the form of a laser beam. Dyestuffs which can be excited particularly easily exhibit the phenomenon of "super radiance" with highly effective excitation. This can be observed, for example, if a quartz cell containing the solution of such a dyestuff is placed in the beam of a nitrogen laser. The solution then emits laser light without being located between resonator mirrors.

A considerable advantage of the dyestuff laser compared with solid or gas lasers is its ability to supply laser radiation of a frequency which can be changed. Because of the width of the fluorescence band of the dyestuffs employed, dyestuff lasers can be so tuned, by inserting a frequency-selective element, for example a reflection grating or a prism, that laser light is emitted at any desired wavelength within the entire fluorescence band of the dyestuff.

Although a large number of suitable dyestuffs has already been proposed, there is, nevertheless, still a considerable lack in many regions of the visible wavelength range of compounds which give a very high degree of effectiveness of the laser.

Accordingly, the subject of the invention is a dyestuff laser consisting of a reservoir, with a laser dyestuff solution contained therein, and a pump light source connected thereto, which is capable of exciting the dyestuff solution to produce an emission, characterised in that the dyestuff solution contains a dyestuff which, in the form of the free acid, corresponds to the general formula ##STR3## wherein E denotes one of the radicals ##STR4## R1 -R4 independently of one another denote hydrogen, alkyl, trifluoromethyl, alkoxy, aralkoxy, alkenyloxy, halogen, the carboxyl, cyano, alkylsulphone, arylsulphone, carboxamide or sulphonamide group or the carboxylic acid ester group, or R1 and R2, or R3 and R4, conjointly represent a fused benzene ring and m and n independently of one another denote 0, 1 or 2, with the proviso that the radical E contains at least one sulphonic acid group is m and n represent 0,

and wherein

the radical E can be further substituted, in a solvent which does not interfere with the emission, at a concentration, which emits laser beams, of, preferably, 10-2 to 10-5 mols/liter.

Examples which may be mentioned of substituents for the radical E are: C1 -C5 -alkyl radicals which can be further substituted by hydroxyl, cyano, halogen or phenyl, such as methyl, ethyl, cyanoethyl, tert.-butyl and benzyl, halogen atoms, such as chlorine, bromine or fluorine and preferably chlorine, C1 -C5 -alkoxy radicals, such as methoxy, ethoxy, butoxy and isopropoxy; allyloxy; benzyloxy, C1 -C5 -alkylsulphonyl radicals which are optionally substituted by hydroxyl, such as methylsulphonyl, ethylsulphonyl, n-butylsulphonyl and β-hydroxy-ethylsulphonyl, the benzylsulphonyl radical, the phenylsulphonyl radical, carboxamide and sulphonamide groups which are optionally monosubstituted or disubstituted by C1 -C4 -alkyl radicals, and also carboxylic acid C1 -C4 -alkyl ester groups.

Suitable alkyl R1 -R4 is, in particular, C1 -C2 -alkyl, suitable alkoxy R1 -R4 is, in particular, C1 -C2 -alkoxy, suitable aralkoxy R1 -R4 is, in particular, benzyloxy and suitable alkenyloxy R1 -R4 is, in particular, C2 -C4 -alkenyloxy.

Alkylsulphonyl R1 -R4 is understood, preferably, as C1 -C4 -alkylsulphonyl and arylsulphonyl R1 -R4 is understood, preferably, as phenylsulphonyl. The carboxamide and sulphonamide groups R1 -R4 can be monosubstituted or disubstituted by C1 -C4 -alkyl radicals.

Carboxylic acid ester groups R1 -R4 are understood, preferably, as the C1 -C4 -alkyl esters

The compounds of the formula I can be employed as free acids or in the form of metal salts or organic ammonium salts.

Possible cations for the salts are monovalent or divalent metals, such as sodium, potassium, lithium, magnesium, calcium, barium, manganese and zinc, and ammonium compounds which are obtained by reacting the acids on which the salts are based with mono-, di- and tri-methylamine, mono-, di- and tri-ethylamine, mono-, di- and tri-ethanolamine, methyldiethanolamine, ethyldiethanolamine, dimethyl-ethanolamine, diethylethanolamine, mono-, di- and tri-isopropanolamine, methyl-di-isopropanolamine, ethyl-di-isopropanolamine, dimethyl-isopropanolamine, n-butylamine, sec.-butylamine, dibutylamine and di-isobutylamine.

Preferred laser dyestuffs of the formula I correspond, in the form of the free acid, to the formula ##STR5## wherein R1 ' and R3 ' independently of one another represent hydrogen, methyl or chlorine and

n' and p represent 0 or 1.

A particularly preferred laser dyestuff corresponds, in the form of the free acid, to the formula ##STR6##

Examples of solvents which do not hinder the stimulated emission and can be used according to the invention are water, monohydric and polyhydric alcohols, for example methanol, ethanol, isopropanol, butanol and ethylene glycol, glycol monoethyl ether, cyclic ethers, such as tetrahydrofurane and dioxane, esters, such as glycol diacetate, diethyl carbonate and fluorinated alcohols, for example hexafluoroisopropanol.

The use of solvent mixtures, especially mixtures of alcohols with water, is likewise possible.

In water, a number of the compounds according to the invention display a reduction in the laser activity as a result of the formation of associates. In this case, the laser activity can be increased by the addition of surface-active compounds, especially non-ionic emulsifiers, for example the reaction products of C9 -C12 -alkylphenols, phenylalkylphenols, oxydiphenyl, oleyl alcohol or longer-chain aliphatic alcohols with 6-50 mols of ethylene oxide.

In recent years laser light from lasers which have a frequency which can be changed has attained considerable importance in spectroscopy. The lasers can be employed for analytical purposes, high resolution spectroscopy, fluorescence spectroscopy, absorption spectroscopy, life measurements and photoionisation and in the spectroscopy of negative ions. They are also of great technical importance in information techniques, in environmental protection and for the separation of isotopes.

REFERRING TO THE ANNEXED DRAWINGS,

FIG. 1 shows a typical arrangement of components used to measure laser activity of a laser dye according to the invention;

FIGS. 2 and 3 show laser power as a function of wavelength for two dyes according to the present invention, each in comparison to a known laser dye; and,

FIG. 4 shows the effect of adding an emulsifier to a laser dye according to the present invention.

A number of the compounds according to the invention show, as a particular advantage, the effect of "super radiance".

The preparation of the compounds according to the invention is effected by reacting aromatic aldehydes with arylmethanephosphonic acid esters in a known manner.

EXAMPLE 1

The laser activity of the compound of the formula ##STR7## was examined in a measuring apparatus according to FIG. 1. The nitrogen laser used had a wavelength of 337 nm, a pulse frequency of 60 Hz, a pulse width Δτ of 7 nsec and a pulse power of 100 kW.

The compound of the above formula was pumped, in a concentration of 1.710-3 mol/liter of methanol, from a reservoir through the dyestuff cell. The frequency of the wavelength was varied by a reflection grating with a step motor drive. The laser spectrum was recorded via a photomultiplier and a recorder and the wavelength was calibrated via the monochromator. In order to measure the power, the photomultiplier was replaced by a thermopile measuring head with an ancillary measuring amplifier. The intensity in percent of the pump power is also given in kW since the initial pulse power was 100 kW.

The dependence of the laser power on the wavelength is given in FIG. 2. The laser power curve of Uvitex CF, the laser activity of which is described in Optics Communications 18, 3 page 256 (August 1976), serves as a comparison.

The compound according to the invention displays a higher power over a considerably wider wavelength range.

Similarly good results are obtained when fluorescence dyestuffs of the following formula ##STR8## are employed in the same measuring apparatus in place of the compound indicated above.

EXAMPLE 2

The laser activity of the compound of the formula ##STR9## was examined in a measuring apparatus according to FIG. 1. The solvent used in this case was water. The concentration of the laser dyestuff was 210-3 mol/liter. The dependence of the laser power on the wavelength is given in FIG. 3. The laser power curve of Uvitex CF in methanol serves for comparison, since Uvitex CF has no laser activity in water.

EXAMPLE 3

The dyestuff solution described in Example 2 is employed in the same apparatus as in Example 1 and 2. 1 to 10 ml of an emulsifier which is obtained by reacting nonphenol with 10 mols of ethylene oxide are added, per liter, to the dyestuff solution. As the amounts of emulsifier added increase, the laser power, which is somewhat lower in water, approaches the laser power in methanol, as is shown in FIG. 4. (NP 10=nonylphenol reacted with 10 mols of ethylene oxide).

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3984399 *Sep 27, 1974Oct 5, 1976Ciba-Geigy AgOptical brighteners
US4072911 *May 1, 1975Feb 7, 1978Bayer AktiengesellschaftDyestuff laser
NL7607198A * Title not available
Non-Patent Citations
Reference
1 *F. P. Schaefer, ed: Dye Lasers (Springer-Verlag, N.Y. & Heidelberg, 1973), pp. 180-181, 262-263, 265.
2 *Majewski et al., "Laser Properties . . . ", Optics Communications, vol. 18, No. 3, Aug. 1976, pp. 255-259.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4551265 *Dec 30, 1981Nov 5, 1985Bayer AktiengesellschaftFluorescent dyestuffs, processes for their preparation and their use as laser dyestuffs
US4610807 *Oct 18, 1984Sep 9, 1986Bayer AktiengesellschaftDistyryl compounds
US5037578 *Apr 2, 1990Aug 6, 1991Exciton Chemical CompanyLight source excites dyes solution to generate coherent laser radiation
US5041238 *Aug 22, 1988Aug 20, 1991Exciton Chemical Companyo,o'-Bridged oligophenylene laser dyes, dyestuff lasers and methods of lasing therewith
US6531679 *Sep 27, 2001Mar 11, 2003Siemens AktiengesellschaftMethod for the laser machining of organic materials
US7207494Dec 24, 2002Apr 24, 2007Digimarc CorporationLaser etched security features for identification documents and methods of making same
US7241557Jul 29, 2005Jul 10, 2007Agfa Graphics NvPrinting plate precursor, sensitivity
US7439537Jul 29, 2005Oct 21, 2008Agfa Graphics, N.V.As sensitizers, optical brighteners and electroluminescent materials; monomers for the synthesis of polymeric light emitting materials of electroluminescent elements
US7661600Apr 19, 2007Feb 16, 2010L-1 Identify SolutionsLaser etched security features for identification documents and methods of making same
US7694887Dec 23, 2004Apr 13, 2010L-1 Secure Credentialing, Inc.Optically variable personalized indicia for identification documents
US7728048Sep 30, 2003Jun 1, 2010L-1 Secure Credentialing, Inc.Laser enhancing method
US7763179Dec 19, 2003Jul 27, 2010Digimarc CorporationColor laser engraving and digital watermarking
US7789311Jun 5, 2007Sep 7, 2010L-1 Secure Credentialing, Inc.Three dimensional data storage
US7793846Dec 24, 2002Sep 14, 2010L-1 Secure Credentialing, Inc.Systems, compositions, and methods for full color laser engraving of ID documents
US7798413Jun 20, 2006Sep 21, 2010L-1 Secure Credentialing, Inc.Covert variable information on ID documents and methods of making same
US7804982Nov 26, 2003Sep 28, 2010L-1 Secure Credentialing, Inc.Systems and methods for managing and detecting fraud in image databases used with identification documents
US7815124Apr 9, 2003Oct 19, 2010L-1 Secure Credentialing, Inc.Image processing techniques for printing identification cards and documents
US7824029May 12, 2003Nov 2, 2010L-1 Secure Credentialing, Inc.Identification card printer-assembler for over the counter card issuing
US7927685Sep 14, 2004Apr 19, 2011L-1 Secure Credentialing, Inc.Using copper potassium iodide adjuvant mixture and metal sulfide
US7980596Jan 14, 2010Jul 19, 2011L-1 Secure Credentialing, Inc.Increasing thermal conductivity of host polymer used with laser engraving methods and compositions
US8083152Feb 16, 2010Dec 27, 2011L-1 Secure Credentialing, Inc.Laser etched security features for identification documents and methods of making same
Classifications
U.S. Classification372/53, 252/301.17
International ClassificationH01S3/20, H01S3/213
Cooperative ClassificationH01S3/213
European ClassificationH01S3/213