Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4288248 A
Publication typeGrant
Application numberUS 05/960,054
Publication dateSep 8, 1981
Filing dateNov 13, 1978
Priority dateMar 28, 1978
Publication number05960054, 960054, US 4288248 A, US 4288248A, US-A-4288248, US4288248 A, US4288248A
InventorsHarold P. Bovenkerk, Paul D. Gigl
Original AssigneeGeneral Electric Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High pressure bonding of diamond or boron nitride with sintering aid, leaching, porosity
US 4288248 A
Abstract
In one embodiment, a compact for tools, such as cutting, drilling and shaping tools, consists essentially of self-bonded abrasive particles. The bonded particles define a substantially continuous interconnected network of pores, dispersed throughout the compact. The method for making such a compact comprises the steps of bonding a mass of abrasive particles, aided by a sintering aid material, under high temperatures and pressures (HP/HT) to form an abrasive body comprised of said particles in a self-bonded form and said material infiltrated throughout the body. The body is then treated to remove substantially all infiltrated material, thereby to produce a compact consisting essentially of the self-bonded abrasive particles. In another embodiment, a composite compact which is made in a similar manner to the first embodiment consists essentially of a layer of self-bonded abrasive particle and a substrate layer (preferably of cemented carbide) bonded to the abrasive particle layer.
Images(1)
Previous page
Next page
Claims(6)
We claim:
1. A method of making a tool component comprising:
a. placing within a reaction cell a mass of abrasive particles selected from the group consisting of diamond and cubic boron nitride and a mass of sintering aid material for said abrasive particle mass;
b. simultaneously subjecting said cell and the contents to temperatures in the range of 1200° C. and to 2000° C. and pressures in excess of 40 kilobars;
c. ceasing the input of heat to said cell;
d. removing from said cell an abrasive body formed by steps (a) to (c), said body comprising said particles in a self-bonded form and said material infiltrated throughout the particles the improvement comprising:
removing substantially all said material infiltrated in said body by contacting said body with a first hot medium comprising nitric acid and hydrofluoric acid and then a second hot medium comprising hydrochloric acid and nitric acid.
2. The process of claim 1 wherein said particles are diamond and said material is selected from the group consisting of (1) a catalytic metal in elemental form, selected from the group consisting of group VIII metals Cr, Mn, Ta; (2) a mixture of alloyable metals of the catalytic metal(s) and non-catalytic metal(s); (3) an alloy of at least two of said catalytic metals; and (4) an alloy of the catalytic metal, (5) and non-catalytic metal(s).
3. The process of claim 1 wherein said particles are boron nitride and said material is selected from the group consisting of Co; alloys of Co; and alloys of Al and an alloying metal selected from the group consisting of Ni, Mn, Fe, V and Cr.
4. The process of claim 1 wherein said first medium is 1 HF:1 HNO3.
5. The process of claim 4 wherein said second medium is 3 HCl:1 HNO3.
6. The process of claim 1 wherein said second medium is 3 HCL:1 HNO3.
Description

This is a division, of application Ser. No. 890,898 filed Mar. 28, 1978, now U.S. Pat. No. 4,224,380 which is a continuation of application Ser. No. 770,151, filed Feb. 18, 1977 now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to machine tools and more particularly to machine tool components comprised of compacts of abrasive particles such as diamond or cubic boron nitride.

It has been found that a diamond compact made in accordance with the teaching of U.S. Pat. Nos. 3,745,623 and 3,609,818--Wentorf et al. is limited in its application because it is thermally degraded at temperatures above approximately 700° C. Similarly, it has been found that a cubic boron nitride (CBN) compact made in accordance with the teaching of U.S. Pat. Nos. 3,767,371 and 3,743,489 is limited in its application. It is also thermally degraded at temperatures above approximately 700° C. This prevents the use of such compacts in applications requiring (1) the bonding of the compact to a support by a brazed material with a melting point close to or above the thermal degradation point of the compact or (2) the molding of the compact in a high melting point, abrasion resistant matrix such as is commonly used in a surface-set rock drill crown.

Accordingly, it is an object of this invention to provide a strong, self-bonded abrasive particle compact which has an improved resistance to thermal degradation at high temperatures.

Another object of this invention is to provide an improved abrasive compact for use as cutting, drilling and shaping tool blanks.

SUMMARY OF THE INVENTION

The foregoing objects and others, which will be apparent from a consideration of the following detailed description in connection with the accompanying claims, are accomplished by providing a machine tool component comprised of a compact consisting essentially of self-bonded abrasive particles with an interconnected network of pores dispersed throughout. The compact is produced by bonding a mass of abrasive particles into a self-bonded body through the use of a sintering aid material under high pressures and temperatures (HP/HT). The body formed at HP/HT includes the self-bonded particles with the sintering aid material (e.g., cobalt or cobalt alloys) infiltrated throughout the body. The infiltrant is then removed, for example, by immersion of the body in an aqua regia bath. It has been discovered that the removal of substantially all of the infiltrant provides an abrasive particles compact which has substantially improved resistance to thermal degradation at high temperatures.

In another embodiment, a composite compact which is made in a similar manner to the first embodiment consists essentially of a layer of self-bonded abrasive particle and a substrate layer (preferably of cemented carbide) bonded to the abrasive particle layer.

BRIEF DESCRIPTION OF THE DRAWING

The drawing is a photomicrograph of a portion of a ground surface of a diamond compact made in accordance with features of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

While FIG. 1 in fact shows a diamond compact, it is equally illustrative of alternative embodiments of this invention in which the abrasive particles are cubic boron nitride (CBN).

The compact comprises diamond particles 11 which comprise between 70% and 95% by volume of the compact. (Particle is used herein to mean an individual crystallite or a fragment thereof.) Interfaces 13 are representative of the self-bonding of or diamond to diamond bonding between adjacent particles 11. The same diamond crystals 11 seen in the ground surface of the compact shown in the drawing are bonded in the third dimension to adjacent diamond crystals (not seen). A metallic phase of sintering aid material (not shown in the drawing) is infiltrated substantially uniformly throughout the compact and is believed to be encapsulated in closed regions formed by adjacent diamond particles. This phase comprises between about 0.05% and 3% by volume of the compact. A network of interconnected empty pores 15 are dispersed throughout the compact and are defined by the diamond particles 11 and the metallic phase (not shown). The pores 15 comprise between about 5% and 30% by volume of the component.

In one embodiment the compact is comprised solely of the self-bonded particles. In a second embodiment, the compact is bonded to a substrate (not shown) preferably of cobalt cement tungsten carbide.

Acceptable particle size range for diamond particles 11 is between 1 and 1000 micrometers. For CBN, the acceptable size range is between 1 to 300 micrometers.

Briefly, a preferred embodiment of a method for preparing a tool component in accordance with features of this invention comprises the steps of:

(a) placing within a reaction cell or charge assembly a mass of abrasive particles selected from the group consisting of diamond and CBN, and a mass of material which is active as a sintering aid for the selected abrasive particle mass;

(b) simultaneously subjecting the cell and the contents thereof to temperatures in the range of 1200° C. to 2000° C. and pressures in excess of 40 kbars;

(c) ceasing the input of heat to the cell;

(d) removing the pressure applied to the cell;

(e) removing from the cell an abrasive body formed by steps (a) to (d) and which is comprised of the particles in self-bonded form with a metallic phase comprised of the sintering aid material infiltrated throughout the abrasive body; and

(f) removing substantially all of the metallic phase which is infiltrated throughout the body.

"Simultaneously", step (b) above, is used herein to mean that the HP/HT conditions exist or occur at the same time but does not require that the times of initiation or termination of the HP and HT conditions be coincident (although the times may be).

"Sintering aid material" is used herein to refer to materials which are a catalyst for diamond as hereinafter identified and/or which promotes the sintering of CBN as hereinafter identified. The mechanism (catalytic or otherwise) by which the sintering aid materials promote the self-bonding of CBN is not known.

Preferred embodiments of steps (a) through (e) of the above method for making a tool component of diamond particles are more fully described in U.S. Pat. Nos. 3,745,623 and 3,609,818 which are hereby incorporated by reference herein.

Briefly, as described in these patents, diamond compacts are prepared by HP/HT processing, wherein hot, compressed diamond particles are infiltrated with a catalytic material by axial or radial sweep-through of the material through the diamond particles. During sweep-through catalyzed sintering of the diamond particles occurs leading to extensive diamond to diamond bonding. As disclosed in U.S. Pat. Nos. 2,947,609 and 2,947,610 (both of which are hereby incorporated herein by reference), the catalytic material is selected from the group consisting of (1) a catalytic metal, in elemental form, selected from the group consisting of group VIII metals Cr, Mn, Ta; (2) a mixture of alloyable metals of the catalytic metal(s) and non-catalytic metal(s); (3) an alloy of at least two of said catalytic metals; and (4) an alloy of the catalytic metal (s) and noncatalytic metal(s). Cobalt in elemental or alloy form is preferred. This material forms a metallic phase in the abrasive body formed at HP/HT as denoted in step (e) above.

Preferred embodiments of steps (a) through (e) of the above method for making a tool component of CBN particles is more fully described in U.S. Pat. No. 3,767,371 which is hereby incorporated by reference herein. As described in and in connection with Example 1 of this patent, CBN compacts are prepared by a HP/HT process in which CBN particles are infiltrated with a molten sintering aid material (cobalt metal) by axial sweep-through of the material through the CBN particles. During sweep-through, sintering of the CBN particles occurs leading to extensive CBN to CBN bonding. Other materials which are operable as sintering aids for CBN are disclosed in U.S. Pat. No. 3,743,489 col. 3, line 6 through line 20, are alloys of aluminum and an alloying metal selected from the group consisting of nickel, cobalt, maganese, iron, vanadium and chromium. Cobalt and alloys of cobalt are preferred. The sintering aid material forms the metallic phase denoted in step (e) above.

In the practice of one embodiment of steps (a) through (e) according to U.S. Pat. Nos. 3,745,623: 3,767,371 and 3,743,489, a composite compact is made by the in situ bonding of an abrasive particle layer (diamond or CBN) to a cemented carbide substrate. The material for forming the carbide substrate (either from a carbide molding powder or from a preformed body) is the preferred source of the sintering aid material. Reference can be made to U.S. Pat. No. 3,745,623 col. 5, lines 58 to col. 6, line 8 and col. 8, lines 57 to col. 9, line 9 for exemplary details of the substrate.

Another embodiment of this invention is directed to the formation of a compact consisting essentially of self-bonded abrasive particles. In this embodiment steps (a) through (e) are practiced in the same manner described above except that the provision of the material for the formation of the carbide support for the abrasive particle layer either as carbide molding powder or in a preformed state is preferably omitted. When this is done, the sintering aid material is separately added, e.g., as shown and described in U.S. Pat. No. 3,609,818. Of course, a support of cemented carbide or other material may be brazed to the compact, after removal of the metallic phase (step f), to form a tool blank or insert.

In accordance with the features of this invention, it has been discovered that the metallic phase can be removed from the compact by acid treatment, liquid zinc extraction, electrolytic depleting or similar processes, leaving a compact of substantially 100% abrasive particles in self-bonded form. Thus, the compact has substantially no residual metallic phase to catalyze backconversion of the abrasive particle bonds and/or to expand and thereby break the particle bonds, these being the two mechanisms by which it is theorized that the prior art compacts thermally degraded at high temperature. It has been found that the compact produced in accordance with this invention can withstand exposure to temperatures up to 1200° C. to 1300° C. without substantial thermal degradation.

EXAMPLE I

A plurality of disc shaped diamond compacts was prepared by (1) placing a 1.4 mm layer of fine diamond particles nominally less than 8 micrometers and 3.2 mm thick×8.8 mm diameter cemented tungsten carbide (13 weight percent Co, 87 weight percent WC) within a 0.05 mm zirconium container assembly; (2) stacking a number of these assemblies within a HP/HT apparatus in FIG. 1 of vessel in U.S. Pat. No. 3,745,623; (3) increasing pressure to about 65 kb and about 1400° C. temperature for 15 min; (4) quenching slowly temperature first and then pressure; (5) removing the samples from the HP/HT apparatus and grinding the samples to obtain compacts with a 0.5 mm thick diamond bonded to the cobalt cemented tungsten carbide layer of 2.7 mm thickness. The carbide layer of each compact was removed by surface grinding.

As indicated in TABLE I, half of the samples were leached in hot concentrated acid solutions to remove the metallic phase and any other soluble non-diamond materials. Two different methods were used to remove the infiltrant. For a first group, denoted as Samples A-1 and A-4, only hot 1:1 concentrated nitric-hydrofluoric acid was used to treat Samples A-3 and A-4. For a second group, denoted as samples B-1 to B-4, the nitric-hydrofluoric acid was alternated with hot 3:1 concentrated hydrochloric-nitric acid (aqua regia) to treat Samples B-3 and B-4. It was found that the removal rate markedly increased by using the latter acid solution. Samples A-3 and A-4 were acid treated for periods of time between eight and twelve days. Samples B-3 and B-4 were treated between three and six days. For both methods during acid treatment, the dimension of the samples did not change and no spalling of the diamond was detected. Therefore, any weight loss is attributable to the removal of the metallic phase infiltrant because diamond is not dissolved by the acids.

The quantity of metallic phase infiltrant in such compacts was calculated to be about 8.1% by volume, or 19.8% by weight, based on density measurements of the compact, before leaching, and of the diamond and metal starting materials for making the compact. After leaching about 0.5% by volume or 0.2% by weight, of the infiltrant remains. The removal of up to 90% by weight (Sample B-4) of the infiltrant also indicates that the location of most of the metallic phase is in a continuous network of pores. Scanning electron microscope (SEM) examination of a fractured surface of a leached sample shows that the network of pores runs throughout the diamond layer. The holes are found to be distributed throughout the layer and most are less than a micron in diameter. This indicates that the acid penetrated the entire diamond layer and acted to remove the metallic phase substantially uniformly throughout.

The transverse rupture strength (TRS) and Young's modulus of elasticity (E) were also measured for the diamond layers as indicated in TABLE I. The strength test was performed on a three point beam loading device. The device includes two steel rollers situated on a support with a third steel roller centered above with its axis parallel to the other two rollers. The samples were centered over the lower rollers and loaded until fracture occurred. The strain on the samples was measured parallel to the tension stress by use of resistance strain gauges attached to a resistance strain indicator. Samples A-1 to A-4 were prepared for the strength test and surface finishing with a diamond wheel (177 to 250 micrometer diamond particles). Samples B-1 to B-4 were prepared for the strength test by surface finishing with a lapping machine using 15 micrometer diamond abrasive to attain a more flaw-free surface than that obtained on Samples A-1 to A-4 by grinding. It is believed that the better polished surfaces in the samples finished with fine diamond give higher strength values because of the more perfect surface conditions achieved, i.e., fewer stress concentrating defects. This is believed to explain the lower TRS values measured for the leached samples (A-3, A-4, B-3, B-4).

              TABLE I______________________________________             Transverse Removal of  Rupture Strength                           Modulus of Infiltrant  (TRS)         Elasticity (E)Sample (% weight loss)             (kg./mm.2)                           (× 103 kg./mm.2)______________________________________A-1   0           111           --A-2   0           101           --A-3   16.1        73            --A-4   16.2        87            --B-1   0           129           89B-2   0           143           92B-3   17.0        88            78B-4   17.9        81            80______________________________________

In contrast to the TRS test results, the E measurements (TABLE I) are not affected by the porosity because E is a measure of the internal strength and rigidity of a material and not microcrack formation. The average change in E was only about 12% lower when the metallic phase infiltrant was removed from the samples. This difference should be corrected for the porosity in the leached samples because ##EQU1## E=Young's modulus M=Moment

C=Distance to Outer Fiber

I=Moment of Inertia of Area

and M C are not changed, but I has been reduced because the effective area has been reduced in proportion to the porosity. Therefore, if spherical voids and random distribution are assumed ##EQU2## x=fraction of porosity, the value of E would be larger than measured. The average value 79×103 kg./mm.2 of E for Samples B-3 and B-4 (leached is corrected to be 85×103 kg./mm.2 or about 5% lower than the average value 90×103 kg./mm.2 of E for Samples B-1 and B-2.

Consequently, the removal of the metallic phase infiltrant has very little effect on E and shows that the strength of the diamond layer is almost totally due to diamond to diamond bonding.

The E value of 90×103 kg./mm.2 is about 10% lower than the average value of 100×103 kg./mm.2 which can be calculated from single crystal diamond elastic constants.

EXAMPLE II

A compact was prepared identically to the procedure given in Example I for Samples A-1 to A-4 except that a 1.1 mixture of 149 to 177 micrometers to 105 to 125 micrometer diamond particles were used in place of the 8-micrometer particles.

The compact prior to leaching was calculated to have 89.1% by weight diamond (96.5% by volume) and 11.9% by weight metallic phase (4.5% by volume). After leaching there is a 11.5% reduction in total weight of the compact or about 0.15% by weight of the metallic phase (0.06% by volume) remains in the compact.

EXAMPLE III

Four diamond compacts were made as set forth in Example I. The carbide was ground off each compact. Two had the metallic phase infiltrant removed by acid leaching in hot 1 HF:1 HNO3 and 3 HCl:1HNO3 acids. All were then mounted with epoxy onto a 0.89 cm. round tungsten carbide substrate. This composite was mounted in a tool holder in a lathe and abrasion resistance turning tests were then performed. The workpiece was a siliceous sand filled rubber log sold under the trademark Ebonite Black Diamond. Test conditions were: surface speed: 107-168 surface m./min. (within one heat treatment group the maximum range was 24 surface m./min.); depth of cut: 0.76 mm. cross feed: 0.13 mm./rev.; and test time: 60 minutes. After the test, the samples were heat treated in a tube furnace in a flowing dry argon atmosphere. The treatment temperatures were 700° C. to 1300° C. with exposure at 100° C. intervals. The exposure time was 10 minutes at each temperature. After each treatment, the samples were examined for evidence of degradation under a scanning electron microscope (SEM) and then mounted for abrasion testing except for the 1000° C., 1100° C., and 1300° C. treatments. Both top and bottom edges were used as cutting edges before being reground.

The abrasion test results are tabulated in TABLE II. The samples were fairly consistent throughout the test. There was a tendency for a reduction in abrasion resistance from the untreated to the first heat treatment at 700° C. The non-leached samples, Samples 3 and 4, did not change until catastrophic thermal failure between 800° C. and 900° C. The heat treatment was found to be independent of the abrasion resistance until the diamond phase could no longer contain the entrapped metallic phase and cracking occurs. This behavior also indicates the presence of two distinct phases: the bonded diamond phase which is doing the cutting in the test, and the metallic phase which is a remnant of the sintering process. The leached samples, Samples 1 and 2, withstood the heat treatment very well, even to 1200° C. The tendency at 1200° C. appears to be toward a slight degradation of the sample which may indicate the initiation of thermal backconversion on the surface.

              TABLE II______________________________________HeatTreatment   LEACHED         NON-LEACHED(°C.)   Sample #1 Sample #2 Sample #3                               Sample #4______________________________________Untreated   150-200   120-150   150     100-120 700    150       120       120     100 800    120       100       120     100 900    120       100       Radial Cracks1000    --        --        --      --1100    --        --        --      --1200     86-100   100-120   --      --1300    --        --        --      --______________________________________

The test results TABLE II represent time per unit of compact wear in inches times 100. Tool wear was determined by measuring the width of the "flat" on the compact caused by contact with the workpiece. The data is meaningful only to compare the relative performance of the leached and non-leached samples.

The leached samples exhibit on the average a higher value than the non-leached samples. This may be the result of the thermal degradation of the non-leached compact during the cutting tests machining by the samples. Thus, the same degradation mechanism may be in effect during the abrasion tests as in the heat treatments. If so, when the tool tip is heated to a high temperature when in contact with the workpiece; the cobalt phase is expanded more than the diamond phase and cracks the tip edge within the first few particle layers. The damaged tip is thereby, weakened and poorer performance is exhibited. However, the leached samples are thermally stable to a higher operating temperature and are not thermally damaged when in contact with the workpiece.

SEM analysis revealed that the non-leached samples exhibited many different characteristics when compared to the leached samples. The metallic phase began to extrude from the surface between 700° C. and 800° C. as viewed under 2000×magnification. As the temperature was increased to 900° C., the samples cracked radially from the rounded cutting edge to the center of the sample. The leached samples did not exhibit this behavior but were relatively unchanged until 1300° C. The diamond layers are clean at 1200° C., but at 1300° C. 20×magnification photos look rounded and fuzzy, and 1000×magnification photos show an etched surface with many exposed crystals. This is probably thermal degradation of the surface, but may also be the result of minor oxygen impurities in the argon atmosphere of the tube furnace.

EXAMPLE IV

Two diamond compacts (Samples IV-1 and IV-2) were made as set forth in Example 1, except that the carbide substrates were not ground off. An epoxy plastic (Epon 826 resin with nodic methyl anhydride and benzyl dimethylamine curing agent) was cast around Sample IV-1 and cured. The surface of the diamond layer was exposed by sanding away all of the plastic on the surface of the layer. Sample IV-1 was then placed in boiling 3 HCL:1 HNO3 for 37.15 hours. After removal from the acid, the plastic was removed from the carbide layer and visually examined. Evidence of a slight reaction between the acid and the nonexposed surfaces was seen. However, the surface of the carbide layer did not appear to be significantly damanged by the acid. The surface of the diamond layer was then examined under a SEM (up to 2000×magnification). The surface of the diamond layer had a similar appearance to the surfaces of the diamond layer of the leached samples in Example 1. Sample IV-1 was then examined by energy dispersive X-ray analysis to compare the intensities of the constituents of the metallic phase to that of a compact of the same type which had not been leached. The results of the SEM analysis and the X-ray analysis indicated that the acid penetrated the diamond layer and acted to remove a substantial portion of the metallic phase.

Samples IV-1 and IV-2 were then subjected to abrasion resistance turning test performed in an identical manner to that set forth in Example III above. The abrasion test results (calculated as in Example III) were 120-150 for Sample IV-1 (leached) and 100-120 for Sample IV-2 (unleached). These test results showing the superiority of the leached compact are consistent with the results obtained in Example III and thus substantiates that the removal of the metallic phase in the region of the cutting edge improves the performance of the diamond compact.

While this invention has been shown and described in connection with certain preferred embodiments thereof, other embodiments thereof will be apparent to those skilled in the art. Accordingly, it is intended that all such embodiments be comprehended within the scope of this invention as defined in the claims appended hereto.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3663191 *Jul 23, 1970May 16, 1972Dentsply Int IncDiamond tool and method of making the same
US3745623 *Dec 27, 1971Jul 17, 1973Gen ElectricDiamond tools for machining
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4518659 *Sep 23, 1983May 21, 1985General Electric CompanyAddition of metal or alloy reduces defects
US4636253 *Aug 26, 1985Jan 13, 1987Sumitomo Electric Industries, Ltd.Diamond sintered body for tools and method of manufacturing same
US4664705 *Jul 30, 1985May 12, 1987Sii Megadiamond, Inc.Infiltrated thermally stable polycrystalline diamond
US4797241 *May 20, 1985Jan 10, 1989Sii MegadiamondMethod for producing multiple polycrystalline bodies
US4797326 *Jan 14, 1986Jan 10, 1989The General Electric CompanySupported polycrystalline compacts
US4850523 *Feb 22, 1988Jul 25, 1989General Electric CompanyBonding of thermally stable abrasive compacts to carbide supports
US4899922 *Feb 22, 1988Feb 13, 1990General Electric CompanyUsing cemented carbide support
US4943488 *Nov 18, 1988Jul 24, 1990Norton CompanyLow pressure bonding of PCD bodies and method for drill bits and the like
US5030276 *Nov 18, 1988Jul 9, 1991Norton CompanyCoating with a metal which is a carbide former on portion contacting metal matrix carrier
US5116568 *May 31, 1991May 26, 1992Norton CompanyMethod for low pressure bonding of PCD bodies
US5585175 *Aug 30, 1994Dec 17, 1996Sandvik AbDiamond-impregnated hard materials
US5723177 *Aug 9, 1996Mar 3, 1998Sandvik AbDiamond-impregnated hard material
US6302225Apr 21, 1999Oct 16, 2001Sumitomo Electric Industries, Ltd.Polycrystal diamond tool
US6528159Feb 26, 1999Mar 4, 2003Sumitomo Electric Industries, Ltd.Sintered diamond tool and method for manufacturing the same
US6749931 *Nov 1, 2000Jun 15, 2004P1 Diamond, Inc.Diamond foam material and method for forming same
US6797326 *Oct 9, 2002Sep 28, 2004Reedhycalog Uk Ltd.Method of making polycrystalline diamond with working surfaces depleted of catalyzing material
US7407012Jul 26, 2005Aug 5, 2008Smith International, Inc.Thermally stable diamond cutting elements in roller cone drill bits
US7435478Jan 27, 2005Oct 14, 2008Smith International, Inc.Decreased risk of delamination; thermally stable polycrystalline diamond layer, a carbide substrate, and a polycrystalline cubic boron nitride layer; rock drilling and metal machining
US7473287Dec 6, 2004Jan 6, 2009Smith International Inc.First phase bonded diamond crystals, and a second phase including a reaction product formed between a binder/catalyst material and a material reactive with binder/catalyst material; reaction product is disposed within interstitial regions; cutting inserts and/or shear cutters in subterranean drill bits
US7487849May 16, 2005Feb 10, 2009Radtke Robert PThermally stable diamond brazing
US7488537Sep 1, 2004Feb 10, 2009Radtke Robert PCeramic impregnated superabrasives
US7493973May 26, 2005Feb 24, 2009Smith International, Inc.Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US7506698Aug 29, 2006Mar 24, 2009Smith International, Inc.Cutting elements and bits incorporating the same
US7517589Dec 22, 2004Apr 14, 2009Smith International, Inc.Thermally stable diamond polycrystalline diamond constructions
US7608333Dec 22, 2004Oct 27, 2009Smith International, Inc.cutter drill bit; body comprises a first region adjacent the side surface that is substantially free of a group 8 metal catalyst material and that extends a partial depth into the diamond body
US7628234Feb 7, 2007Dec 8, 2009Smith International, Inc.Thermally stable ultra-hard polycrystalline materials and compacts
US7647993May 4, 2005Jan 19, 2010Smith International, Inc.Thermally stable diamond bonded materials and compacts
US7703559Sep 25, 2006Apr 27, 2010Smith International, Inc.Rolling cutter
US7726421Oct 12, 2005Jun 1, 2010Smith International, Inc.Diamond-bonded bodies and compacts with improved thermal stability and mechanical strength
US7740090Mar 10, 2006Jun 22, 2010Smith International, Inc.Stress relief feature on PDC cutter
US7740673Jul 11, 2007Jun 22, 2010Smith International, Inc.Thermally stable diamond polycrystalline diamond constructions
US7754333Sep 21, 2004Jul 13, 2010Smith International, Inc.cutter drill bit; body comprises a first region adjacent the side surface that is substantially free of a group 8 metal catalyst material and that extends a partial depth into the diamond body
US7757791Mar 31, 2008Jul 20, 2010Smith International, Inc.Cutting elements formed from ultra hard materials having an enhanced construction
US7828088May 27, 2008Nov 9, 2010Smith International, Inc.includes a substrate material attached to the ultra-hard material body to facilitate attachment of the resulting compact construction to an application device by conventional method such as welding and brazing; ultrahard material is free of group 8 metals; cutting and drilling applications
US7836981Apr 1, 2009Nov 23, 2010Smith International, Inc.Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US7861808Mar 1, 2006Jan 4, 2011Smith International, Inc.Cutter for maintaining edge sharpness
US7862634Nov 13, 2007Jan 4, 2011Smith International, Inc.Polycrystalline composites reinforced with elongated nanostructures
US7942219Mar 21, 2007May 17, 2011Smith International, Inc.Polycrystalline diamond constructions having improved thermal stability
US7946363Mar 18, 2009May 24, 2011Smith International, Inc.Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US7972395Apr 6, 2009Jul 5, 2011Us Synthetic CorporationSuperabrasive articles and methods for removing interstitial materials from superabrasive materials
US7980334Oct 4, 2007Jul 19, 2011Smith International, Inc.Diamond-bonded constructions with improved thermal and mechanical properties
US8002859Feb 5, 2008Aug 23, 2011Smith International, Inc.Manufacture of thermally stable cutting elements
US8020643Sep 12, 2006Sep 20, 2011Smith International, Inc.Ultra-hard constructions with enhanced second phase
US8028771Feb 5, 2008Oct 4, 2011Smith International, Inc.Polycrystalline diamond constructions having improved thermal stability
US8056650Nov 9, 2010Nov 15, 2011Smith International, Inc.Thermally stable ultra-hard material compact construction
US8057562Dec 8, 2009Nov 15, 2011Smith International, Inc.Thermally stable ultra-hard polycrystalline materials and compacts
US8066087May 8, 2007Nov 29, 2011Smith International, Inc.Thermally stable ultra-hard material compact constructions
US8083012Oct 3, 2008Dec 27, 2011Smith International, Inc.Diamond bonded construction with thermally stable region
US8147572Jul 11, 2007Apr 3, 2012Smith International, Inc.Thermally stable diamond polycrystalline diamond constructions
US8157029Jul 2, 2010Apr 17, 2012Smith International, Inc.Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US8191658Aug 20, 2009Jun 5, 2012Baker Hughes IncorporatedCutting elements having different interstitial materials in multi-layer diamond tables, earth-boring tools including such cutting elements, and methods of forming same
US8197936Sep 23, 2008Jun 12, 2012Smith International, Inc.Cutting structures
US8309050Jan 12, 2009Nov 13, 2012Smith International, Inc.Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance
US8328891Jul 17, 2009Dec 11, 2012Smith International, Inc.Methods of forming thermally stable polycrystalline diamond cutters
US8365844Dec 27, 2011Feb 5, 2013Smith International, Inc.Diamond bonded construction with thermally stable region
US8377157May 24, 2011Feb 19, 2013Us Synthetic CorporationSuperabrasive articles and methods for removing interstitial materials from superabrasive materials
US8404019Jun 24, 2011Mar 26, 2013Halliburton Energy Services, Inc.Chemical agents for recovery of leached materials
US8435324Jun 24, 2011May 7, 2013Halliburton Energy Sevices, Inc.Chemical agents for leaching polycrystalline diamond elements
US8485284Jun 3, 2009Jul 16, 2013Element Six Abrasives S.A.Method for producing a PCD compact
US8499861Sep 18, 2007Aug 6, 2013Smith International, Inc.Ultra-hard composite constructions comprising high-density diamond surface
US8535400Oct 19, 2009Sep 17, 2013Smith International, Inc.Techniques and materials for the accelerated removal of catalyst material from diamond bodies
US8567534Apr 17, 2012Oct 29, 2013Smith International, Inc.Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
US8590130May 6, 2010Nov 26, 2013Smith International, Inc.Cutting elements with re-processed thermally stable polycrystalline diamond cutting layers, bits incorporating the same, and methods of making the same
US8622154Feb 5, 2013Jan 7, 2014Smith International, Inc.Diamond bonded construction with thermally stable region
US8702825Feb 9, 2011Apr 22, 2014Smith International, Inc.Composite cutter substrate to mitigate residual stress
US8721752Aug 14, 2008May 13, 2014Reedhycalog Uk LimitedPDC cutter with stress diffusing structures
US8741005Jan 7, 2013Jun 3, 2014Us Synthetic CorporationSuperabrasive articles and methods for removing interstitial materials from superabrasive materials
US8771389May 6, 2010Jul 8, 2014Smith International, Inc.Methods of making and attaching TSP material for forming cutting elements, cutting elements having such TSP material and bits incorporating such cutting elements
US8783389Jun 18, 2010Jul 22, 2014Smith International, Inc.Polycrystalline diamond cutting elements with engineered porosity and method for manufacturing such cutting elements
US8800691Mar 20, 2013Aug 12, 2014Smith International, Inc.Rolling cutter
US20140007512 *Sep 13, 2013Jan 9, 2014Smith International, Inc.Techniques and materials for the accelerated removal of catalyst material from diamond bodies
EP0079117A1 *Sep 8, 1982May 18, 1983General Electric CompanyImprovement in sintered diamond
EP0196777A1 *Feb 27, 1986Oct 8, 1986Reed Tool Company LimitedImprovements in or relating to cutting elements for rotary drill bits
EP0208414A2 *Jun 6, 1986Jan 14, 1987De Beers Industrial Diamond Division (Proprietary) LimitedThermally stable diamond abrasive compact body
EP0329955A2 *Jan 23, 1989Aug 30, 1989General Electric CompanyBonding of thermally stable abrasive compacts to carbide supports
EP0374424A1Oct 23, 1989Jun 27, 1990General Electric CompanySilicon infiltrated porous polycrystalline diamond compacts and their fabrications
EP0460306A1 *Jun 5, 1990Dec 11, 1991Exxon Research And Engineering CompanyFabricating fracture-resistant diamond and diamond composite articles
EP0474092A2 *Aug 27, 1991Mar 11, 1992General Electric CompanyUsing thermally-stable diamond or CBN compacts as tips for rotary drills
EP0953652A1 *Apr 28, 1999Nov 3, 1999Sumitomo Electric Industries, LimitedA polycrystal diamond tool
WO2011080685A2Dec 24, 2010Jul 7, 2011Element Six (Production) (Pty) LtdMethod of treating a diamond containing body
WO2012025613A2Aug 26, 2011Mar 1, 2012Element Six Abrasives S.A.Method of making polycrystalline diamond material
WO2012052500A2Oct 20, 2011Apr 26, 2012Element Six Abrasives S.A.Polycrystalline diamond material
WO2012052501A2Oct 20, 2011Apr 26, 2012Element Six Abrasives S.APolycrystalline diamond material
WO2012088212A2Dec 21, 2011Jun 28, 2012Halliburton Energy Services, Inc.Protective system and chemical agents for leaching polycrystalline diamond elements and for recovery of leached materials
WO2013098217A1 *Dec 20, 2012Jul 4, 2013Element Six Abrasives S.A.Method of processing polycrystalline diamond material
Classifications
U.S. Classification419/2, 419/13, 419/48, 419/11
International ClassificationB24D3/10, B24D3/00, B24B17/00, C22C26/00, B01J3/06
Cooperative ClassificationB01J2203/062, B01J3/062, B24D3/008, B01J2203/0685, B24D3/10, B01J2203/066, B01J2203/0655, C22C26/00, B01J2203/0645, B24D18/00
European ClassificationB24D18/00, B24D3/00E, B24D3/10, C22C26/00, B01J3/06B