Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4298448 A
Publication typeGrant
Application numberUS 06/115,016
Publication dateNov 3, 1981
Filing dateJan 24, 1980
Priority dateFeb 2, 1979
Also published asDE2906652A1, DE2951569A1
Publication number06115016, 115016, US 4298448 A, US 4298448A, US-A-4298448, US4298448 A, US4298448A
InventorsKlaus Muller, Andreas Zimmermann
Original AssigneeBbc Brown, Boveri & Company, Limited
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrophoretic display
US 4298448 A
Abstract
An electrophoretic display including a cell having two plates spaced apart and provided at least regionally with electrodes, where at least one plate and an associated electrode facing the observer are transparent. The cell contains a suspension consisting of an inert dielectric liquid phase and a dispersed solid phase which at least in part are optically discriminable electrophoretic particles. The individual electrophoretic particles each are of practically the same density as the liquid phase, and at least part of the electrophoretic particles are pigment particles provided with a coating of organic material which is solid at the cell operating temperature but which melts at higher temperatures. The coating material contains at least one charge control agent. The charge control agent, preferably a salt of a divalent metal or metal of higher valency and of an organic acid, imparts a well-defined, uniform surface charge and a well defined, uniform surface potential to the particles.
Images(1)
Previous page
Next page
Claims(18)
What is claimed as new and desired to be secured by letters patent of the United States is:
1. An electrophoretic display comprising:
a cell having two opposed plates spaced relative to each other and at least regionally provided with electrodes of which at least the plate facing an observer and its electrode are transparent,
said cell containing a suspension consisting of an inert continuous dielectric liquid phase and a dispersed solid phase constituted at least in part by optically discriminable electrophoretic particles, said individual electrophoretic particles all having practically the same density as the liquid phase, and at least part of the electrophoretic particles constituted by pigment particles coated with a sheath of organic material solidified at the cell operating temperature but melting at higher temperatures,
wherein the sheath matrial contains at least one charge control agent so as to impart a well-defined and practically uniform surface charge as well as a well-defined and practically uniform surface potential to the electrophoretic particles.
2. A display as claimed in claim 1 wherein the charge control agent comprises:
a compound selected from the group consisting of a salt and a complex compound of an at least divalent metal and an organic acid.
3. A display as claimed in claims 1 or 2 where the charge control agent is contained in the coating material at least partly in the form of a solid solution.
4. A display as claimed in claim 2 where the organic acid contains at least 5 C-atoms.
5. A display as claimed in claim 4 where the organic acid is a carboxylic acid.
6. A display as claimed in claim 5 where the carboxylic acid is a monobasic acid with at least 8 C-atoms.
7. A display as claimed in claim 6 where the organic acid is an alkanoic or alkenoic acid.
8. A display as claimed in claim 7 where the organic acid is a high fatty acid.
9. A display as claimed in claim 5 where the organic acid is an alicyclic carboxylic acid.
10. A display as claimed in claim 2 where the at least divalent metal is selected from groups IIA, IIIA, or the iron metal group, or where it is Cu(II).
11. A display as claimed in claims 1 or 2 where the organic coating material is a material soluble in the range between 50° and 150° C. in practically nonpolar aprotic solvents.
12. A display as claimed in claims 1 or 2 where the coating material at least in part consists of a wax.
13. A display according to claim 5, wherein the organic acid is a monocarboxylic acid.
14. A display according to claim 5, wherein said carboxylic acid is a monobasic acid with at least 12 C-atoms.
15. A display according to claim 7 wherein said organic acid is a high fatty acid selected from the group consisting of a stearic acid or oleic acid.
16. A display according to claim 9 wherein said alicyclic acid consists of naphtheic acid.
17. A display according to claim 12 wherein said wax comprises:
a paraffinic wax which melts at a temperature in the range between 50° and 200° C.
18. A display according to claim 17 wherein said paraffinic wax has a melting temperature in the range between 50° and 100° C.
Description

This invention relates to electrophoretic displays and to a process of fabricating such displays.

DESCRIPTION OF THE PRIOR ART

Electrophoretic displays, also called electrophoretic image displays and abbreviated in the following as EPID or EPID cells, are a known kind of passive electrooptic display suitable for the display of digital or alphanumeric or analog information. Such EPID cells and their fabrication have been described, e.g., in U.S. Pat. No. 3,668,106 and in Proceedings of the IEEE, July 1973, pp. 832-836, by I. Ota et al.

The cells of such displays have two plates which are usually parallel and which are at least regionally covered with electrode layers. The front plate, i.e., the plate facing the observer, and the electrode layer applied to it are transparent, and the plates are separated so as to form a closed cell space between them.

Direct current signals can be used to produce a locally defined electric field between overlapping electrode segments on the two plates when they are selectively addressed in the same manner known for the addressing of other electrooptic displays.

Enclosed between the plates or electrodes is a generally inert dielectric liquid phase consisting, e.g., of a halogenated hydrocarbon, which has a finely divided solid phase dispersed in it. The particles of this solid phase are electrophoretically active, i.e. they migrate to the positive or negative electrode under the influence of an applied field, and hence will be called electrophoretic particles.

The electrophoretic particles are made optically different from the dielectric liquid phase, e.g. through the use of contrasting dyes and/or a veiling action. For this reason, the electric fields or regions of these fields can become visible, either as a color contrast or as a contrast between light and dark. This effect will be referred to herein as "optical discriminability" of the electrophoretic particles. It is unimportant whether either the particles or the liquid phase, or both, are colored or dyed, or whether they exhibit differences in absorption with respect to light (including UV). In practice, the liquid dielectric can be tinted for these purposes, e.g. by dissolving a dye in it, and/or the electrophoretic particles can be pigment particles which yield a contrasting color or contrasting absorption relative to the dielectric when they accumulate selectively at certain electrodes under the action of the electric field.

It is of practical importance that the suspension of electrophoretic particles be stable in the absence of electric fields, i.e. that the particles will neither sediment nor rise in the liquid, but have practically the same density as the liquid dielectric. Typical inorganic pigments such as TiO2 (density about 4 g/cm3) have a much higher density than liquid halogenated hydrocarbons such as CCl4 (density 1.59 g/cm3) or similar dielectric liquids. A means known to compensate this density difference is the encapsulation or embedding of the electrophoretic particles with synthetic materials (of a density of ≦1 g/cm3), e.g., with phenolformaldehyde resin or both polyethylene.

Known embedding materials and the methods used to encapsulate electrophoretic particles with these materials, however, give rise to significant technical and time requirements, e.g., they require ball milling for several days, and the uniformity of the encapsulating coatings often is unsatisfactory.

The present applicant has suggested a method of surmounting these difficulties (Swiss Patent Application No. 1034-79 of Feb. 2, 1979) which uses wax materials, e.g., paraffinic waxes or low-molecular-weight polyalkenes, instead of synthetic resins in the encapsulation of inorganic pigments.

The preferred properties of pigments such as TiO2 are not altered by the encapsulation, but the surface properties of the encapsulated pigment particles are governed by the encapsulating material used. The pigment particles must possess a well-defined uniform surface charge, or a similarly well-defined, uniform surface potential in order to be suitable in the operation of electrophoretic displays, i.e. in order to be driven to selected electrodes inside the display cell by an externally applied electric field.

It is known in the art that the charge of pigment particles can be defined by certain charge control agents; e.g. according to Applied Spectroscopy, No. 2, pp. 107 to 111 (1979), the pigment particles are charged up in a defined way by proton transfer from a polyamine added to the suspending liquid. However, this possibility of a controlled chemical interaction between charge control agents and the pigment surface is lost when this surface is covered up with an encapsulating material.

It is further known from the aforementioned U.S. Pat. No. 3,668,106 that substances such as cobalt naphthenate, manganese naphthenate, or nickel naphthenate are dissolved to impart color to the dielectric liquid, and such salts are effective as charge control agents.

The addition of charge control agents to the dielectric liquid in EPID cells is a measure of very limited effect, and usually has the additional disadvantage of raising the electric conductivity of the dielectric liquid.

SUMMARY OF THE INVENTION

Accordingly, it is an object of this invention to produce an electrophoretic display where the encapsulated electrophoretic particles have a clearly defined, uniform surface charge or surface potential.

It has been found that this can be achieved in a surprisingly simple and effective way by charge control agents of which at least one is contained in the coating of the electrophoretic particles, i.e. in the material in which the pigment particles are embedded.

This is a particularly easy to accomplish with the wax materials preferred according to this invention for the encapsulation, since many charge control agents, and in particular those which are preferred, are readily soluble in the waxes and can simply be incorporated in them during the encapsulation step.

According to the present invention, therefore, not only inorganic but also organic pigments can be profitably encapsulated when they are to be used as electrophoretic particles, even though, as in the case of organic pigments, it would still be possible to equalize the densities of the electrophoretic particles and of the liquid dielectric medium without encapsulation.

Methods to embed or encapsulate more or less finely divided solids with wax in order to make these solids oleophilic are known, e.g. from U.S. Pat. No. 3,161,602. It is the essential idea of the method described in this patent that a fusible wax melts in an organic liquid and that a three-phase system of molten wax, organic liquid, and solid particles is formed. This method is less preferred for the purposes of the present invention.

It is more advantageous for the purposes of producing a suspension for EPID cells according to the present invention to use a nonpolar, aprotic solvent such as liquid halogenated hydrocarbons, liquid or paraffinic hydrocarbons as the working medium, together with an embedding material selected from solids which are poorly soluble or insoluble in the working medium at ordinary temperature, but which melt below the boiling point of the working medium and dissolve completely (in any mixing ratio, e.g. up to about 100 wt.%) or to a considerable extent (e.g. in an amount of 10 to 50 wt.%) in the working medium when a relatively sharply defined threshold temperature is exceeded, and which reprecipitate upon subsequent cooling when the threshold temperature is passed in the opposite direction.

This effect of a discrete solubility/temperature curve is briefly designated here as "thermosolution effect", since the term "solvation" implies the use of additives and hence is not an effect that is primarily temperature-controlled.

The waxes preferentially used as embedding material are, in particular, paraffinic waxes and polyalkene waxes with melting points in the range of 50° to 150° C. The molecular weight of such materials usually is in the range of 2,000 to about 10,000. Technical paraffins, in particular those of the microcrystalline kind, as well as low-molecular-weight polyethylenes and polypropylenes are mentioned as examples, and can be obtained commercially as "polyolefinic waxes". Other waxes including materials of natural origin can be used as well.

Preferred charge control agents are organic salts (including complex salts) of divalent metals and metals of higher valency, in particular from groups IIA and IIIA as well as the group of iron metals, i.e. in particular Mg, Ca, Al, Fe, Co, Ni, and further Cu(II) and Zn; suitable organic constituents of the salts are those radicals of organic compounds which possess protonic or protonizable hydrogen atoms. These include, in addition to the carboxylic acids, the sulfonic and analogous acids, as well as alcohols, phenols, etc.

The charge control agent preferably is soluble at least in part in the form of a solid solution in the embedding material, in particular the wax. This is the case, in particular, with the aforesaid metal salts with organic acids, in particular with carboxylic acids which contain at least 5 C-atoms and preferably are monobasic acids which contain at least 8 and preferably 12 C-atoms. Alkanoic acids, in particular the higher saturated fatty acids such as stearic acid and the corresponding alkenoic acids such as oleic acid, can be mentioned as examples. Other carboxylic acids, e.g. aromatic and alicyclic carboxylic acids such as naphthenic acids, are also suitable.

In the process of making an electrophoretic display according to the present invention, the coating around the pigment particles is formed in the presence of said charge control agents. Suitable pigments are inorganic materials such as TiO2, ZrO2, ZnO, Al2 O3, BaSO4, CdS, ZnS, and CaCO3, or organic substances such as Hansa Yellow, Heliogen Blue, and the like, which usually can be obtained commercially.

The average particle size of the embedded electrophoretic particles is typically about one tenth of the distance between the electrodes, which for example is between 50 and 200 μm. A pigment particle size in the range from 0.05 μm to 10 μm can be cited as an example when the embedded pigment particles are to have an average diameter in the typical range between 0.1 and 20 μm.

In the process of making the electrophoretic particles one can work in an aprotic, nonpolar solvent or mixture of solvents (the working medium) which then can be used as the liquid phase of the suspension in the EPID cell as well. The liquid phase of EPID cells preferably is of a relatively low viscosity, while the working medium can have a relatively higher viscosity and, usually, in this case, an appropriately higher boiling point or boiling range (e.g., 70° to 150° C.). Usually it is not particularly preferable to use the working medium also as the liquid phase of the EPID cell suspension, since it is advantageous to wash the electrophoretic particles which have been embedded and contain charge control agent in their coating with a preferably volatile organic liquid which, at room temperature, does not dissolve the coating material.

In a preferred process, a nonionic surfactant soluble in the working medium is added to the working medium serving to embed the pigment particles, in addition to the encapsulating material and the charge control agent. Examples of such surfactants are the esters of polyhydric alcohols and monocarboxylic acids containing at least 8 C-atoms, e.g. sorbitan monooleate, dioleate, or trioleate or the corresponding stearates, as well as condensation products of alcohols or phenols and alkylene oxides, e.g. of isononylphenol and ethylene oxide. By surfactant addition one can control the size of the encapsulated electrophoretic particles, to produce particles of uniform size.

Preferably the electrophoretic particles are produced in such a way that the pigment particles and the wax are suspended together at a temperature below the thermosolution temperature of the wax in the practically nonpolar aprotic liquid in which the wax is thermosoluble, and are jointly heated with agitation to a temperature which is above the thermosolution temperature of the wax in the liquid; the mixture thus formed then is cooled to a temperature which is below the thermosolution temperature.

The thermosolution temperatures of a particular wax in particular working media can be readily determined with a few simple experiments involving the measurement of the clearing or clouding temperature. Generally this temperature is between 30° and 150° C., and preferably between 50° and 100° C.

The thickness of the encapsulating coating can be controlled with the concentration of the encapsulating material in the working medium, or with the ratio between this concentration and the pigment concentration, and also with a variation of the temperature/time relation.

Pigments in the particle sizes mentioned above can for example be processed to electrophoretic particles, also in the range of particle sizes mentioned above, when a mixture of 10 to 90 wt.% of pigment particles and 90 to 10 wt.% of encapsulating wax are used, and this mixture is introduced into an amount of working medium, e.g. liquid paraffin, which is at least three times greater in weight than said mixture.

The amount of charge control agent which is jointly introduced into the working medium is suitably controlled so that 50 to 100 elementary charges are produced on the surface of a particle of 1 μm in radius. This will produce sufficient electrophoretic mobility, on the order of 10-4 to 10-5 cm2 sec-1 V-1. The coating of the electrophoretic particles typically contains at least about 0.01 to about 10 wt. %, preferably about 1 wt. % of the charge control agent. This usually corresponds to a concentration in the working medium which is about 0.02 to 20% of the weight of encapsulating material.

The surfactant is added to the working medium mainly to control the thickness and uniformity of the coating, and it is added in proportions approximately corresponding to those of the charge control agent. The surfactant also serves to keep the electrophoretic particles still having liquid coatings from sticking together. A final electrophoretic particle generally can contain more than a single pigment nucleus.

Vigorous agitation usually prevails throughout the encapsulating procedure. The encapsulated pigment particles, after preferably being separated from the working medium and washed, but usually without a special drying step, are dispersed in the dielectric liquid which is to be used in the EPID cell. The dielectric liquid is, for example, a mixture of a fluorocarbon such as "FREON" 113 and liquid paraffin, and the dispersion is effected with brief sonication. The suspension can then be filled into and sealed in the cell in a manner known in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing, wherein:

FIG. 1 is a schematic cross-sectional view of an electrophoretic display.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawing, the cell 1 shown in FIG. 1 represents a nonemissive, reflective display. The operating principle is transport of the electrophoretic particles 9, 10 in the inert dielectric liquid 8 in the direction shown by arrows in FIG. 1. The suspension 13 is formed of the electrophoretic particles 9, 10, and the, usually dyed, dielectric liquid 8 is enclosed in the space formed by the two plates 2, 3 and the fritted glass seal 6 along the edges of the plates. Plates 2, 3, of which at least the front plate 2 facing the observer is transparent, are provided with electrodes 4, 5 applied to the inner faces, and of these electrodes, at least the one in front, 4, is transparent. By application of a suitably poled electric potential difference to electrodes 4, 5 by means of voltage source 7, the particles 9, 10 are deposited at the transparent front electrode 4, and the color of the particles 9, 10 becomes visible. But when particles 9, 10 are transported to the rear electrode 5 by application of an oppositely poled potential difference (and thus of an oppositely directed field between electrodes 4, 5), only the color of the inert dielectric liquid 8 remains visible. As indicated previously, it is important for the satisfactory operation of the EPID cell 1 that the particles 9, 10 are truly suspended in the liquid 8, i.e. that they do not exhibit a preferred sense of motion relative to the direction of gravity. This presupposes that particles 9, 10 have the same density, i.e. the same specific gravity as the liquid 8. To this end the pigment particles 9 have been provided with encapsulating coatings 10 or 10, 11. It is important here that all pigment particles 9, regardless of whether they are of a uniform size or not, are provided with encapsulating coating 10 or 10, 11 which meet the condition that the resultant specific gravity for all encapsulated particles 9, 10 or 9, 10, 11, which is governed by the pigment-coating mass ratio, has essentially the same value. Then the operating characteristics of the EPID cell are independent of display orientation in gravitational fields.

Apart from the process of making the suspension 13, cell 1 of FIG. 1 can be fabricated in a manner known in the art. This is true as well for the electric addressing of the display. The following examples illustrate the process of making suspensions 13.

EXAMPLE 1

(A) The working medium used to make electrophoretic particles according to the present invention was a commerical aliphatic solvent consisting of hydrocarbons of isoparaffinic structure available from catalytic synthesis which is practically free of polar and reactive components and has a concentration of aromatic hydrocarbons of less than 1 wt. %. The solvent has a boiling range (determined according to ASTM D86) from 116° to 142° C. (50 vol. % at 121° C.), a density (according to ASTM D287, at 15° C.) of 0.72 g/cm3, and a refractive index at 20° C. (according to ASTM D1218) of 1.4041. Such solvents are available commercially, e.g. as the "ISOPAR" brand products of the ESSO company. The solvent used in the present example was "ISOPAR" type E.

(B) In 100 ml of this solvent, the following were suspended at room temperature (20° to 25° C.) with agitation:

5 g--inorganic pigment (TiO2, average particle size ≦1/um, product of Merck company, type 808)

5 g--encapsulating material, which was a wax (polyethylene wax of BASF company, type OA, m.p. 89° to 99° C., molecular weight<10,000)

0.5 g--surfactant, which was sorbitan tristearate ("SPAN 65" brand name product of Atlas Chemical company)

0.5 g--charge control agent, which was copper oleate (a product of Riedel-de Haen company).

The mixture is heated to 100° C. with continued agitation, and then cooled down to room temperature. The thermosolution point of the polyethylene wax in the solvent (as determined in a separate experiment) was 85° C. At this temperature, or just above it, the wax which up to this point has been solid dissolves rapidly in the solvent forming a clear, homogeneous phase. Clouding and precipitation of the wax from the clear solution occurs when the mixture is cooled below the thermosolution point.

In order for the pigment particles to become encapsulated with wax the thermosolution point must be passed, first from lower to higher temperatures and then from higher to lower temperatures, preferably under continued agitation the mixture.

The mixture when cooled down to room temperature was filtered, and the residue remaining on the filter, i.e. the wax-encapsulated pigment particles, were washed with cold hexane in order to remove adhering "ISOPAR" solvent. But it is generally not critical to remove all the solvent.

(C) 0.3 g of the wax-encapsulated pigment particles 9, 10 thus obtained was stirred into a mixture (dielectric liquid phase 8) consisting of 5 ml liquid paraffin ("perliquidum", DAB 6, density 0.83 to 0.87 g/cm3, maximum viscosity about 65 cP) and 5 ml of 1, 1,2-trichlorotrifluoroethane (Fluka No. 91440, "GENETRON" or "FREON" brand 113) containing 30 mg of Oil Blue B as a contrasting dye. In order to produce the EPID suspension, the resulting mixture was homogenized for about 10 sec using ultrasound ("SONICATOR" instrument of Heat Systems-Ultrasonics, Inc.) and filled as the suspension 13 into an EPID cell (test cell in accordance with FIG. 1, both plates consisting of glass with transparent electrodes, one segmented, and a plate separation of 100/um).

(D) The suspension 13 exhibited excellent properties in the EPID cell:

(a) The electrophoric particles 9, 10 were very highly and uniformly dispersed. A sharp maximum in the particle size distribution was found at a particle diameter of about 2/um.

(b) The particles exhibited a well-defined negative charge; the optical contrast ratio was between 5:1 and 10:1. Charge definition was demonstrated by microscope observation of electrophoretic particle migration. In the field between the electrodes, all particles migrated with practically equal velocity as a front from one electrode to the opposite electrode when the polarity (25 V dc) was reversed. The operational or migration velocity was high, requiring between 0.1 and 0.2 sec for the electrophoretic migration of the particles from one electrode to the opposite electrode.

EXAMPLE 2

The operations were the same as in example 1, but with the difference that in addition to the 5 g of polyethylene wax, 2.5 g of high-melting paraffin (DAB 6, mp. 50° to 62° C.) was used as second encapsulating material.

The thermosolution temperature of this wax as determined in a preliminary exxperiment was at about 45° C. Upon cooling from 100° C. down toward room temperature, at first an inner layer 10 of polyethylene wax and then an outer layer 11 of high-melting paraffin is deposited on the pigment particles 9.

Suspension 13 produced in an otherwise identical manner displayed excellent properties similar and in part superior to those reported in example 1 when tested. Tests repeated one month later produced no indications of unfavorable changes.

EXAMPLE 3

The operations were the same as in example 2, but with the use of cobalt naphthenate (of "practical" quality, product No. 60 830 of Fluka company) instead of copper oleate as the charge control agent. Results practically as good as those reported in example 2 were obtained; the contrast ratio was 7:1.

EXAMPLE 4

Operations were the same as in example 2, but with the use of aluminum stearate (pure, product No. 26402 of Riedel-de Haen company) instead of copper oleate as the charge control agent. Results practically as good as those reported in example 2 were obtained, but the resulting particle charge was positive here, in contrast to previous examples.

EXAMPLE 5 (FOR COMPARISON)

The operations were the same as in example 4, but with the following changes:

The surfactant and the charge control agent were added, not in step (B) during encapsulation but in step (C), to the dielectric phase 8.

The suspension thus obtained was ill-suited for EPID cells, mainly because of the insufficiently high and insufficiently uniform degree of dispersion. Agglomerates of electrophoretic particles measuring up to 50-100/um were observed. The particle charge was also insufficiently well-defined, which resulted in a poor contrast ratio between display segments of opposite polarity; the ratio of the reflected light intensities was smaller than 2:1.

EXAMPLE 6 (FOR COMPARISON)

The operations were the same as in example 2, but with the omission of charge control agent in step (B).

Again, the suspension thus obtained was ill-suited for operation of an EPID cell, since the particle charge was poorly defined. During microscopic observation of electrophoretic particle migration between the plates, particle charge of both signs were detected, indicated by the migration of some particles 9, 10, 11 to one electrode (4), and other particles 9, 10, 11 to the other electrode (5). The motions of the particles were also erratic, as evidenced by changes in the direction of motion under constant field. The contrast ratio was lower than 2:1, and the suspension layer had a nonuniform, spotty appearance in the quiescent state.

The degree of dispersion of the particles was high and the degree of uniformity good with a sharp maximum of the particle size distribution at a particle diameter of about 2/μm.

EXAMPLE 7 (FOR COMPARISON)

The operations were the same as in reference example 6, but with the modification that 50 mg of copper oleate as a charge control agent was added to the dielectric liquid 8 in step (C). The dispersion 13 thus obtained was ill-suited for the operation of EPID cells since the particles immediately adhered to the electrodes upon application of the electric field, and could not be moved away upon field reversal. This means that the particles did not have a stable charge, even though the degree of dispersion of the suspension was good (high and uniform).

This experiment shows that when the charge control agent is in the liquid dielectric medium rather than in the pigment particle coating it does not have any advantageous effect, even when the degree of dispersion of the encapsulated particles 9, 10, 11 is good.

Reference examples 5 to 7 show that the presence of the charge control agent during the encapsulation step is essential. Test results show that the charge control agents as used according to the present invention evidently dissolve in the encapsulation material, preferably wax, by forming a solid solution, and are not leached to any significant extent by the liquid dielectric medium 8 of suspension 13 in the EPID cell. The reference examples show further that a charge control agent which is contained in the liquid dielectric medium 8 rather than in the encapsulating layers 10 or 10, 11 evidently cannot accumulate to a sufficient extent on the encapsulating coatings to be effective. This finding is surprising in view of the good solubility of the charge control agents of the present examples in the preferred encapsulating materials. It is surprising, too, that waxes, such as the low-molecular-weight polyolefin waxes, offer significant advantages over the polyolefin resins such as polyethylene resins when they are used to embed inorganic or organic pigments.

It is obvious that the materials and operating conditions mentioned in the above examples 1 to 4 can be modified on the basis of present information. For example, instead of TiO2, other known inorganic pigments and also known organic pigments can be used, since the advantages of a charge control agent built into the coating can also be realized. Previously the coating was only required for density compensation which up to this point was solely important for the inorganic pigments. A group of waxes preferred here, particularly polyolefin waxes, have a melt viscosity (at 120° C. or 140° C., respectively) of 100 to 7000, in particular of 100 to 3000 mm2 /sec.

The surfactant choice, too, can be modified. Apart from the mutual replacement of nonionic surfactants, it has been found that even a charge control agent such as copper oleate can function in part or alone as the surfactant as well.

Furthermore, the charge control agent of the mixture formed in step (B) of example 1 can be added after heating (after thermosolution of the encapsulating material) but before cooling below the thermosolution temperature. Instead of a single charge control agent and single surfactant, mixtures of such materials can also be used, and both the organic liquids used as working medium and in the suspension 13 can be modified. It is generally preferred that the surfactants and, in particular, the charge control agents dissolve in the thermosolved encapsulating material and remain molecularly dispersed in it as a solid solution even after solidification.

For a quantitative estimate of the main parameters, i.e. the electrophoretic mobility or velocity and the charge of electrophoretic particles 9, 10 or 9, 10, 11, the following equation (I) can be used: ##EQU1## where uep =the electrophoretic mobility, typically 10-5 cm2 sec-1 V-1,

ζ=the zeta potential of the pigment particles, typically ±100 mV,

ε=dielectric constant of the suspending medium, typically 2.3,

Q=charge of the individual particle, typically ±100 e-,

r=particle radius, typically 1/μm,

η=viscosity of the medium, typically 1 cP.

Also useful for an approximate definition is the equation (II)

vep =u ep. E                                          (II)

where

vep =the electrophoretic migration velocity,

E=the electric field strength.

As an example for the value of vep the following rough relation can be used:

vep with 3000 V/cm=30 V/cell spacing will amount to 300/μm sec-1 or 0.3 sec/cell spacing.

Further possibilities of modification of the invention with respect to design, fabrication, operation, and application of EPID cells are within the capabilities of those familiar with the state of the art.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3372102 *Jan 16, 1964Mar 5, 1968Carter S Ink CoElectrophoretic printing using source sheet containing an adsorbent material
US3684683 *Apr 13, 1970Aug 15, 1972Matsushita Electric Ind Co LtdElectrophoretic light image reproduction device
US3812406 *Jun 20, 1973May 21, 1974Philips CorpLight emitting diode device for displaying characters
US3914040 *Jun 3, 1974Oct 21, 1975Xerox CorpReversible screen for electrophotographic printing
US4093534 *Feb 5, 1975Jun 6, 1978Plessey Handel Und Investments AgDispersion of opaque dielectric material with adsorbed compound
US4126528 *Jul 26, 1977Nov 21, 1978Xerox CorporationElectrophoretic composition and display device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4655897 *Nov 13, 1984Apr 7, 1987Copytele, Inc.Electrophoretic display panels and associated methods
US4669829 *Nov 8, 1984Jun 2, 1987Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A.Device for controlling the light passing to a light-sensitive element
US4678284 *Jul 16, 1984Jul 7, 1987Alps Electric Co., Ltd.Antiflocculating agent for spacers in liquid crystal displays
US4810067 *Dec 24, 1987Mar 7, 1989Ford Motor CompanyElectrochromic device and method of making an electrochromic layer therefor
US4889603 *Dec 9, 1988Dec 26, 1989Copytele, Inc.Exposing to ultrasonic frequency, agitation
US4919521 *Jun 2, 1988Apr 24, 1990Nippon Sheet Glass Co., Ltd.Electromagnetic device
US5298833 *Jun 22, 1992Mar 29, 1994Copytele, Inc.Black electrophoretic particles for an electrophoretic image display
US5360689 *May 21, 1993Nov 1, 1994Copytele, Inc.Colored polymeric dielectric particles and method of manufacture
US5380362 *Jul 16, 1993Jan 10, 1995Copytele, Inc.Suspension for use in electrophoretic image display systems
US5403518 *Dec 2, 1993Apr 4, 1995Copytele, Inc.Suspension of tetrachloroethylene, 5-ethylidene-2-norbornene, aromatic solvent, fluid dye and pigment particles having antiagglomerant adsorbed on surface, for electrostatic imaging
US5411656 *Aug 12, 1993May 2, 1995Copytele, Inc.Gas absorption additives for electrophoretic suspensions
US5498674 *May 11, 1994Mar 12, 1996Copytele, Inc.Vinyl halide polymer, crosslinking, exposing dispersion to sound waves, dehydrohalogenation for black coloring
US5573711 *Nov 21, 1995Nov 12, 1996Copytele, Inc.Planar fluorinated dielectric suspensions for electrophoretic image displays and related methods
US5643673 *Oct 22, 1993Jul 1, 1997Copytele, Inc.Multilayer dielectric particles comprising composite latex polymer with core/shell structure having residual double bonds which have reacted with metal oxide to produce black color
US5699097 *Apr 20, 1995Dec 16, 1997Kabushiki Kaisha ToshibaDisplay medium and method for display therewith
US5707738 *Sep 14, 1994Jan 13, 1998Copytele, Inc.Black electrophoretic particles and method of manufacture
US5930026 *Oct 25, 1996Jul 27, 1999Massachusetts Institute Of TechnologyNonemissive displays and piezoelectric power supplies therefor
US5932633 *Aug 22, 1997Aug 3, 1999Copytele, Inc.Method for making polymers-coated pigment particles using initiator-treated pigments
US5961804 *Mar 18, 1997Oct 5, 1999Massachusetts Institute Of TechnologyMicroencapsulated electrophoretic display
US5964935 *Aug 22, 1997Oct 12, 1999Copytele, Inc.Initiator-treated pigment particles and method for preparing same
US6017584 *Aug 27, 1998Jan 25, 2000E Ink CorporationEncapsulated displays are disclosed; particles encapsulated therein are dispersed within a suspending or electrophoretic fluid
US6067185 *Aug 27, 1998May 23, 2000E Ink CorporationCuring binder; deformation with mechanical force; suspending, or electrophoretic, fluid; electro-osmotic displays
US6113810 *Feb 3, 1995Sep 5, 2000Copytele, Inc.Methods of preparing electrophoretic dispersions containing two types of particles with different colors and opposite charges
US6117368 *Dec 21, 1994Sep 12, 2000Copytele, Inc.Black and white electrophoretic particles and method of manufacture
US6120588 *Sep 23, 1997Sep 19, 2000E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6120839 *Aug 27, 1998Sep 19, 2000E Ink CorporationElectro-osmotic displays and materials for making the same
US6124851 *Jul 20, 1995Sep 26, 2000E Ink CorporationElectronic book with multiple page displays
US6130773 *Nov 10, 1998Oct 10, 2000Massachusetts Institute Of TechnologyNonemissive displays and piezoelectric power supplies therefor
US6194488Mar 1, 1999Feb 27, 2001Copytele, Inc.Method for making polymer-coated pigment particles using initiator-treated pigments
US6241921Dec 7, 1998Jun 5, 2001Massachusetts Institute Of TechnologyElectrophoretic separation of first and second particles within a circularly contained and encapsulated suspension, fusing the particles to form opposing optical elements
US6249271Feb 25, 2000Jun 19, 2001E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US6262706Aug 27, 1998Jul 17, 2001E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US6262833Oct 6, 1999Jul 17, 2001E Ink CorporationCapsules for electrophoretic displays and methods for making the same
US6312304Dec 14, 1999Nov 6, 2001E Ink CorporationAssembly of microencapsulated electronic displays
US6323989May 5, 2000Nov 27, 2001E Ink CorporationElectrophoretic displays using nanoparticles
US6326944 *May 8, 1998Dec 4, 2001Eastman Kodak CompanyColor image device with integral heaters
US6348295Mar 3, 2000Feb 19, 2002Massachusetts Institute Of TechnologyMethods for manufacturing electronic and electromechanical elements and devices by thin-film deposition and imaging
US6376828Oct 7, 1999Apr 23, 2002E Ink CorporationIllumination system for nonemissive electronic displays
US6377387Apr 6, 2000Apr 23, 2002E Ink CorporationMethods for producing droplets for use in capsule-based electrophoretic displays
US6392785Jan 28, 2000May 21, 2002E Ink CorporationNon-spherical cavity electrophoretic displays and materials for making the same
US6422687Dec 23, 1999Jul 23, 2002E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6445489Mar 18, 1999Sep 3, 2002E Ink CorporationElectrophoretic displays and systems for addressing such displays
US6473072May 12, 1999Oct 29, 2002E Ink CorporationMicroencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6480182Jul 20, 2001Nov 12, 2002Massachusetts Institute Of TechnologyPrintable electronic display
US6498114Aug 31, 2000Dec 24, 2002E Ink CorporationMethod for forming a patterned semiconductor film
US6506438Dec 14, 1999Jan 14, 2003E Ink CorporationBy ink-jet printing using a transfer member; used in addressing an electronic display
US6515649Aug 27, 1998Feb 4, 2003E Ink CorporationSuspended particle displays and materials for making the same
US6518949Apr 9, 1999Feb 11, 2003E Ink CorporationElectronic displays using organic-based field effect transistors
US6538801Nov 12, 2001Mar 25, 2003E Ink CorporationElectrophoretic displays using nanoparticles
US6545797Jun 11, 2001Apr 8, 2003Sipix Imaging, Inc.Process for imagewise opening and filling color display components and color displays manufactured thereof
US6652075Jul 22, 2002Nov 25, 2003E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6664027Jan 30, 2002Dec 16, 2003Massachusetts Institute Of TechnologyMethods and apparatus for manufacturing electronic and electromechanical elements and devices by thin-film deposition and imaging
US6665042May 16, 2000Dec 16, 2003The University Of RochesterElectrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same
US6680725Oct 14, 1998Jan 20, 2004E Ink CorporationMethods of manufacturing electronically addressable displays
US6693620May 3, 2000Feb 17, 2004E Ink CorporationThreshold addressing of electrophoretic displays
US6704133Aug 30, 2002Mar 9, 2004E-Ink CorporationReflective display in optical communication with emissive display comprising electrooptic and photoconductive layers, electrodes, synchronization module receiving signals indicating emissive display output, controlling electric field
US6727881Aug 27, 1998Apr 27, 2004E Ink CorporationLongterm image quality
US6738050Sep 16, 2002May 18, 2004E Ink CorporationMicroencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6788450 *Mar 19, 2002Sep 7, 2004Seiko Epson CorporationElectrophoretic device, driving method of electrophoretic device, and electronic apparatus
US6788452Dec 4, 2002Sep 7, 2004Sipix Imaging, Inc.Imagewise opening and filling display cells with display fluids of different colors
US6822782May 15, 2002Nov 23, 2004E Ink CorporationElectrophoretic particles and processes for the production thereof
US6829075May 20, 2003Dec 7, 2004The University Of RochesterElectrically addressable optical devices using a system of composite layered flakes suspended in a fluid host to obtain angularly dependent optical effects
US6839158Oct 6, 1999Jan 4, 2005E Ink CorporationEncapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6842657Jul 21, 2000Jan 11, 2005E Ink CorporationReactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6864875May 13, 2002Mar 8, 2005E Ink CorporationFull color reflective display with multichromatic sub-pixels
US6865010Dec 13, 2002Mar 8, 2005E Ink CorporationElectrophoretic electronic displays with low-index films
US6879314 *Sep 22, 2000Apr 12, 2005Brother International CorporationMethods and apparatus for subjecting an element to an electrical field
US6882463Oct 15, 2003Apr 19, 2005Canon Kabushiki KaishaA resin and pigment granules enclosed therein; average particle size ranging from 0.1 mu m to 20 mu m; pigment granules have two or more frequency maximums in granule diameter distribution; high masking performance, improving the
US6885032Nov 20, 2002Apr 26, 2005Visible Tech-Knowledgy, Inc.Display assembly having flexible transistors on a flexible substrate
US6914714Mar 9, 2004Jul 5, 2005Sipix Imaging Inc.High quality, high resolution multi-color displays with significantly lower processing costs, less defects, higher yields, and no crosstalk among neighboring color fluids
US6972893Oct 30, 2002Dec 6, 2005Sipix Imaging, Inc.Process for imagewise opening and filling color display components and color displays manufactured thereof
US6980196Mar 18, 1997Dec 27, 2005Massachusetts Institute Of TechnologyPrintable electronic display
US6985132Nov 27, 2001Jan 10, 2006Matsushita Electric Industrial Co., Ltd.Display device and method for manufacturing the same
US7002728Feb 9, 2004Feb 21, 2006E Ink CorporationElectrophoretic particles, and processes for the production thereof
US7038655Nov 18, 2002May 2, 2006E Ink CorporationElectrophoretic ink composed of particles with field dependent mobilities
US7038656 *Feb 14, 2003May 2, 2006Sipix Imaging, Inc.Electrophoretic display with dual-mode switching
US7038670Feb 14, 2003May 2, 2006Sipix Imaging, Inc.Electrophoretic display with dual mode switching
US7042617Apr 2, 2003May 9, 2006The University Of RochesterOptical devices having flakes suspended in a host fluid to provide a flake/fluid system providing flakes with angularly dependent optical properties in response to an alternating current electric field due to the dielectric properties of the system
US7046228 *Aug 16, 2002May 16, 2006Sipix Imaging, Inc.Electrophoretic display with dual mode switching
US7052571May 12, 2004May 30, 2006Sipix Imaging, Inc.multicolor display; patternwise filling microcups with colored solution; desolventizing; filling with electrophoresis liquid mixture containing charged particles in dielectric solvent in which colorant is soluble
US7071913Jun 29, 2001Jul 4, 2006E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US7075502Apr 9, 1999Jul 11, 2006E Ink CorporationFull color reflective display with multichromatic sub-pixels
US7109968Dec 24, 2002Sep 19, 2006E Ink CorporationNon-spherical cavity electrophoretic displays and methods and materials for making the same
US7148128Aug 29, 2003Dec 12, 2006E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US7167155Aug 27, 1998Jan 23, 2007E Ink CorporationColor electrophoretic displays
US7230750Oct 7, 2004Jun 12, 2007E Ink CorporationElectrophoretic media and processes for the production thereof
US7236290Jul 25, 2000Jun 26, 2007E Ink CorporationLiquid, preferably encapsulated, containing a particle capable of moving through it on application of an electric field and also containing a free radical scavenger which is either a stable free radical, e.g., TEPMO, or a polymeric free radical scavenger, e.g., Uvinul 5050H
US7242513May 20, 2004Jul 10, 2007E Ink CorporationEncapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7247379Sep 6, 2005Jul 24, 2007E Ink CorporationElectrophoretic particles, and processes for the production thereof
US7256766May 10, 2002Aug 14, 2007E Ink CorporationElectrophoretic display comprising optical biasing element
US7312916Aug 6, 2003Dec 25, 2007E Ink CorporationElectrophoretic media containing specularly reflective particles
US7375875May 2, 2007May 20, 2008E Ink CorporationElectrically charged particle suspended in a fluid, with a polymeric shell which is incompatible with the suspending fluid, a second charged particle having optical properties differing from the first particle, with a polymer shell; for encapsulated and microcell electrophoretic displays
US7382514Nov 28, 2005Jun 3, 2008Sipix Imaging, Inc.Pigment particles with a core having a low refractive index and a shell having a high refractive index dispersed in a dielectric solvent with refractive index different from the shell; improved contrast ratio; microencapsulation involving interfacial crosslinking of a reactive protective colloid
US7385751Dec 2, 2005Jun 10, 2008Sipix Imaging, Inc.Process for imagewise opening and filling color display components and color displays manufactured thereof
US7391555Jun 27, 2006Jun 24, 2008E Ink CorporationNon-spherical cavity electrophoretic displays and materials for making the same
US7411720Feb 9, 2007Aug 12, 2008E Ink CorporationElectrophoretic particles and processes for the production thereof
US7427978Dec 14, 2004Sep 23, 2008Brother International CorporationMethods and apparatus for subjecting an element to an electrical field
US7486431Nov 14, 2006Feb 3, 2009Mario RabinowitzManufacture of micro mirror balls and circumscribing bearings for solar energy concentration and other optical functions
US7492505Apr 16, 2007Feb 17, 2009Sipix Imaging, Inc.Electrophoretic display with dual mode switching
US7532388May 2, 2007May 12, 2009E Ink CorporationElectrophoretic media and processes for the production thereof
US7597826Apr 12, 2005Oct 6, 2009Mario RabinowitzManufacture of transparent mirrored micro-balls for solar energy concentration and optical functions
US7658329May 22, 2008Feb 9, 2010Metrologic Instruments, Inc.Consumer product package bearing a remotely-alterable radio-frequency (RF) powered electronic display label employing an electronic ink layer integrated within a stacked-layer architecture
US7667684Apr 2, 2004Feb 23, 2010E Ink CorporationMethods for achieving improved color in microencapsulated electrophoretic devices
US7669768May 22, 2008Mar 2, 2010Metrologic Instruments, Inc.Remotely-alterable electronic display label employing an electronic ink layer integrated within a stacked-layer architecture employing an antenna layer and an integrated circuit layer supporting an on-board battery power component, and a programmed processor for determining graphical indicia to be displayed by said electronic ink layer in response to electromagnetic signals received from said antenna
US7673800May 22, 2008Mar 9, 2010Metrologic Instruments, Inc.Remotely-alterable radio-frequency (RF) powered electronic display label employing an electronic ink layer integrated within a stacked-layer architecture
US7677454Jun 6, 2008Mar 16, 2010Metrologic Instruments, Inc.Digital information recording media system including a digital information recording media device with an electronic-ink display label for displaying information related to said digital information recording media device and/or digital information recorded thereon
US7679813Feb 1, 2006Mar 16, 2010Sipix Imaging, Inc.Electrophoretic display with dual-mode switching
US7703678Jun 16, 2008Apr 27, 2010Metrologic Instruments, Inc.Electronic monetary instrument employing an electronic-ink layer for visually displaying the monetary value thereof in a particular currency
US7735735May 22, 2008Jun 15, 2010Metrologic Instruments, Inc.Electronic-ink based display system employing a plurality of RF-based activator modules in wireless communication with a plurality of remotely-updateable electronic display devices, each employing an electronic ink layer integrated within a stacked architecture
US7735736May 22, 2008Jun 15, 2010Metrologic Instruments, Inc.Remotely-alterable electronic display device employing an electronic-ink layer integrated within a stacked-layer architecture
US7743987May 22, 2008Jun 29, 2010Metrologic Instruments, Inc.Electronic-ink based label system employing a plurality of remote activator modules in communication with a plurality of remotely-updateable electronic-ink display labels each assigned unique encryption keys for allowing only a subset of said labels to receive a broadcasted message from a common encrypted message broadcast signal
US7746544Mar 31, 2008Jun 29, 2010E Ink CorporationElectro-osmotic displays and materials for making the same
US7748626Jun 6, 2008Jul 6, 2010Metrologic Instruments, Inc.Electronic menu display system employing a plurality of portable menus, each including an electronic-ink display label for displaying information updated by one or more activator modules within the restaurant
US7748627Jun 19, 2008Jul 6, 2010Metrologic Instruments, Inc.Card-sized electronic data storage device employing an electronic-ink layer for displaying graphical indicia
US7753276Jun 16, 2008Jul 13, 2010Metrologic Instruments, Inc.Electronic-ink based multi-purpose board game employing a game board and game pieces with an electronic-ink display structure
US7753277Jun 18, 2008Jul 13, 2010Metrologic Instruments, Inc.User-operable actuation device employing an updateable electronic-ink display label
US7757954May 22, 2008Jul 20, 2010Metrologic Instruments, Inc.Remotely-alterable flexible electronic display device employing an electronic-ink layer integrated within a stacked-layer architecture
US7762461May 22, 2008Jul 27, 2010Metrologic Instruments, Inc.Remotely-alterable wireless electronic display device employing an electronic ink layer integrated within a stacked-layer architecture, including an activation grid matrix layer and transmitting and receiving antenna layers
US7762462Jun 16, 2008Jul 27, 2010Metrologic Instruments, Inc.Electronic information display system employing a plurality of electronic-ink display labels associated with a plurality of manufactured items for displaying information which changes as the manufactured items move through wholesale/retail distribution channels
US7766238Jun 16, 2008Aug 3, 2010Metrologic Instruments, Inc.Electronic shipping container labeling system for labeling a plurality of shipping containers transported through a shipping system, using electronic-ink shipping labels displaying information regarding said shipping containers, and remotely updated by one or more activator modules
US7784701Jun 16, 2008Aug 31, 2010Metrologic Instruments, Inc.Electronic product price display system for installation in a retail environment and employing a plurality of electronic-ink display labels associated with a plurality of consumer products, for displaying price and/or promotional information remotely programmed using one or more activator modules installed within said retail environment
US7791489Mar 5, 2008Sep 7, 2010Metrologic Instruments, Inc.Electronic-ink based RFID tag for attachment to a consumer item and displaying graphical indicia indicating whether or not said consumer items has been read and its integrated RFID module has been activated or deactivated
US7791789May 9, 2008Sep 7, 2010E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US7798404Jun 5, 2008Sep 21, 2010Metrologic Instruments, Inc.Electronic admission pass system employing a plurality of updateable electronic-ink admission passes and one or more activator modules
US7804637Nov 18, 2006Sep 28, 2010Mario RabinowitzStable induced alignment of mini mirrors for solar energy concentration and other optical functions
US7815116Jun 16, 2008Oct 19, 2010Metrologic Instruments, Inc.Electronic tagging system for tagging a plurality of luggage items transported through a transportation system, using electronic-ink display tags for displaying real-time information regarding said luggage items, and remotely programmable by activator modules installed throughout said transportion system
US7821702Jan 9, 2009Oct 26, 2010Sipix Imaging, Inc.Electrophoretic display with dual mode switching
US7871001May 22, 2008Jan 18, 2011Metrologic Instruments, Inc.Remotely-alterable electronic-ink based display device employing an electronic-ink layer integrated within a stacked architecture
US7891569May 22, 2008Feb 22, 2011Metrologic Instruments, Inc.Electronic-ink based display device employing an electronic-ink layer integrated within a stacked architecture
US7913908May 23, 2008Mar 29, 2011Metrologic Instruments, Inc.Electronic-ink based display tagging system employing a plurality electronic-ink display tags having a stacked architecture and being powered and programmed by a portable tag activation module
US7918395May 23, 2008Apr 5, 2011Metrologic Instruments, Inc.Electronic product identification and price display system employing electronic-ink display labels having a stacked architecture for visually displaying the price and/or promotional information for said consumer product, remotely updated by one or more remote activator modules installed within the retail environment
US7918396Jun 17, 2008Apr 5, 2011Metrologic Instruments, Inc.Electronic-ink based information organizing device employing an activator module mounted beneath the surface of an electronic-ink display structure
US7946489Jun 17, 2008May 24, 2011Metrologic Instruments, Inc.Electronic-ink based writing/drawing and display device employing an activator module mounted beneath the surface of an electronic-ink display structure
US7956841Dec 21, 2007Jun 7, 2011E Ink CorporationStylus-based addressing structures for displays
US8035886Nov 2, 2006Oct 11, 2011E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US8040594Mar 17, 2010Oct 18, 2011E Ink CorporationMulti-color electrophoretic displays
US8054218May 23, 2008Nov 8, 2011Metrologic Instruments, Inc.Remotely-alterable electronic-ink based display device employing an integrated circuit structure having a GPS signal receiver and programmed processor for locally determining display device position and transmitting determined position information to a remote activator module
US8072675Apr 29, 2009Dec 6, 2011Sipix Imaging, Inc.Color display devices
US8089453Dec 21, 2007Jan 3, 2012E Ink CorporationStylus-based addressing structures for displays
US8115729Mar 16, 2006Feb 14, 2012E Ink CorporationElectrophoretic display element with filler particles
US8169690Feb 12, 2009May 1, 2012Sipix Imaging, Inc.Color display devices
US8213076Jul 21, 2010Jul 3, 2012E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US8234507Jan 13, 2009Jul 31, 2012Metrologic Instruments, Inc.Electronic-ink display device employing a power switching mechanism automatically responsive to predefined states of device configuration
US8384658Jan 8, 2008Feb 26, 2013E Ink CorporationElectrostatically addressable electrophoretic display
US8422116Apr 1, 2009Apr 16, 2013Sipix Imaging, Inc.Color display devices
US8441714Oct 3, 2011May 14, 2013E Ink CorporationMulti-color electrophoretic displays
US8457013Jan 13, 2009Jun 4, 2013Metrologic Instruments, Inc.Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
US8466852Apr 20, 2004Jun 18, 2013E Ink CorporationFull color reflective display with multichromatic sub-pixels
US8503063Dec 22, 2009Aug 6, 2013Sipix Imaging, Inc.Multicolor display architecture using enhanced dark state
US8582196Jun 16, 2010Nov 12, 2013E Ink CorporationElectrophoretic particles and processes for the production thereof
US8593718Apr 5, 2010Nov 26, 2013E Ink CorporationElectro-osmotic displays and materials for making the same
US8593721May 2, 2012Nov 26, 2013E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US8605354Feb 10, 2012Dec 10, 2013Sipix Imaging, Inc.Color display devices
US8649084Sep 2, 2011Feb 11, 2014Sipix Imaging, Inc.Color display devices
US8670174Nov 18, 2011Mar 11, 2014Sipix Imaging, Inc.Electrophoretic display fluid
US8704756May 25, 2011Apr 22, 2014Sipix Imaging, Inc.Color display architecture and driving methods
US8717664Oct 2, 2012May 6, 2014Sipix Imaging, Inc.Color display device
US8749590 *Nov 27, 2007Jun 10, 2014Koninklijke Philips N.V.Display device using movement of particles
US8786935May 29, 2012Jul 22, 2014Sipix Imaging, Inc.Color electrophoretic display
US8797258Dec 22, 2009Aug 5, 2014Sipix Imaging, Inc.Highlight color display architecture using enhanced dark state
US8797636Jul 17, 2012Aug 5, 2014Sipix Imaging, Inc.Light-enhancing structure for electrophoretic display
US8810899Mar 1, 2013Aug 19, 2014E Ink California, LlcColor display devices
US20100060673 *Nov 27, 2007Mar 11, 2010Koninklijke Philips Electronics N.V.Display device using movement of particles
US20140078024 *Nov 5, 2010Mar 20, 2014E Ink CorporationProtection of electro-optic displays against thermal effects
EP0968247A1 *Feb 11, 1998Jan 5, 2000Copytele Inc.Polymeric-coated dielectric particles and formulation and method for preparing same
WO1995002636A1 *Jun 21, 1994Jan 26, 1995Copytele IncSuspension for use in electrophoretic image display systems
WO1995005622A1 *Aug 9, 1994Feb 23, 1995Copytele IncGas absorption additives for electrophoretic suspensions
WO1995033085A1 *Apr 25, 1995Dec 7, 1995Copytele IncFluorinated dielectric suspensions for electrophoretic image displays and related methods
WO1998041898A2 *Mar 6, 1998Sep 24, 1998Massachusetts Inst TechnologyPrintable electronic display
WO1999060554A1 *May 14, 1999Nov 25, 1999Massachusetts Inst TechnologyHeterogeneous display elements and methods for their fabrication
WO2013020808A2Jul 25, 2012Feb 14, 2013BSH Bosch und Siemens Hausgeräte GmbHCooling device having an electronic ink-based display panel
Classifications
U.S. Classification359/296, 430/31
International ClassificationG09F9/37, G03G17/04, G02F1/167
Cooperative ClassificationG02F1/167, G03G17/04
European ClassificationG02F1/167, G03G17/04
Legal Events
DateCodeEventDescription
Jun 10, 1981ASAssignment
Owner name: BBC BROWN,BOVERI & COMPANY, LIMITED, 5401 BADEN, S
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MULLER KLAUS;ZIMMERMANN ANDREAS;REEL/FRAME:003859/0899;SIGNING DATES FROM 19791206 TO 19791207