Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4478509 A
Publication typeGrant
Application numberUS 05/894,470
Publication dateOct 23, 1984
Filing dateApr 10, 1978
Priority dateApr 15, 1976
Also published asCA1105069A, CA1105069A1
Publication number05894470, 894470, US 4478509 A, US 4478509A, US-A-4478509, US4478509 A, US4478509A
InventorsJohn W. Daughton, Gary A. Gray, Stephen A. Wilczek, Edward Steiner
Original AssigneeXerox Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Control system and interface for electrostatographic machines
US 4478509 A
Abstract
An electrostatographic type copying or reproduction machine incorporating a programmable controller to operate the various machine components in an integrated manner to produce copies. The controller carries a master program bearing machine operating parameters from which an operating program for the specific copy run desired is formed and used to operate the machine components to produce the copies programmed. A multiple prioritized interrupt system is employed to distribute the operating program to the machine.
Images(39)
Previous page
Next page
Claims(7)
What is claimed is:
1. In a reproduction machine having a plurality of components which cooperate with one another and a photosensitive member to electrostatically produce copies on support material, the improvement comprising:
a controller for operating said machine components said controller including a memory section and a processor for addressing said memory section to operate said machine components;
interface means for transferring control data between said machine components and said controller;
means for suspending operation of said processor;
means for accessing said memory section directly under control of the interface to obtain current control data for operating said machine components; and
clock means for producing clock pulses which periodically actuate said suspension means, said clock pulses being derived in synchronism with machine operation.
2. The improvement of claim 1 wherein said memory section includes a buffer for temporarily holding control data pending transfer to said machine components, with said control data being simultaneously transferred to said machine components from said buffer while operation of said processor is temporarily suspended.
3. The improvement of claim 2 which further comprises:
a plurality of routines stored in the memory for actuating some of the machine components whose timing of actuation depends upon the particular copy run selected, said routines being listed in a sequential order necessary for properly timed actuation of their respective components;
a counter containing the number of clock pulses between successive component actuation;
means for changing the count of said counter at each occurrence of said clock pulse;
means responding to a pre-set count on said counter for accessing the next routine while re-setting said counter to a new count representing the interval to the succeeding component actuation; and
said components being simultaneously refreshed with control data when said count on the counter does not correspond to said pre-set count.
4. A method of operating a reproduction machine having a plurality of selectively actuable machine components which operate with one another and a photosensitive member to electrostatically produce copies on support material, said machine having an operator console for selecting various types of copy runs, said machine having a programmable controller with memory for actuating said components, the memory normally under control of the controller, said controller in a first state actuating predetermined machine components regardless of the particular copy run selected and in a second state actuating predetermined machine components in a timing sequence depending upon the particular copy run selected, said method comprising:
forming a table in memory for actuation of machine components in the second state for proper completion of the selected copy run;
initially operating in the first state;
producing clock pulses in synchronism with the machine operation;
suspending operation in the first state in response to one of said clock pulses;
operating in the second state to actuate a machine component; including the step of providing control data from the memory to the machine components in the second state; and
including the step of directly assessing the memory to provide control to the machine components independent of the control of the controller; and
operating in the first state after completion of actuation of the component in the second state.
5. The method of claim 4 wherein the step of directly assessing the memory occurs no more than every other clock pulse produced in synchronism with the machine operation.
6. The method of claim 4 wherein the controller includes a storage element holding an indication of the number of clock pulses between actuation of successive machine components, including the step inhibiting directly accessing the memory if a predetermined number of clock pulses is indicated by the storage element.
7. The method of claim 4 including the step of simultaneously providing control data to a plurality of machine components.
Description

This is a continuation of application Ser. No. 677,473 filed Apr. 15, 1978, now abandoned.

This invention relates to electrostatographic xerographic type reproduction machines, and more particularly, to an improved control system for such machines.

The advent of higher speed and more complex copiers and reproduction machines has brought with it a corresponding increase in the complexity in the machine control wiring and logic. While this complexity manifests itself in many ways, perhaps the most onerous involves the inflexibility of the typical control logic/writing systems. For as can be appreciated, simple unsophisticated machines with relatively simple control logic and wiring can be altered and modified easily to incorporate changes, retrofits, and the like. Servicing and repair of the control logic is also fairly simple. On the other hand, some modern high speed machines, which often include sorters, a document handler, choice of copy size, multiple paper trays, jam protection and the like have extremely complex logic systems making even the most minor changes and improvements in the control logic difficult, expensive and time consuming. And servicing or repairing the machine control logic may similarly entail substantial difficulty, time and expense.

To mitigate problems of the type alluded to, a programmable controller may be used, enabling changes and improvements in the machine operation to be made through the expediency of reprogramming the controller. However, the control data which operates the machine and which is stored in the controller memory pending use, must be transferred to the various machine components at the proper time and in the correct sequence without unduly interfering with or intruding unnecessarily upon the other essential functions and operations of the controller.

It is therefore an object of the present invention to provide a new and improved control system for electrostatographic type reproduction machines.

It is a further object of the present invention to provide a system for interrupting operation of the programmable controller for a reproduction machine to permit operating data to be transferred from the controller memory section to the processing section or processor for the reproduction machine.

It is an object of the present invention to provide a multiple, prioritized interrupt system for transferring program operating data to a computer controlled reproduction machine.

It is an object of the present invention to provide an interrupt system driven in synchronization with the reproduction machine being controlled to transfer operating data to the machine.

It is a further object of the present invention to provide a control for an electrostatographic reproduction machine comprised of background and foreground machine operating routines, the latter containing operating data associated with the copy run or runs programmed.

It is an object of the present invention to provide a reproduction machine control comprised of background and foreground operating routines with an arrangement for temporarily interrupting the background routine in progress to transfer operating data from the foreground operating routine to said machine.

It is an object of the present invention to provide a reproduction machine control including machine background and foreground operating control routines, the latter being associated with the copy run or runs programmed, together with means for transferring operating data from the foreground operating control routines to the machine in synchronism with the machine.

It is an object of the present invention to provide a control for an electrostatographic type reproduction machine comprised of background and foreground machine operating routines with a multiple prioritized system for interrupting the background control routine in progress to transfer and/or update operating data from the foreground routine.

It is an object of the present invention to provide a multiple prioritized interrupt system for synchronizing operation of the component parts of a xerographic machine in a real time environment.

The invention relates to a reproduction machine for producing copies of an original having a photosensitive member, plural discrete components cooperable with one another and the photosensitive member to electrostatically produce copies on a support material and timing means for synchronizing operation of the machine components with one another, the combination comprising control means for operating the machine components in accordance with a control program whereby to provide an operative reproduction machine, the control program including background operating routines and foreground operating routines, the foreground operating routines being associated with the timing means; the control means normally operating the machine components in accordance with the control program background routines; and interrupt means to temporarily suspend the background routine in progress and transfer operating control of the machine to the control program foreground routines whereby operating instructions for the machine components from the foreground operating routines are relayed in synchronous fashion.

Other objects and advantages will be apparent from the ensuing description and drawings in which:

FIG. 1 is a schematic representation of an exemplary reproduction apparatus incorporating the control system of the present invention;

FIG. 2 is a vertical sectional view of the apparatus shown in FIG. 1 along the image plane;

FIG. 3 is a top plane view of the apparatus shown in FIG. 1;

FIG. 4 is an isometric view showing the drive train for the apparatus shown in FIG. 1;

FIG. 5 is an enlarged view showing details of the photoreceptor edge fade-out mechanism for the apparatus shown in FIG. 1;

FIG. 6 is an enlarged view showing details of the developing mechanism for the apparatus shown in FIG. 1;

FIG. 7 is an enlarged view showing details of the developing mechanism drive;

FIG. 8 is an enlarged view showing details of the developability control for the apparatus shown in FIG. 1;

FIG. 9 is an enlarged view showing details of the transfer roll support mechanism for the apparatus shown in FIG. 1;

FIG. 10 is an enlarged view showing details of the photoreceptor cleaning mechanism for the apparatus shown in FIG. 1;

FIG. 11 is an enlarged view showing details of the fuser for the apparatus shown in FIG. 1;

FIG. 12 is a schematic view showing the paper path and sensors of the apparatus shown in FIG. 1;

FIG. 13 is an enlarged view showing details of the copy sorter for the apparatus shown in FIG. 1;

FIG. 14 is a schematic view showing details of the document handler for the apparatus shown in FIG. 1;

FIG. 15 is a view showing details of the drive mechanism for the document handler shown in FIG. 14;

FIG. 16 is a block diagram of the controller for the apparatus shown in FIG. 1;

FIG. 17 is a block diagram of the controller CPU;

FIG. 18a is a block diagram showing the CPU microprocessor input/output connections;

FIG. 18b is a timing chart of Direct Memory Access (DMA) Read and Write cycles;

FIG. 19a is a logic schematic of the CPU clock;

FIG. 19b is a chart illustrating the output wave form of the clock shown in FIG. 19a;

FIG. 20 is a logic schematic of the CPU memory;

FIG. 21 is a logic schematic of the CPU memory ready;

FIGS. 22a, 22b, 22c are logic schematics of the CPU power supply stages;

FIGS. 23a and 23b comprise a block diagram of the controller I/O module;

FIG. 24 is a logic schematic of the nonvolatile memory power supply;

FIG. 25 is a block diagram of the apparatus interface and remote output connections;

FIG. 26 is a block diagram of the CPU interface module;

FIG. 27 is a block diagram of the apparatus special circuits module;

FIG. 28 is a block diagram of the main panel interface module;

FIG. 29 is a block diagram of the input matrix module;

FIG. 30 is a block diagram of a typical remote;

FIG. 31 is a block diagram of the sorter remote;

FIG. 32 is a view of the control console for inputting copy run instructions to the apparatus shown in FIG. 1;

FIG. 33 is a flow chart illustrating a typical machine state;

FIGS. 34a and 34b are a flow chart of the machine state routine;

FIG. 35 is a view showing the event table layout;

FIG. 36 is a chart illustrating the relative timing sequences of the clock interrupt pulses;

FIG. 37 is a flow chart of the pitch interrupt routine;

FIG. 38 is a flow chart of the machine clock interrupt routine;

FIG. 39 is a flow chart of the document handler interrupt routine;

FIGS. 40a and 40b comprise a flow chart of the real time interrupt routines and

FIGS. 41a, 41b and 41c are a timing chart of the principal operating components of the host machine in an exemplary copy run.

Referring particularly to FIGS. 1-3 of the drawings, there is shown, in schematic outline, an electrostatic reproduction system or host machine, identified by numeral 10, incorporating the control arrangement of the present invention. To facilitate description, the reproduction system 10 is divided into a main electrostatic xerographic processor 12, sorter 14, document handler 16, and controller 18. Other processor, sorter and/or document handler types and constructions, and different combustions thereof may instead be envisioned.

PROCESSOR

Processor 12 utilizes a photoreceptor in the form of an endless photoconductive belt 20 supported in generally triangular configuration by rolls 21, 22, 23. Belt supporting rolls 21, 22, 23 are in turn rotatably journaled on subframe 24.

In the exemplary processor illustrated, belt 20 comprises a photoconductive layer of selenium, which is the light receiving surface and imaging medium, on a conductive substrate. Other photoreceptor types and forms, such as comprising organic materials or of multi-layers or a drum may instead be envisioned. Still other forms may comprise scroll type arrangements wherein webs of photoconductive material may be played in and out of the interior of supporting cylinders.

Suitable biasing means (not shown) are provided on subframe 24 to tension the photoreceptor belt 20 and insure movement of belt 20 along a prescribed operating path. Belt tracking switch 25 (shown in FIG. 2) monitors movement of belt 20 from side to side. Belt 20 is supported so as to provide a trio of substantially flat belt runs opposite exposure, developing, and cleaning stations 27, 28, 29 respectfully. To enhance belt flatness at these stations, vacuum platens 30 are provided under belt 20 at each belt run. Conduits 31 communicate vacuum platens 30 with a vacuum pump 32. Photoconductive belt 20 moves in the direction indicated by the solid line arrow, drive thereto being effected through roll 21, which in turn is driven by main drive motor 34, as seen in FIG. 4.

Processor 12 includes a generally rectangular, horizontal transparent platen 35 on which each original 2 to be copied is disposed. A two or four sided illumination assembly, consisting of internal reflectors 36 and flash lamps 37 (shown in FIG. 2) disposed below and along at least two sides of platen 35, is provided for illuminating the original 2 on platen 35. To control temperatures within the illumination space, the assembly is coupled through conduit 33 with a vacuum pump 38 which is adapted to withdraw overly heated air from the space. To retain the original 2 in place on platen 35 and prevent escape of extraneous light from the illumination assembly, a platen cover may be provided.

The light image generated by the illumination system is projected via mirrors 39, 40 and a variable magnification lens assembly 41 onto the photoreceptive belt 20 at the exposure station 27. Reversible motor 43 is provided to move the main lens and add on lens elements that comprise the lens assembly 41 to different predetermined positions and combinations to provide the preselected image sizes corresponding to push button selectors 818, 819, 820 or operator module 800. (See FIG. 32) Sensors 116, 117, 118 signal the present disposition of lens assembly 41. Exposure of the previously charged belt 20 selectively discharges the photoconductive belt to produce on belt 20 an electrostatic latent image of the original 2. To prepare belt 20 for imaging, belt 20 is uniformly charged to a preselected level by charge corotron 42 upstream of the exposure station 27.

To prevent development of charged but unwanted image areas, erase lamps 44, 45 are provided. Lamp 44, which is referred to herein as the pitch fadeout lamp, is supported in transverse relationship to belt 20, lamp 44 extending across substantially the entire width of belt 20 to erase (i.e. discharge) areas of belt 20 before the first image, between successive images, and after the last image. Lamps 45, which are referred to herein as edge fadeout lamps, serve to erase areas bordering each side of the images. Referring particularly to FIG. 5, edge fadeout lamps 45, which extend transversely to belt 20, are disposed within a housing 46 having a pair of transversely extending openings 47, 47' of differing length adjacent each edge of belt 20. By selectively actuating one or the other of the lamps 45, the width of the area bordering the sides of the image that is erased can be controlled.

Referring to FIGS. 1, 6 and 7, magnetic brush rolls 50 are provided in a developer housing 51 at developing station 28. Housing 51 is pivotally supported adjacent the lower end thereof with interlock switch 52 to sense disposition of housing 51 in operative position adjacent belt 20. The bottom of housing 51 forms a sump within which a supply of developing material is contained. A rotatable auger 54 in the sump area serves to mix the developing material and bring the material into operative relationship with the lowermost of the magnetic brush rolls 50.

As will be understood by those skilled in the art, the electrostatically attractable developing material commonly used in magnetic brush developing apparatus of the type shown comprises a pigmented resinous powder, referred to as toner, and larger granular beads referred to as carrier. To provide the necessary magnetic properties, the carrier is comprised of a magnetizable material such as steel. By virtue of the magnetic fields established by developing rolls 50 and the interrelationship therebetween, a blanket of developing material is formed along the surfaces of developing rolls 50 adjacent the belt 20 and extending from one roll to another. Toner is attracted to the electrostatic latent image from the carrier bristles to produce a visible powder image on the surface of belt 20.

Magnetic brush rolls 50 each comprise a rotatable exterior sleeve 55 with relatively stationary magnet 56 inside. Sleeves 55 are rotated in unison and at substantially the same speed as belt 20 by a developer drive motor 57 through a belt and pulley arrangement 58. A second belt and pulley arrangement 59 drives auger 54.

To regulate development of the latent electrostatic images on belt 20, magnetic brush sleeves 55 are electrically biased. A suitable power supply 60 is provided for this purpose with the amount of bias being regulated by controller 18.

Developing material is returned to the upper portion of developer housing 51 for reuse and is accomplished by utilizing a photocell 62 which monitors the level of developing material in housing 51 and a photocell lamp 62' spaced opposite to the photocell 62 in cooperative relationship therewith. The disclosed machine is also provided with automatic developability control which maintains an optimum proportion of toner-to-carrier material by sensing toner concentration and replenishing toner, as needed. As shown in FIG. 8, the automatic developability control comprises a pair of transparent plates 64 mounted in spaced, parrallel arrangement in developer housing 51 such that a portion of the returning developing material passes therebetween. A suitable circuit, not shown, alternately places a charge on the plate 64 to attract toner thereto. Photocell 65 on one side of the plate pair senses the developer material as the material passes therebetween. Lamp 65' on the opposite side of plate pair 64 provides reference illumination. In this arrangement, the returning developing material is alternately attracted and repelled to and from plate 64. The accumulation of toner, i.e. density determines the amount of light transmitted from lamp 62' to photocell 62. Photocell 65 monitors the density of the returning developing material with the signal output therefrom being used by controller 18 to control the amount of fresh or make-up toner to be added to developer housing 51 from toner supply container 67.

To discharge toner from container 67, rotatable dispensing roll 68 is provided in the inlet to developer housing 51. Motor 69 drives roll 68. When fresh toner is required, as determined by the signal from photocell 65, controller 18 actuates motor 69 to turn roll 68 for a timed interval. The rotating roll 68, which is comprised of a relatively porous sponge-like material, carries toner particles thereon into developer housing 51 where it is discharged. Pre-transfer corotron 70 and lamp 71 are provided downstream of magnetic brush rolls 50 to regulate developed image charges before transfer.

A magnetic pick-off roll 72 is rotatably supported opposite belt 20 downstream of pre-transfer lamp 71, roll 72 serving to scavenge leftover carrier from belt 20 preparatory to transfer of the developed image to the copy sheet 3. Motor 73 turns roll 72 in the same direction and at substantially the same speed as belt 20 to prevent scoring or scratching of belt 20. One type of magnetic pick-off roll is shown in U.S. Pat. No. 3,834,804, issued Oct. 10, 1974 to Bhagat et al.

Referring to FIGS. 4, 9 and 12, to transfer developed images from belt 20 to the copy sheets 3, a transfer roll 75 is provided. Transfer roll 75, which forms part of the copy sheet feed path, is rotatably supported within a transfer roll housing opposite belt support roll 21. Housing 76 is pivotally mounted to permit the transfer roll assembly to be moved into and out of operative relationship with belt 20. A transfer roll cleaning brush 77 is rotatably journalled in transfer roll housing 76 with the brush periphery in contact with transfer roll 90. Transfer roll 75 is driven through contact with belt 20 while cleaning brush 77 is coupled to main drive motor 34. To remove toner, housing 76 is connected through conduit 78 with vacuum pump 81. To facilitate and control transfer of the developed images from belt 20 to the copy sheets 3, a suitable electrical bias is applied to transfer roll 75.

To permit transfer roll 75 to be moved into and out of operative relationship with belt 20, cam 79 is provided in driving contact with transfer roll housing 76. Cam 79 is driven from motor 34 through an electromagnetically operated one revolution clutch 80. Spring means (not shown) serves to maintain housing 76 in driving engagement with cam 79.

To facilitate separation of the copy sheets 3 from belt 20 following transfer of developed images, a detack corotron 82 is provided. Corotron 82 generates a charge designed to neutralize or reduce the charges tending to retain the copy sheet on belt 20. Corotron 82 is supported on transfer roll housing 76 opposite belt 20 and downstream of transfer roll 75.

Referring to FIGS. 1, 2 and 10, to prepare belt 20 for cleaning, residual charges on belt 20 are removed by discharge lamp 84 and preclean corotron 94. A cleaning brush 85, rotatably supported within an evacuated semi-circular shaped brush housing 86 at cleaning station 29, serves to remove residual developer from belt 20. Motor 95 drives brush 85, brush 85 turning in a direction opposite that of belt 20.

Vacuum conduit 87 couples brush housing 86 through a centrifugal type separator 88 with the suction side of vacuum pump 93. A final filter 89 on the outlet of motor 93 traps particles that pass through separator 88. The heavier toner particles separated by separator 88 drop into and are collected in one or more collecting bottles 90. Pressure sensor 91 monitors the condition of final filter 89 while a sensor 92 monitors the level of toner particles in collecting bottles 90.

To obviate the danger of copy sheets remaining on belt 20 and becoming entangled with the belt cleaning mechanism, a deflector 96 is provided upstream of cleaning brush 85. Deflector 96, which is pivotally supported on the brush housing 86, is operated by solenoid 97. In the normal or off position, deflector 96 is spaced from belt 20 (the solid line position shown in the drawings). Energization of solenoid 97 pivots deflector 96 downwardly to bring the deflector leading edge into close proximity to belt 20.

Sensors 98, 99 are provided on each side of deflector 96 for sensing the presence of copy material on belt 20. A signal output from upstream sensor 98 triggers solenoid 97 to pivot deflector 96 into position to intercept the copy sheet on belt 20. The signal from sensor 98 also initiates a system shutdown cycle (mis strip jam) wherein the various operating components are, within a prescribed interval, brought to a stop. The interval permits any copy sheet present in fuser 150 to be removed, sheet trap solenoid 158 having been actuated to prevent the next copy sheet from entering fuser 150 and becoming trapped therein. The signal from sensor 99, indicating failure of deflector 96 to intercept or remove the copy sheet from belt 20, triggers an immediate or hard stop (sheet on selenium jam) of the processor. In this type of power to drive motor 34 is interrupted to bring belt 20 and the other components driven therefrom to an immediate stop.

Referring particularly to FIGS. 1 and 12, copy sheets 3 comprise precut paper sheets supplied from either main or auxiliary paper trays 100, 102. Each paper tray has a platform or base 103 for supporting in stack like fashion a quantity of sheets. The tray platforms 103 are supported for vertical up and down movement as motors 105, 106. Side guide pairs 107, in each tray 100, 102 delimit the tray side boundaries, the guide pairs being adjustable toward and away from one another in accommodation of different size sheets. Sensors 108, 109 respond to the position of each side guide pair 107, the output of sensors 108, 109 serving to regulate operation of edge fadeout lamps 45 and fuser cooling valve 171. Lower limit switches 110 on each tray prevent overtravel of the tray platform in a downward direction.

A heater 112 is provided below the platform 103 of main tray 100 to warm the tray area and enhance feeding of sheets therefrom. Humidstat 113 and thermostat 114 control operation of heater 112 in response to the temperature/humidity conditions of main tray 100. Fan 115 is provided to circulate air within tray 100.

To advance the sheets 3 from either main or auxiliary tray 100, 102, main and auxiliary sheet feeders 120, 121 are provided. Feeders 120, 121 each include a nudger roll 123 to engage and advance the topmost sheet in the paper tray forward into the nip formed by a feed belt 124 and retard roll 125. Retard rolls 125, which are driven at an extremely low speed by motor 126, cooperate with feed belts 124 to restrict feeding of sheets from trays 100, 102 to one sheet at a time.

Feed belts 124 are driven by main and auxiliary sheet feed motors 127, 128 respectively. Nudger rolls 123 are supported for pivotal movement about the axis of feed belt drive shaft 129 with drive to the nudger rolls taken from drive shaft 129. Stack height sensors 133, 134 are provided for the main and auxiliary trays, the pivoting nudger rolls 123 serving to operate sensors 133, 134 in response to the sheet stack height. Main and auxiliary tray misfeed sensors 135, 136 are provided at the tray outlets.

Main transport 140 extends from main paper tray 100 to a point slightly upstream of the nip formed by photoconductive belt 20 and transfer roll 75. Transport 140 is driven from main motor 34. To register sheets 3 with the images developed on belt 20, sheet register fingers 141 are provided, fingers 141 being arranged to move into and out of the path of the sheets on transport 140 once each revolution. Registration fingers 141 are driven from main motor 34 through electromagnetic clutch 145. A timing or reset switch 146 is set once on each revolution of sheet register fingers 141. Sensor 139 monitors transport 140 for jams. Further amplification of sheet register system may be found in U.S. Pat. No. 3,781,004, issued Dec. 25, 1973 to Buddendeck et al.

Pinch roll pair 142 is interspaced between transport belts that comprise main transport 140 on the downstream side of register fingers 141. Pinch roll pair 142 are driven from main motor 34.

Auxiliary transport 147 extends from auxiliary tray 102 to main transport 140 at a point upstream of sheet register fingers 141. Transport 147 is driven from motor 34.

To maintain the sheets in driving contact with the belts of transports 140, 147, suitable guides or retainers (not shown) may be provided along the belt runs.

The image bearing sheets leaving the nip formed by photoconductive belt 20 and transfer roll 75 are picked off by belts 155 of the leading edge of vacuum transport 149. Belts 155, which are perforated for the admission of vacuum therethrough, ride on forward roller pair 148 and rear roll 153. A pair of internal vacuum plenums 151, 154 are provided, the leading plenum 154 cooperating with belts 155 to pick up the sheets leaving the belt/transfer roll nip. Transport 149 conveys the image bearing sheets to fuser 150. Vacuum conduits 147, 156 communicate plenums 151, 154 with vacuum pump 152. A pressure sensor 157 monitors operation of vacuum pump 152. Sensor 144 monitors transport 149 for jams.

To prevent the sheet on transport 149 from being carried into fuser 150 in the event of a jam or malfunction, a trap solenoid 158 is provided below transport 149. Energization of solenoid 158 raises the armature thereof into contact with the lower face of plenum 154 to intercept and stop the sheet moving therepast.

Referring particularly to FIGS. 4, 10 and 12, fuser 150 comprises a lower heated fusing roll 160 and upper pressure roll 161. Rolls 160, 161 are supported for rotation in fuser housing 162. The core of fusing roll 160 is hollow for receipt of heating rod 163 therewithin.

Housing 162 includes a sump 164 for holding a quantity of liquid release agent, herein termed oil. Dispensing belt 165, moves through sump 164 to pick up the oil, belt 165 being driven by motor 166. A blanket-like wick 167 carries the oil from belt 165 to the surface of fusing roll 160.

Pressure roll 161 is supported within an upper pivotal section 168 of housing 162. This enables pressure roll 161 to be moved into and out of operative contact fusing roll 160. Cam shaft 169 in the lower portion of fuser housing 162 serves to move housing section 168 and pressure roll 161 into operative relationship with fusing roll 160 against a suitable bias (not shown). Cam shaft 169 is coupled to main motor 34 through an electromagnetically operated one revolution clutch 159.

Fuser section 168 is evacuated, conduit 170 coupling housing section 168 with vacuum pump 152. The ends of housing section 168 are separated into vacuum compartments opposite the ends of pressure roll 161 thereunder to cool the roll ends where smaller size copy sheets 3 are being processed. Vacuum valve 171 in conduit 172 regulates communication of the vacuum compartments with vacuum pump 152 in response to the size sheets as sensed by side guide sensors 108, 109 in paper trays 100, 102.

Fuser roll 160 is driven from main motor 34. Pressure roll 161 is drivingly coupled to fuser roll 160 for rotation therewith.

Thermostat 174 in fuser housing 162 controls operation of heating rod 163 in response to temperature. Sensor 175 protects against fuser over-temperature. To protect against trapping of a sheet in fuser 150 in the event of a jam, sensor 176 is provided.

Following fuser 150, the sheet is carried by post fuser transport 180 to either discharge transport 181 or, where duplex or two sided copies are desired, to return transport 182. Sheet sensor 183 monitors passage of the sheets from fuser 150. Transports 180, 181 are driven from main motor 34. Sensor 181' monitors transport 181 for jams. Suitable retaining means may be provided to retain the sheets on transports 180, 181.

A deflector 184, when extended routes sheets on transport 180 onto conveyor roll 185 and into chute 186 leading to return transport 182. Solenoid 179, when energized raises deflector 184 into the sheet path. Return transport 182 carries the sheets back to auxiliary tray 102. Sensor 189 monitors transport 182 for jams. The forward stop 187 of tray 102 are supported for oscillating movement. Motor 188 drives stop 187 to oscillate stops 187 back and forth and tap sheets returned to auxiliary tray 102 into alignment for refeeding.

To invert duplex copy sheets following fusing of the second or duplex image, a displaceable sheet stop 190 is provided adjacent the discharge end of chute 186. Stop 190 is pivotally supported for swinging movement into and out of chute 186. Solenoid 191 is provided to move stop 190 selectively into or out of chute 186. Pinch roll pairs 192, 193 serve to draw the sheet trapped in chute 186 by stop 190 and carry the sheet forward onto discharge transport 181. Further description of the inverter mechanism may be found in U.S. Pat. No. 3,856,295, issued Dec. 24, 1974, to John H. Looney.

Output tray 195 receives unsorted copies. Transport 196 a portion of which is wrapped around a turn around roll 197, serves to carry the finished copies to tray 195. Sensor 194 monitors transport 196 for jams. To route copies into output tray 195, a deflector 198 is provided. Deflector solenoid 199, when energized, turns deflector 198 to intercept sheets on conveyor 181 and route the sheets onto conveyor 196.

When output tray 195 is not used, the sheets are carried by conveyor 181 to sorter 14.

SORTER

Referring particularly to FIG. 13, sorter 14 comprises upper and lower bin arrays 210, 211. Each binary array 210, 211 consists of series of spaced downwardly inclined trays 212, forming a series of individual bins 213 for receipt of finished copies 3'. Conveyors 214 along the top of each bin array, cooperate with idler rolls 215 adjacent the inlet to each bin to transport the copies into juxtaposition with the bins. Individual deflectors 216 at each bin cooperate, when depressed, with the adjoining idler roll 215 to turn the copies into the bin associated therewith. An operating solenoid 217 is provided for each deflector.

A driven roll pair 218 is provided at the inlet to sorter 14. A generally vertical conveyor 219 serves to bring copies 3' to the upper bin array 210. Entrance deflector 220 routes the copies selectively to either the upper or lower bin array 210, 211 respectively. Solenoid 221 operates deflector 220.

Motor 222 is provided for each bin array to drive the conveyors 214 and 219 of upper bin array 210 and conveyor 214 of lower bin array 211. Roll pair 218 is drivingly coupled to both motors.

To detect entry of copies 3' in the individual bins 213, a photoresist type sensor 225, 226 is provided at one end of each bin array 210, 211 respectively. Sensor lamps 225', 226' are disposed adjacent the other end of the bin array. To detect the presence of copies in the bins 213, a second set of photoelectric type sensors 227, 228 is provided for each bin array, on a level with tray cutout 229. Reference lamps 227', 228' are disposed opposite sensors 227, 228.

DOCUMENT HANDLER

Referring particularly to FIGS. 14 and 15, document handler 16 includes a tray 233 into which originals or documents 2 to be copied are placed by the operator following which a cover (not shown) is closed. A movable bail or separator 235, driven in an oscillatory path from motor 236 through a solenoid operated one revolution clutch 238, is provided to maintain document separation.

A document feed belt 239 is supported on drive and idler rolls 240, 241 and kicker roll 242 under tray 233, tray 233 being suitably apertured to permit the belt surface to project therewithin. Feed belt 239 is driven by motor 236 through electromagnetic clutch 244. Guide 245, disposed near the discharge end of feed belt 239, cooperates with belt 239 to form a nip between which the documents pass.

A photoelectric type sensor 246 is disposed adjacent the discharge end of belt 239. Sensor 246 responds on failure of a document to feed within a predetermined interval to actuate solenoid operated clutch 248 which raises kicker roll 242 and increase the surface area of feed belt 239 in contact with the documents.

Document guides 250 route the document fed from tray 233 via roll pair 251, 252 to platen 35. Roll 251 is drivingly coupled to motor 236 through electromagnetic clutch 244. Contact of roll 251 with roll 252 turns roll 252.

Roll pair 260, 261 at the entrance to platen 35 advance the document onto platen 35, roll 260 being driven through electromagnetic clutch 262 in the forward direction. Contact of roll 260 with roll 261 turns roll 261 in the document feeding direction. Roll 260 is selectively coupled through gearset 268 with motor 236 through electromagnetic clutch 265 so that on engagement of clutch 265 and disengagement of clutch 262, roll 260 and roll 261 therewith turn in the reverse direction to carry the document back to tray 233. One way clutches 266, 267 permit free wheeling of the roll drive shafts.

The document leaving roll pair 260, 261 is carried by platen feed belt 270 onto platen 35, belt 270 being comprised of a suitable flexible material having an exterior surface of xerographic white. Belt 270 is carried about drive and idler rolls 271, 272. Roll 271 is drivingly coupled to motor 236 for rotation in either a forward or reverse direction through clutches 262, 265. Engagement of clutch 262 operates through belt and pulley drive 279 to drive belt in the forward direction, engagement of clutch 265 operates through drive 279 to drive belt 270 in the reverse direction.

To locate the document in predetermined position on platen 35, a register 273 is provided at the platen inlet for engagement with the document trailing edge. For this purpose, control of platen belt 270 is such that following transporting of the document onto plate 35 and beyond register 273, belt 270 is reversed to carry the document backwards against register 273.

To remove the document from platen 35 following copying, register 273 is retracted to an inoperative position. Solenoid 274 is provided for moving register 273.

A document deflector 275, is provided to route the document leaving platen 35 into return chute 276. For this purpose, platen belt 270 and pinch roll pair 260, 261 are reversed through engagement of clutch 265. Discharge roll pair 278, driven by motor 236, carry the returning document into tray 233.

To monitor movement of the documents in document handler 16 and detect jams and other malfunctions, photoelectric type sensors 246 and 280, 281 and 282 are disposed along the document routes.

To align documents 2 returned to tray 233, a document patter 284 is provided adjacent one end of tray 233. Patter 284 is oscillated by motor 285.

To provide the requisite operational synchronization between host machine 10 and controller 18 as will appear, processor or machine clock 202 is provided. Referring particularly to FIG. 1, clock 202 comprises a toothed disc 203 drivingly supported on the output shaft of main drive motor 34. A photoelectric type signal generator 204 is disposed astride the path followed by the toothed rim of disc 203, generator 204 producing, whenever drive motor 34 is energized, a pulse like signal output at a frequency correlated with the speed of motor 34, and the machine components driven therefrom.

As described, a second machine clock, termed a pitch reset clock 138 herein, and comprising timing switch 146 is provided. Switch 146 cooperates with sheet register fingers 141 to generate an output pulse once each revolution of fingers 141. As will appear, the pulse like output of the pitch reset clock is used to reset or resynchronize controller 18 with host machine 10.

Referring to FIG. 15, a document handler clock 286 consisting of apertured disc 287 on the output shaft of document handler drive motor 236 and cooperating photoelectric type signal generator 288 is provided. As in the case of machine clock 202, document handler clock 286 produces pulses in synchronism with document handler 16 operation. A real time clock produce pulses 670 relative to real time intervals, such pulses being derived from clock 552 in this example.

CONTROLLER

Referring to FIG. 16 controller 18 includes a Computer Processor Unit (CPU) Module 500, Input/Output (I/O) Module 502, and Interface 504. Address, Data, and Control Buses 507, 508, 509 respectively operatively couple CPU Module 500 and I/O Module 502. CPU Module 500 and I/O Module 502 are disposed within a shield 518 to prevent noise interference.

Interface 504 couples I/O Module 502 with special circuits module 522, input matrix module 524, and main panel interface module 526. Module 504 also couples I/O Module 502 to operating sections of the machine, namely, document handler section 530, input section 532, sorter section 534 and processor sections 536, 538. A spare section 540, which may be used for monitoring operation of the host machine, or which may be later utilized to control other devices, is provided.

Referring to FIGS. 17, 18a and 18b, CPU module 500 comprises a processor 542 such as an Intel 8080 microprocessor manufactured by Intel Corporation, Santa Clara, Calif., 16K Read Only Memory (herein ROM) and 2K Random Access Memory (herein RAM) sections 545, 546, Memory Ready section 548, power regulator section 550, and onboard clock 552. Bipolar tri-state buffers 510, 511 in Address and Data buses 507, 508 disable the bus on a Direct Memory Access (DMA) signal (HOLD A) as will appear. While the capacity of memory sections 545, 546 are indicated throughout as being 16K and 2K respectively, other memory sizes may be readily contemplated.

Referring particularly to FIG. 19a, clock 552 comprises a suitable clock oscillator 553 feeding a multi-bit (Qa-Qn) shift register 554. Register 554 includes an internal feedback path from one bit to the serial input of register 554. Output signal waveforms .0.1, .0.2, .0.1-1 and .0.2-1 are produced for use by the system.

Referring to FIG. 20, the memory bytes in ROM section 545 are implemented by Address signals (A0-A 15) from processor 542, selection being effected by 3 to 8 decode chip 560 controlling chip select 1 (CS-1) and a 1 bit selection (A 13) controlling chip select 2 (CS-2). The most significant address bits (A 14, A 15) select the first 16K of the total 64K bytes of addressing space. The memory bytes in RAM section 546 are implemented by Address signals (A0-A 15) through selector circuit 561. Address bit A 10 serves to select the memory bank while the remaining five most significant bits (A 11-A 15) select the last 2K bytes out of the 64K byte of addressing space. RAM memory section 546 includes a 40 bit output buffer 546', the output of which is tied together with the output from ROM memory section 545 and goes to tri-state buffer 562 to drive Data bus 508. Buffer 562 is enabled when either memory section 545 or 546 is being addressed and either a (MEM READ) or DMA (HOLD A) memory request exists. An enabling signal (MEMEN) is provided from the machine control or service panel (not shown) which is used to permit disabling of buffer 562 during servicing of CPU Module 500. Write control comes from either processor 542 (MEM WRITE) or from DMA (HOLD A) control. Tri-state buffers 563 permit Refresh Control 605 of I/O Module 502 to access MEM READ and MEM WRITE control channels directly on a DMA signal (HOLD A) from processor 542 as will appear.

Referring to FIG. 21, memory ready section 548 provides a READY signal to processor 542. A binary counter 566, which is initialized by a SYNC signal (.0.,) to a prewired count as determined by input circuitry 567, counts up at a predetermined rate. At the maximum count, the output at gate 568 comes true stopping the counter 566. If the cycle is a memory request (MEM REQ) and the memory location is on board as determined by the signal (MEM HERE) to tri-state buffer 569, a READY signal is sent to processor 542. Tri-state buffer 570 in MEM REQ line permits Refresh Control 605 of I/O Module 502 to access the MEM REQ channel directly on a DMA signal (HOLD A) from processor 542 as will appear.

Referring to FIG. 22, power regulators 550, 551, 552 provide the various voltage levels, i.e. +5 v, +12 v, and -5 v D.C. required by the module 500. Each of the three on board regulators 550, 551, 552 employ filtered D.C. inputs. Power Not Normal (PNN) detection circuitry 571 is provided to reset processor 542 during the power up time. Panel reset is also provided via PNN. An enabling signal (INHIBIT RESET) allows completion of a write cycle in Non Volatile (N.V.) Memory 610 of I/O Module 502.

Referring to FIGS. 18a, 20, 21, and the DMA timing chart (FIG. 18b) data transfer from RAM section 546 to host machine 10 is effected through Direct Memory Access (DMA), as will appear. To initiate DMA, a signal (HOLD) is generated by Refresh Control 605 (FIG. 23a). On acceptance, processor 542 generates a signal HOLD ACKNOWLEDGE (HOLD A) which works through tri-state buffers 510, 511 and through buffers 563 and 570 to release Address bus 507, Data bus 508 and MEM READ, MEM WRITE, and MEM REQ channels (FIGS. 20, 21) to Refresh Control 605 of I/O Module 502.

Referring to FIGS. 23a and 23b, I/O module 502 interfaces with CPU module 500 through bi-directional Address, Data and Control buses 507, 508, 509. I/O module 502 appears to CPU module 500 as a memory portion. Data transfers between CPU and I/O modules 500, 502, and commands to I/O module 502 except for output refresh are controlled by memory reference instructions executed by CPU module 500. Output refresh which is initiated by one of several uniquely decoded memory reference commands, enables Direct Memory Access (DMA) by I/O Module 502 to RAM section 546.

I/O module 502 includes Matrix Input Select 604 (through which inputs from the host machine 10, are received), Refresh Control 605, Nonvolatile (NV) memory 610, Interrupt Control 612, Watch Dog Timer and Failure Flag 614 and clock 570.

A Function Decode Section 601 receives and interprets commands from CPU section 500 by decoding information on address bus 507 along with control signals from processor 542 on control bus 509. On command, decode section 601 generates control signals to perform the function indicated. These functions include (a) controlling tri-state buffers 620 to establish the direction of data flow in Data bus 508; (b) strobing data from Data bus 508 into buffer latches 622; (c) controlling multiplexer 624 to put data from Interrupt Control 612, Real Time clock register 621, Matrix Input Select 604 or N.V. memory 610 onto data bus 508; (d) actuating refresh control 605 to initiate a DMA operation; (e) actuating buffers 634 to enable address bits A0-A 7 to be sent to the host machine 10 for input matrix read operations; (f) commanding operation of Matrix Input Select 604; (g) initiating read or write operation of N.V. memory 610 through Memory Control 638; (h) loading Real Time clock register 621 from data bus 508; and (i) resetting the Watch Dog timer or setting the Fault Failure flag 614. In addition, section 601 includes logic to control and synchronize the READY control line to CPU module 500, the READY line being used to advise module 500 when data placed on the Data Bus by I/O Module 502 is valid.

Watch dog timer and failure flag 614, which serves to detect certain hardwired and software malfunctions, comprises a free running counter which under normal circumstances is periodically reset by an output refresh command (REFRESH) from Function Decode Section 601. If an output refresh command is not received within a preset time interval, (i.e. 25 m sec) a fault flip flop is set and a signal (FAULT) sent to the host machine 10. The signal (FAULT) also raises the HOLD line to disable CPU Module 500. Clearing of the fault flip flop may be by cycling power or generating a signal (RESET). A selector (not shown) may be provided to disable (DISABLE) the watch dog timer when desired. The fault flip flop may also be set by a command from the CPU Module to indicate that the operating program detected a fault.

Matrix Input Select 604 capacity to read up to 32 groups of 8 discrete inputs from host machine 10. Lines A2 through A7 of Address bus 507 are routed to host machine 10 via CPU Interface Module 504 to select the desired group of 8 inputs. The selected input from machine 10 are received via Input Matrix Module 524 (FIG. 28) and are placed by matrix 604 onto data bus 508 and sent to CPU Module 500 via multiplexer 624. Bit selection is effected by lines A0 through A2 of Address bus 507.

Output refresh control 605, when initiated, transfers either 16 or 32 sequential words from RAM memory output buffer 546' to host machine 10 at the predetermined clock rate in line 574. Direct Memory Access (DMA) is used to facilitate transfer of the data at a relatively high rate. On a Refresh signal from Function Decode Section 601, Refresh Control 605 generates a HOLD signal to processor 542. On acknowledgement (HOLD A) processor 542 enters a hold condition. In this mode, CPU Module 500 releases address and data buses 507, 508 to the high impedance state giving I/O module 502 control thereover. I/O module 502 then sequentially accesses the 32 memory words from output buffer 546' (REFRESH ADDRESS) and transfers the contents to the host machine 10. CPU Module 500 is dormant during this period.

A control signal (LOAD) in line 607 along with the predetermined clock rate determined by the clock signal (CLOCK) in line 574 is utilized to generate eight 32 bit serial words which are transmitted serially via CPU Interface Module 504 to the host machine remote locations where serial to parallel transformation is performed. Alternatively, the data may be stored in addressable latches and distributed in parallel directly to the required destinations.

N.V. memory 610 comprises a predetermined number of bits of non-volatile memory stored in I/O Module 502 under Memory Control 638. N.V. memory 610 appears to CPU module 500 as part of the CPU module memory complement and therefore may be accessed by the standard CPU memory reference instruction set. Referring particularly to FIG. 24, to sustain the contents of N.V. memory 610 should system power be interrupted, one or more rechargeable batteries 635 are provided exterior to I/O module 502. CMOS protective circuitry 636 couples batteries 635 to memory 610 to preserve memory 610 on a failure of the system power. A logic signal (INHIBIT RESET) prevents the CPU Module 500 from being reset during the N.V. memory write cycle interval so that any write operation in progress will be completed before the system is shut down.

For tasks that require frequent servicing, high speed response to external events, or synchronization with the operation of host machine 10, a multiple interrupt system is provided. These comprise machine based interrupts, herein referred to as Pitch Reset, Machine, and Document Handler interrupts. A fourth clock driven interrupt, the Real Time interrupt, is also provided.

Referring particularly to FIGS. 23b and 34, the highest priority interrupt signal, Pitch Reset signal 640, is generated by the signal output of pitch reset clock 138. The clock signal is fed via optical isolator 645 and digital filter 646 to edge trigger flip flop 647.

The second highest priority interrupt signal, machine clock signal 641, is sent directly from machine clock 202 through isolation transformer 648 to a phase locked loop 649. Loop 649, which serves as bandpath filter and signal conditioner, sends a square wave signal to edge trigger flip flop 651. The second signal output (LOCK) serves to indicate whether loop 649 is locked onto a valid signal input or not.

The third highest priority interrupt signal, Document Handler Clock signal 642, is sent directly from document handler clock 286 via isolation transformer 652 and phase locked loop 653 to flip flop 654. The signal (LOCK) serves to indicate the validity of the signal input to loop 653.

The lowest priority interrupt signal, Real Time Clock signal 643, is generated by register 621. Register 621 which is loaded and stored by memory reference instructions from CPU module 500 is decremented by a clock signal in line 643 which may be derived from I/O Module clock 570. On the register count reaching zero, register 621 sends an interrupt signal to edge trigger flip flop 656.

Setting of one or more of the edge trigger flip flops 647, 651, 654, 656 by the interrupt signals 640, 641, 642, 643 generates a signal (INT) via priority chip 659 to processor 542 of CPU Module 500. On acknowledgement, processor 542, issues a signal (INTA) transferring the status of the edge trigger flip flops 647, 651, 654, 656 to a four bit latch 660 to generate an interrupt instruction code (RESTART) onto the data bus 508.

Each interrupt is assigned a unique RESTART instruction code. Should an interrupt of higher priority be triggered, a new interrupt signal (INT) and RESTART instruction code are generated resulting in a nesting of interrupt software routines whenever the interrupt recognition circuitry is enabled within the CPU 500.

Priority chip 659 serves to establish a handling priority in the event of simultaneous interrupt signals in accordance with the priority schedule described.

Once triggered, the edge trigger flip flop 647, 651, 654, or 656 must be reset in order to capture the next occurrence of the interrupt associated therewith. Each interrupt subroutine serves, in addition to performing the functions programmed, to reset the flip flops (through the writing of a coded byte in a uniquely selected address) and to re-enable the interrupt (through execution of a re-enabling instruction). Until re-enabled, initiation of a second interrupt is precluded while the first interrupt is in progress.

Lines 658 permit interrupt status to be interrogated by CPU module 500 on a memory reference instruction.

I/O Module 502 includes a suitable pulse generator or clock 570 for generating the various timing signals required by module 502. Clock 570 is driven by the pulse-like output .0.1, .0.2 of processor clock 552 (FIG. 19a). As described, clock 570 provides a reference clock pulse (in line 574) for synchronizing the output refresh data and is the source of clock pulses (in line 643) for driving Real Time register 621.

CPU interface module 504 interfaces I/O module 502 with the host machine 10 and transmits operating data stored in RAM section 546 to the machine. Referring particularly to FIGS. 25 and 26, data and address information are inputted to module 504 through suitable means such as optical type couplers 700 which convert the information to single ended logic levels. Data in bus 508 on a signal from Refresh Control 605 in line 607 (LOAD), is clocked into module 504 at the reference clock rate in line 574 parallel by bit, serial by byte for a preset byte length, with each data bit of each successive byte being clocked into a separate data channel D0-D7. As best seen in FIG. 25, each data channel D0-D7 has an assigned output function with data channel D0 being used for operating the front panel lamps 830 in the digital display, (see FIG. 32), data channel D1 for special circuits module 522, are remaining data channels D2-D7 allocated to the host machine operating sections 530, 532, 534, 536, 538 and 540. Portions of data channels D1-D7 have bits reserved for front panel lamps and digital display.

Since the bit capacity of the data channels D2-D7 is limited, a bit buffer 703 is preferably provided to catch any bit overflow in data channels D2-D7.

Inasmuch as the machine output sections 530, 532, 534, 536, 538 and 540 are electrically a long distance away, i.e. take, from CPU interface module 504, and the environment is electrically "noisy", the data stream in channels D2-D7 is transmitted to remote sections 530, 532, 534, 536, 538 and 540 via a shielded twisted pair 704. By this arrangement, induced noise appears as a differential input to both lines and is rejected. The associated clock signal for the data is also transmitted over line 704 with the line shield carrying the return signal currents for both data and clock signals.

Data in channel D1 destined for special circuits module 522 is inputted to shift register type storage circuitry 705 for transmittal to module 522. Data is also inputted to main panel interface module 526. Address information in bus 507 is converted to single ended output by couplers 700 and transmitted to Input Matrix Module 524 to address host machine inputs.

CPU interface module 504 includes fault detector circuitry 706 for monitoring both faults occurring in host machine 10 and faults or failures along the buses, the latter normally comprising a low voltage level or failure in one of the system power lines. Machine faults may comprise a fault in CPU module 500, a belt mistrack signal from sensor 27 (see FIG. 2), opening one of the machine doors or covers as responded to by conventional cover interlock sensors (not shown), a fuser over temperature as detected by sensor 175, etc. In the event of a bus fault, a reset signal (RESET) is generated automatically in line 709 to CPU module 500 (see FIGS. 17 and 18) until the fault is removed. In the event of a machine fault, a signal is generated by the CPU in line 710 to actuate a suitable relay (not shown) controlling power to all or a portion of host machine 10. A load disabling signal (LOAD DISBL) is inputted to optical couplers 700 via line 708 in the event of a fault in CPU module 500 to terminate input of data to host machine 10. Other fault conditions are monitored by the software background program. In the event of a fault, a signal is generated in line 711 to the digital display on control console 800 (via main panel interface module 526) signifying a fault.

Referring particularly to FIGS. 25 and 27, special circuits module 522 comprises a collection of relatively independent circuits for either monitoring operation of and/or driving various elements of host machine 10. Module 522 incorporates suitable circuitry 712 for amplifying the output of sensors 225, 226, 227, 228 and 280, 281, 282 of sorter 14 and document handler 16 respectively; circuitry 713 for operating fuser release clutch 159; and circuitry 714 for operating main and auxiliary paper tray feed roll clutches 130, 131 and document handler feed clutch 244.

Additionally, fuser detection circuitry 715 monitors temperature conditions of fuser 150 as responded to by sensor 174. On overheating of fuser 150, a signal (FUS-OT) is generated to turn heater 163 off, actuate clutch 159 to separate fusing and pressure rolls 160, 161; trigger trap solenoid 158 to prevent entrance of the next copy sheet into fuser 150, and initiate a shutdown of host machine 10. Circuitry 715 also cycles fuser heater 163 to maintain fuser 150 at proper operating temperatures and signals (FUS-RDUT) host machine 10 when fuser 150 is ready for operation.

Circuitry 716 provides closed loop control over sensor 98 which responds to the presence of a copy sheet 3 on belt 20. On a signal from sensor 98, solenoid 97 is triggered to bring deflector 96 into intercepting position adjacent belt 20. At the same time, a backup timer (not shown) is actuated. If the sheet is lifted from the belt 20 by deflector 96 within the time allotted, a signal from sensor 99 disables the timer and a mis strip type jam condition of host machine 10 is declared and the machine is stopped. If the signal from sensor 99 is not received within the allotted time, a sheet on selenium (SOS) type jam is declared and an immediate machine stop is effected.

Circuitry 718 controls the position (and hence the image reduction effected) by the various optical elements that comprise main lens 41 in response to the reduction mode selected by the operator and the signal inputs from lens position responsive sensors 116, 117, 118. The signal output of circuitry 718 serves to operate lens drive motor 43 as required to place the optical elements of lens 41 in proper position to effect the image reduction programmed by the operator.

Referring to FIG. 28, input matrix module 524 provides analog gates 719 for receiving data from the various host machine sensors and inputs (i.e. sheet sensors 135, 136; pressure sensor 157; etc), module 524 serving to convert the signal input to a byte oriented output for transmittal to I/O module 502 under control of Input Matrix Select 604. The byte output to module 524 is selected by address information inputted on bus 507 and decoded on module 524. Conversion matrix 720, which may comprise a diode array, converts the input logic signals of "0" to logic "1" true. Data from input matrix module 524 is transmitted via optical isolators 721 and Input Matrix Select 604 of I/O module 502 to CPU Module 500.

Referring particularly to FIG. 29, main panel interface module 526 serves as interface between CPU interface module 504 and operator control console 800 for display purposes and as interface between input matrix module 524 and the console switches. As described, data channels D0-D7 have data bits in each channel associated with the control console digital display or lamps. This data is clocked into buffer circuitry 723 and from there, for digital display, data in channels D1-D7 is inputted to multiplexer 724. Multiplexer 724 selectively multiplexes the data to HEX to 7 segment converter 725. Software controlled output drivers 726 are provided for each digit which enable the proper display digit in response to the data output of converter 725. This also provides blanking control for leading zero suppression or inter digit suppression.

Buffer circuitry 723 also enables through anode logic 728 the common digit anode drive. The signal (LOAD) to latch and lamp driver control circuit 729 regulates the length of the display cycle.

For console lamps 830, data in channel D0 is clocked to shift register 727 whose output is connected by drivers to the console lamps. Access by input matrix module 524 to the console switches and keyboard is through main panel interface module 526.

The machine output sections 530, 532, 534, 536, 538, 540 are interfaced with I/O module 502 by CPU interface module 504. At each interrupt/refresh cycle, data is outputted to sections 530, 532, 534, 536, 538, 540 at the clock signal rate in line 574 over data channels D2, D3, D4, D5, D6, D7 respectively.

Referring to FIG. 30, wherein a typical output section i.e. document handler section 530 is shown, data inputted to section 530 is stored in shift register/latch circuit combination 740, 741 pending output to the individual drivers 742 associated with each machine component. Preferably d.c. isolation between the output sections is maintained by the use of transformer coupled differential outputs and inputs for both data and clock signals and a shielded twisted conductor pair. Due to transformer coupling, the data must be restored to a d.c. waveform. For this purpose, control recovery circuitry 744, which may comprise an inverting/non-inverting digital comparator pair and output latch is provided.

The LOAD signal serves to lockout input of data to latches 741 while new data is being locked into shift register 740. Removal of the LOAD signal enables commutation of the fresh data to latches 741. The LOAD signal also serves to start timer 745 which imposes a maximum time limit within which a refresh period (initiated by Refresh Control 605) must occur. If refresh does not occur within the prescribed time limit, timer 745 generates a signal (RESET) which sets shift register 740 to zero.

With the exception of sorter section 534 discussed below, output sections 532, 536, 538 and 540 are substantially identical to document handler section 530.

Referring to FIG. 31 wherein like numbers refer to like parts, to provide capacity for driving the sorter deflector solenoids 221, a decode matrix arrangement consisting of a Prom encoder 750 controlling a pair of decoders 751, 752 is provided. The output of decoders 751, 752 drive the sorter solenoids 221 of upper and lower bin arrays 210, 211 respectively. Data is inputted to encoder 750 by means of shift register 754.

Referring now to FIG. 32, control console 800 serves to enable the operator to program host machine 10 to perform the copy run or runs desired. At the same time, various indicators on console 800 reflect the operational condition of machine 10. Console 800 includes a bezel housing 802 suitably supported on host machine 10 at a convenient point with decorative front or face panel 803 on which the various machine programming buttons and indicators appear. Programming buttons include power on/off buttons 804, start print (PRINT) button 805, stop print (STOP) button 806 and keyboard copy quantity selector 808. A series of feature select buttons consisting of auxiliary paper tray button 810, two sided copy button 811, copy lighter button 814, and copy darker button 815, are provided.

Additionally, image size selector buttons 818, 819, 820; multiple or single document select buttons 822, 823 for operation of document handler 14; and sorter sets or stacks buttons 825, 826 are provided. An on/off service selector 828 is also provided for activation during machine servicing.

Indicators comprise program display lamps 830 and displays such as READY, WAIT, SIDE 1, SIDE 2, ADD PAPER, CHECK STATUS PANEL, PRESS FAULT CODE, QUANTITY COMPLETED, CHECK DOORS, UNLOAD AUX TRAY, CHECK DOCUMENT PATH, CHECK PAPER PATH, and UNLOAD SORTER. Other display information may be envisioned.

OPERATION

As will appear, host machine 10 is conveniently divided into a number of operational states. The machine control program is divided into Background routines and Foreground routines with operational control normally residing in the Background routine or routines appropriate to the particular machine state then in effect. The output buffer 546' of RAM memory section 546 is used to transfer/refresh control data to the various remote locations in host machine 10, control data from both Background and Foreground routines being inputted to buffer 546' for subsequent transmittal to host machine 10. Transmittal/refresh of control data presently in output buffer 546' is effected through Direct Memory Access (DMA) under the aegis of a Machine Clock interrupt routine.

Foreground routine control data which includes a Run Event Table built in response to the particular copy run or runs programmed, is transferred to output buffer 546' by means of a multiple prioritized interrupt system wherein the Background routine in process is temporarily interrupted while fresh Foreground routine control data is inputted to buffer 546' following which the interrupted Background routine is resumed.

The operating program for host machine 10 is divided into a collection of foreground tasks, some of which are driven by the several interrupt routines and background or non-interrupt routines. Foreground tasks are tasks that generally require frequent servicing, high speed response, or synchronization with the host machine 10. Background routines are related to the state of host machine 10, different background routines being performed with different machine states. A single background software control program (STATCHK), (TABLE I) composed of specific sub-programs associated with the principal operating state of host machine 10 is provided. A byte called STATE contains a number indicative of the current operating state of host machine 10. The machine STATES are as follows:

______________________________________STATE NO.    MACHINE STATE     CONTROL SUBR.______________________________________0        Software Initialize                      INIT1        System Not Ready  NRDY2        System Ready      RDY3        Print             PRINT4        System Running, Not Print                      RUNNPRT5        Service           TECHREP______________________________________

Referring to FIG. 33, each STATE is normally divided into PROLOGUE, LOOP and EPILOGUE sections. As will be evident from the exemplary program STATCHK reproduced in TABLE I, entry into a given STATE (PROLOGUE) normally causes a group of operations to be performed, these consisting of operations that are performed once only at the entry into the STATE. For complex operations, a CALL is made to an applications subroutine therefor. Relatively simpler operations (i.e. turning devices on or off, clearing memory, presetting memory, etc.) are done directly.

Once the STATE PROLOGUE is completed, the main body (LOOP) is entered. The program (STATCHK) remains in this LOOP until a change of STATE request is received and honored. On a change of STATE request, the STATE EPILOGUE is entered wherein a group of operations are performed, following which the STATE moves into the PROLOGUE of the next STATE to be entered.

Referring to FIGS. 34a and 34b and the exemplary program (STATCHK) in TABLE I, on actuation of the machine POWER-ON button 804, the software Initialize STATE (INIT) is entered. In this STATE, the controller is initialized and a software controlled self test subroutine is entered. If the self test of the controller is successfully passed, the System Not Ready STATE (NRDY) is entered. If not, a fault condition is signalled.

In the System Not Ready STATE (NRDY), background subroutines are entered. These include setting of Ready Flags, control registers, timers, and the like; turning on power supplies, the fuser, etc., initializing the Fault Handler, checking for paper jams (left over form a previous run), door and cover interlocks, fuser temperatures, etc. During this period, the WAIT lamp on console 800 is lit and operation of host machine 10 precluded.

When all ready conditions have been checked and found acceptable, the controller moves to the System Ready State (RDY). The READY lamp on console 800 is lit and final ready checks made. Host machine 10 is now ready for operation upon completion of input of a copy run program, loading of one or more originals 2 into document handler 16 (if selected by the operator), and actuation of START PRINT button 805. As will appear hereinafter, the next state is PRINT wherein the particular copy run programmed is carried out.

Following the copy run, (PRINT), the controller normally enters the System Not Ready state (NRDY) for rechecking of the ready conditions. If all are satisfied, the system proceeds to the System Ready State (RDY) unless the machine is turned off by actuation of POWER OFF button 804 or a malfunction inspired shutdown is triggered. The last state (TECH REP) is a machine servicing state wherein certain service routines are made available to the machine/repair personal, i.e. Tech Reps.

Referring particularly to FIG. 32 and Tables II, III, IV, V, VI and VII, the machine operator uses control console 800 to program the machine for the copy run desired. Programming may be done during either the System Not Ready (NRDY) or System Ready (RDY) states, although the machine will not operate during the System Not Ready state should START PRINT button 805 be pushed. The copy run includes selecting (using keyboard 808) the number of copies to be made, and such other ancilliary program features as may be desired, i.e. use of auxiliary paper tray 102, (push button 810), image size selection (push buttons 818, 819, 820), document handler/sorter selection (push buttons 822, 823, 825 826), copy density (push buttons 814, 815) etc. On completion of the copy run program, START PRINT button 805 is actuated to start the copy run programmed (presuming the READY lamp is on and an original or originals 2 have been placed in tray 233 of document handler 16 if the document handler has been selected).

With programming of the copy run instructions, controller 18 enters a Digit Input routine in which the program information is transferred to RAM section 546. The copy run program data passes via Main Panel Interface Module 526 to Input Matrix Module 524 and from there is addressed through Matrix Input Select 604, Multiplexer 624, and Buffers 620 of I/O Module 502 to RAM section 546 of CPU Module 500.

On entering PRINT STATE, a Run Event Table (FIG. 35) comprised of Foreground tasks is built for operating in cooperation with the Background tasks the various components of host machine 10 in an integrated manner to produce the copies programmed. The Run Event Table is formed by controller 18 through merger of a Fixed Pitch Event Table (TABLE II) (stored in ROM 545 and Non Volatile Memory 610) and a Variable Pitch Event Table (TABLE III) in a fashion appropriate to the parameters of the job selected.

The Fixed Pitch Event Table (TABLE II) is comprised of machine events whose operational timing is fixed during each pitch cycle such as the timing of bias to transfer roll 75, (TRN 2 CUPR), actuating toner concentration sensor 65 (ADC ACT), loading roll 161 of fuser 150 (FUS*LOAD), and so forth, irrespective of the particular copy run programmed. The Variable Pitch Table (TABLE III) is comprised of machine events whose operational timing varies with the individual copy run programmed, i.e. timing of pitch fadeout lamp 44 (FO*ONBSE), timing of flash illumination lamps 37 (FLSH BSE), etc. The variable Pitch Table is built by the Pitch Table Builder (TABLE IV) from the copy run information programmed in by controller 18 (using the machine control program stored in ROM section 545 and Non-Volatile Memory 610), coupled with event address information from ROM section 545, sorted by absolute clock count (Table V), and stored in RAM section 546 (TABLE VI). The Fixed Pitch Event Table and Variable Pitch Table are merged with the relative clock count differences between Pitch events calculated to form a Run Event Table (TABLE VII).

Referring particularly to FIG. 35, the Run Event Table consists of successive groups of individual events 851. Each event 851 is comprised of four data blocks, data block 852 containing the number of clock pulses (from machine clock 202) to the next scheduled pitch event (REL DIFF), data block 853 containing the shift register position associated with the event (REL SR), and data blocks 854, 855 (EVENT LO) (EVENT HI) containing the address of the event subroutine.

In machine states other than PRINT, data blocks 852, 853 (REL DIFF) (REL SR) are set to zero. Data blocks 854, 855 hold the address information for the non-Print state event.

Control data in the Run Event Table represents a portion of the foreground tasks and is transferred to the output buffer 546' of RAM memory section 546 by the Pitch Reset and Machine Clock interrupt routines. Other control data, representing foreground tasks not in the Run Event Table is transferred to RAM output buffer 546' by the Document Handler Clock and Real Time Clock interrupt routines. Transfer of the remainder of the control data to output buffer 546' is by means of background (non-interrupt) routines.

Transfer of control data from output buffer 546' of RAM memory section 546 to the various locations in host machine 10 is through output Refresh via Direct Memory Access (DMA) in response to machine clock interrupt signals as will appear. The interrupt routines are initiated by the respective interrupt signals 640, 641, 642, 643.

Referring particularly to FIGS. 23 and 35-37 and TABLES VII, the interrupt having the highest priority, the Pitch Reset interrupt signal 640, is operable only during the PRINT State, and occurs once each revolution of sheet register fingers 141 as responded to by sensor 146 of pitch reset clock 138. At each pitch reset interrupt signal, after a determination of priority by Priority Chip 659 in the event of multiple interrupt signals, an interrupt signal (INT) is generated. The acknowledgement signal (INTA) from processor 542 initiates the pitch reset interrupt routine.

On entering the pitch reset routine, the interrupt is re-enabled and the contents of the program working registers stored. A check is made to determine if building of the Run Event Table is finished. Also checks are made to insure that a new shift register value has been build and at least 910 clock counts since last pitch reset have elapsed. If not, an immediate machine shutdown is initiated.

Presuming that the above checks are satisfactory, the shift register pointer (SR PTR), which is the byte variable containing the address of a pre-selected shift register position (SR O), is decremented by one and adjusted for overflow and the shift register contents are updated with a byte variable (SR+VALUV) containing the new shift register value to be shifted in following the pitch reset interrupt. The event pointer (EV*PTR), a two byte variable containing the full address of the next scheduled event, is reset to Event #1. The count in the C register equals the time to the first event.

Machine Cycle Down, Normal Down, and Side One Delay checks are made, and if negative, the count on a cycle up counter (CYC UP CT) is checked. If the count is less than a predetermined control count (i.e. 5), the counter (CYC UP CT) is incremented by one. When the count on the cycle up counter equals the control count, an Image Made Flag is set.

If a Normal Down, Cycle Down, or Side One Delay has been initiated, the cycle up counter (CYC UP CT) is reset to a preset starting count (i.e. 2). The pitch reset interrupt routine is exited with restoration of the working registers and resetting of pitch reset flip flop 647.

The Machine Clock Interrupt routine, which is second in priority, is operative in all operational states of host machine 10. Although nominally driven by machine clock 202, which is operative only during Print state when processor main drive motor 34 is energized, machine clock pulses are also provided by phase locked loop 649 when motor 34 is stopped.

Referring particularly to FIG. 38 and TABLE IX entry to the Machine Clock interrupt routine there shown is on signal (INTA) from processor 542 following a machine clock interrupt signal 642 as described earlier. On entry, the event control register (CREG) is obtained and the working register contents stored. The C REG is decremented by one, the register having been previously set to a count corresponding to the next event in the Event Run Table.

The control register (C REG) is checked for zero. If the count is not zero and is an odd number, an output refresh cycle is initiated with a request for refresh (REFRESH) to Refresh Control 601. Refresh Control 601 generates a HOLD signal which when acknowledged by processor 542 (HOLD A) provides Direct Memory Access (D M A) to effect transfer/refresh of data in RAM output buffer 546' to host machine 10. If the number is even, or following an output refresh, the interrupt system is re-enabled, the machine clock interrupt flip flop 651 is reset and the working registers are restored. Return is then made to the interrupted routine.

If the control register (C REG) count is zero, the Event Pointer (EV*PTR), which identifies the clock count (in data block 852) for the next scheduled event (REL DIFF), is loaded and the control register (C REG) reset to a new count equal the time to the next event. The Event Pointer (EV*PTR) is incremented to the relative shift register address for the event (REL SR data block 853), and the shift register address information is set in appropriate shift registers (B, D, E, A registers).

The Event Pointer (EV*PTR) is incremented successively to the Event subroutine address information (EVENT LO) (EVENT HI) in the Event Run Table, and the address information therefrom loaded into a register pair (D and E registers). The Event Pointer (EV PTR) is incremented to the first data block (REL DIFF) of the next succeeding event in the Run Event Table, saved, and the register pair (H and L registers) that comprise the Event Pointer are loaded with the event subroutine address from the register pair (D and E registers) holding the information. The register pair (D and E registers) are set to the return address for the Event Subroutine. Using the address information, the Event Subroutine is called and the subroutine data transferred to RAM output buffer 546' for transfer to the host machine on the next Output Refresh.

Following this, the Machine Clock interrupt routine is exited as described earlier.

The Output Refresh cycle alluded to earlier functions, when entered, to transfer/refresh data from the output buffer of 546' RAM section 546 to host machine 10. Direct Memory Access (DMA) is used to insure a high data transfer rate.

On a refresh, Refresh Control 605 (see FIG. 23) raises the HOLD line to processor 542, which on completion of the operation then in progress, acknowledges by a HOLD A signal. With processor 542 in a hold mode and Address and Data buses 507, 508 released to I/O Module 502 (through operation of tri-state buffers 510, 511, 563, 570), the I/O module then sequentially accesses the output buffer 546' of RAM section 546 and transfers the contents thereof to host machine 10. Data previously transferred is refreshed.

The Document Handler interrupt routine operates only when document handler drive motor 236 is energized. The Document Handler interrupt is third in priority.

Referring particularly to FIG. 39 and TABLE X, the Document Handler interrupt routine is effected in the same manner as described earlier in connection with the Pitch Reset and Machine interrupts, entry being in response to a specific RESTART instruction code for this routine. On entry, the interrupt is enabled and the program registers stored. A control counter which counts clock counts between events is decremented and the count queried. Based on the count, the appropriate document handler routine (AD-STATE) is called. The registers are then restored and the Document handler interrupt re-enabled.

The Real Time Interrput, which carries the lowest priority, is active in all machine states. Primarily, the interrupt acts as an interval timer by decrementing a series of timers which in turn serve to control initiation of specialized background subroutines used for control and error checking purposes.

Referring particularly to FIG. 40 and TABLE XI, the Real Time interrupt routine is entered in the same manner as the interrupt routines previously described, entry being in response to a specific RESTART instruction code assigned to the Real Time interrupt. On entry, the interrupt is re-enabled and the register contents stored. The timer pointer (PNTR) for the first class of timers (i.e. 10 msec TIMERS) is loaded, and a loop counter identifying the number of timers of this class (i.e. 10 msec TIMERS) preset. A control register (E REG) is loaded and a timer decrementing loop is entered for the first timer. The loop decrements the particular timer, increments the timer pointer (PNTR) to the location of the next timer in this class, checks the timer count, and decrements the loop counter. The decrementing loop routine is repeated for each timer in the class (i.e. 10 msec TIMERS) following which a control counter (CNTR) for the second group of timers (i.e. 100 msec TIMERS) is decremented by one and the count checked.

The control counter (CNTR) is initially set to a count equal to the number of times the first timer interval is divisible into the second timer interval. For example, if the first class of timers are 10 msec timers and the second timer class are 100 msec timers, the control counter (CNTR) is set at 10 initially and decremented on each Real Time interrupt by one down to zero.

If the count on the control counter (CNTR) is not zero, the registers are restored, Real Time interrupt flip flop 856 reset, and the routine exited. If the count on the control counter is zero, the counter is reloaded to the original maximum count (i.e. 10) and a loop is entered decrementing individually the second group of timers (i.e. 100 msec TIMERS). On completion, the routine is exited as described previously.

In the following TABLES:

"*"--is used to indicate flags, counters and subroutine names.

"#"--is used to indicate output signals.

"$"--is used to indicate macro instructions, system subroutines, system flags, and data, etc.

":"--is used to indicate macro instructions, system subroutines, system flags, and data, etc.

                                  TABLE I__________________________________________________________________________STATE CHECKER ROUTINE (STATCHK)__________________________________________________________________________INITIALIZATION STATE BACKGROUND- PROLOG001D6     INIT: EQUINITIALIZATION STATE BACKGROUND- WHILE: LOOP001D63A08FE     WHILE:     XBYT,STATE:,EQ,0                             DO INIT LOOP WHILE COND EXISTS001D9FE00001DBC2EE01001DECDF305     CALL       SELFTEST     CALL CONTROLLER SELF TEST SUBR001E178   IF:        XBYT,B,EQ,0  DID CONTROLLER PASS SELF TEST001E2FE00001E4C2EB01001E72108FE     INCBYT     STATE:       YES, MOVE TO NOT-READY STATE001EA34     ENDIF001EBC3D601     ENDWHILEINITIALIZATION STATE BACKGROUND- EPILOG001EE2184F7     LXI        H,RDYFLGS:   H&L=ADDR OF FIRST RDY FLAG001F1060A MVI        B,RDYFNUM:   B=NUMBER OF RDY FLAGS001F31680 MVI        D,X`80`      D-REG TO SET FLAGS001F578   WHILE:     XBYT,B,NE,0  DO LOOP = TO # IN B-REG001F6FE00001F8CA0102001FB72   MOV        M,D          SET FLAG001FC23   INX        H            H&L=ADDR OF NEXT FLAG001FD05   DCR        B            DECR LOOP COUNTER001FEC3F501     ENDWHILELOOP TO SET ALL RDY FLAGS002013E80 SFLG       2SD*ENAB00203325FF4002063E80 SFLG       PROG*RDY     SET PROG ROUTINE READY002083287F7002083E80 SFLG       DSPL*SEL     INIT PROG TO DISPLAY QTY SELECT0020D3234F4002102106FE     LXI        H,DIVD10:    H&L= ADDR OF 100 MSEC CNTR00213360A MVI        M,10         PRESET TO 10002152120F8     LXI        H,TMRBASE:   H&L=ADDR OF 1ST 10 MSEC TIMER00218AF   XRA        A            A=0 (SET `Z` CONDITION CODE)00219C    ADI        TIMCNT1:+TIMCNT2:                             A=TOTAL # OF TIMERS (10 & 100)002181601 MVI        D,1          SET ALL TIMERS TO TERMINAL CNT0021DCA2602     WHILE      CC,Z,C       WHILE # TIMERS .NE. 0...0022072   MOV        M,D          HALT THE PRESENT TIMER0022123   INX        H            MOVE TO NEXT TIMER LOC002223D   DCR        A            DECRM LOOP CNTR (# OF TIMERS)00223C31D02     ENDWHILE002262121F7     LXI        H,FLT*TBL    INITIALIZE WHERE FLT HANDLER002292279F8     SHLD       FLT*ADDR     STARTS TO LOOK FOR FAULTS0022C3E80 SYLG       FLT*TOP      USED TO INITIALIZE FAULT VALUE0022E325EF40023121CB01     LXI        H,EV*STBY:   H&L= ADDR OF STBY EVENT TABLE002342250F8     SHLD       EV*PTR:      SAVE FOR MACH CLK ROUTINE002372EF0 MVI        A,X`FO`      LOAD `RESET INTERRUPTS` DATA002393200E6     STA        RSINTFF:     RESET ALL INTERRUPT FLIP-FLOPS0023CFB   EI                      ENABLE INTERRUPT SYSTEM0023D21DCFF     SOBIT      PFO$OFF      TURN OFF PITCH FADE-OUT LAMP0024D3E2000242F300243B6002447700245FB002462131FF     SOBIT      24V$SPL      TURN ON 24 VOLT SUPPLY002493E200024BF30024CB60024D770024EFB0024F3E47 STIM       ILK*TIME,7000                             SET BLOWER START-UP DELAY00251322FF800254C9   RET                     RETURN TO STATE CHECKERSYSTEM NOT-READY STATE BACKGROUND- PROLOG0032CDC5C03     NRDY:CALL  NRDY:SSL     DO SLW-SCAN BKGD AT LEAST ONCESYSTEM NOT-READY STATE BACKGROUND- WHILE: LOOP002553A08FE     NRDY: WHILE:                XBYT,STATE:,EQ,1                             DO NRDY LOOP WHILE COND EXISTS00258FE010025AC280020025DCD2C06     CALL       STBYBKG:     CALL COMMON STBY BKGND SUBRIS00260CD4B06     CALL       DELAY00263CD0000     CALL       FLT*DISP     DISPLAY FAULT CODE00266CD0000     CALL       RED*BGND     CONTROL LENS IN NRDY: STATE00269CD0000     CALL       SOS*SUS      SOS JAM DETECTION0026CCD0000     CALL       BLK*NRDY     BLINK THE WAIT LAMP0026FCD205     CALL       RDYTEST:     CALL READY CONDITION TEST SUBR002723A09F4     IF:        FLG,ALL*RDY,T                             ARE ALL READY CONDITIONS OK002750700276D27D02002792108FE     INCBYT     STATE:       YES, MOVE TO RDY STATE0027C34     ENDIF0027DC35502     ENDWHILESYSTEM NOT-READY STATE BACKGROUND. EPILOG0028021E9FF     COBIT      WAIT$        TURN OFF WAIT LAMP002833EFE00285FE00286A6002877700288FB00289C9   RET                     RETURN TO STATE CHECKERSYSTEM READY STATE BACKGROUND- PROLOG0028A21E7FF     RDY: SOBIT READY$       TURN OFF READY LAMP0028D3E010028FF300290B6002917700292FB00293AF   CFLG       STRT:PRT     DISALLOW PRINT UNTIL SWSK CALLS00294324EF4SYSTEM READY STATE BACKGROUND. WHILE: LOOP002973A08FE     WHILE:     XBYT,STATE:,EQ,2                             DO RDY LOOP WHILE COND EXISTS0029AFE020029CC2C6020029FCD2C06     CALL       STBYBKG:     CALL COMMON STBY BKGND SUBRIS002A2CD4B06     CALL       DELAY002A5CD0000     CALL       SFT*CALC     CALC SHIFTED IMAGE VALUES002A8CDD205     CALL       RDYTEST:     CALL READY CONDITION TEST SUBR002AB2108FE     LXI        H,STATE:     H&L= ADDR OF STATE:002AE3A09F4     IF:        FLG,ALL*RDY,F                             ARE ALL READY CONDITIONS OK002B107002B2DABA02002B53601 MVI        M,1          NO, LOAD 1 INTO STATE: (NRDY)002B7C3C302     ELSE:                   ALL READY CONDITIONS MET002BA3A4EF4     IF:        FLG,STRT:PRT,T                             HAS `START PRINT` BEEN PUSHED002BD07002BED2C302002C13603 MVI        M,3          YES, LOAD 3 INTO STATE: (PRINT)     ENDIF     ENDIF002C3C39702     ENDWHILESYSTEM READY STATE BACKGROUND- EPILOG002C621E7FF     COBIT      READY$       TURN OFF READY LAMP002C93EFE002CBF3002CCA6002CD77002CEFB002CFC9   RET                     RETURN TO STATE CHECKERPRINT STATE BACKGROUND- PROLOG 1002D0AF   PRINT: XRA A            CLR A-REG FOR USE AS CN3R002D147   MOV        B,A          CLR B-REG (O'S INTO SHIFTREG)002D22100F8     LXI        H,SHIFTREG   H&L= START ADDR OF SHIFTREG002D5FE20 WHILE:     XBYT,A,LT,32 WHILE STILL IN SR...(CLR SR)002D7D2E002002DA70   MOV        M,B          CLR PRESENT SR LOCATION002DB23   INX        H            MOVE TO NEXT SR LOCATION002DC3C   INR        A            INCRM LOOP CNTR002DDC3D502     ENDWHILE002E03E80 SFLG       910*DONE     ALLOW FIRST PITCH RESET002E23260F4002E53E80 SFLG       SRSK*FLG     SIGNAL NEW SR VALUE REQ'D002E7321CF4002EAAF   XRA        A002EB3207FE     STA        CYCUPCT:     INIT CYCLE-UP CNTR TO 0002EE3205FE     STA        SR*VALU:     INIT `NEW SR VALUE` TO 0002F13E03 MVI        A,3002F3320AFE     STA        NOIMGCT:     INIT `NO IMAGE CNTR` TO 3002F6CD0000     CALL       SRSK         SHIFT REG SCHEDULER (INIT SR#0)002F9CD0000     CALL       TBLD*PRT     BUILD NEW PITCH TABLE002FC3E51 STIM       SYS:TIMR,800 INIT `OVER-RUN EVENT` TIMER002FE3221F80030121F5FF     SOBIT      PRNT$RLY     TURN ON PRINT RELAY (PRINT)003043E0800306F300307B6003087700309FB0030A21DCFF     COBIT      PFO$OFF      TURN ON FADE-OUT LAMP0030D3EDF0030FF300310A6003117700312FB00313AF   CFLG       NORM*DN:     CLR NORMAL SHUTDOWN REQUEST003143210F400317AF   CFLG       SK1*DLY      CLR SIDE 1 DELAY FLAG003183216F40031BAF   CFLG       TIME*DN:     CLR TIMED SHUTDOWN REQUEST FLAG0031C324BF70031FAF   CFLG       IMGMADE:     CLR 1st IMAGE MADE FLAG00320320FF400323AF   CFLG       CYCL*DN:     CLR CYCLE-DOWN REQUEST FLAG003243249F700327AF   CFLG       IMED*DN:     CLR IMMED SHUTDOWN REQUEST FLAG00328324AF70032BAF   CFLG       SD1*TIMO     CLR SIDE 1 TIME OUT FLAG0032C3207F40032FAF   CFLG       PROC*JAM     CLEAR IN CASE THERE WAS A JAM00339CD0000     CALL       PAP*SIZE CHECK PAPER WIDTH FOR FUSER0033CCD0000     CALL       PROG*UP      PROG INITIALIZATION SUBR0033FCD0000     CALL       CLBK*SPR     COLOR BKGRD HI BIAS AT SRT PRT00342CD0000     CALL       SET*UP       INITIALIZE ITEMS FOR PAPER PATH00345CD0000     CALL       FDR*PRT      CHECK FEEDER SELECTIONCALL TO EDGE*FB MUST BE AFTERCALL TO PAP*SIZE00348CD0000     CALL       EDGE*FO      DETERMINE WHICH EDGE FADE OUTPRINT STATE BACKGROUND- WHILE: LOOP0034B3A08FE     WHILE:     XBYT,STATE:,EQ,3                             DO PRINT WHILE COND EXISTS0034EFE0300350C27404003533A07FE     IF:        XBYT,CYCUPCT:,EQ,3                             IS CYCLE-UP CNTR= 300356FE0300358C26303003583E80 SFLG       PRT*PRO2     YES, SET `PRINT PROLOG 2` FLAG0035D3220F400360C37D03     ORIF:      XBYT,A,EQ,4  NO, IS CYCLE-UP CNTR= 400363FE0400365C27D03003683A20F4     ANDIF:     FLG,PRT*PRO2,T                             YES, AND IS PROLOG 2 FLAG SET0036B070036CD27D030036FAF   CFLG       PRT*PRO2     YES, DO PROLOG 2 AND CLR FLAG003703220F4PRINT STATE BACKGROUND- PROLOG 2003733A0FF4     IF:        FLG,IMGMADE:,T                             HAS 1ST IMAGE BEEN MADE003760700377D27D030037ACD0000     CALL       PROG*UP      YES,CALL PROG INITIALIZATION     ENDIF     ENDIF0037DCD0000     CALL       SRSK         SHIFT REG SCHEDULER SUBR00380CD0000     CALL       PRT*SWS      PRINT SWITCH SCAN SUBR00389CD4B06     CALL       DELAY0038CCD0000     CALL       READY*CK     CONTROL READY LAMP IN PRINT0038FCD0000     CALL       DSPL*CTL     CONTROL DIGITAL DISPLAY00392CD0000     CALL       RLTIM*DO     COMPLETE PROG PITCH EVENTS00395CD0000     CALL       FUS*RDUT     TEST FUSER FOR UNDER-TEMP00398CD0000     CALL       OIL*MSFD     STOP OIL IF MISFEED0039BCD0000     CALL       SOS*JMDT     SOS PRT JAM CHECK003A1CD0000     CALL       MANL*DN      CHECK MANUAL DN SW003A4CD0000     CALL       NM*ELV*P     MONITOR MAIN TRAY IN PRINT003A7CD0000     CALL       TON*DIS      TONER DISPENSE ROUTINE003AACD0000     CALL       DVLMB*JM     DVL OPERATION IF MISFEED003ADCD0000     CALL       SETJ6TOG     CHECK JAM6 FOR EXIT OF COPY003B0CD0000     CALL       FDR*BK*R     RESET FEEDER HARDWARE003B3CD0000     CALL       FDR*BKF1     1ST SHEET FAULT DETECT (FDR)003B6CD0000003B92108FE     LXI        H,STATE:     H&L= ADDR OF STATE: BYTE003BC3A4AF7     IF:        FLG,IMED*DN:,T                             IS IMMED SHUTDOWN REQUESTED003BF07003C0D2C703003C334   INR        M            YES, MOVE TO RUNNPRT: STATE003C4C34B04     ELSE:                   IMMED SHUTDOWN NOT REQUESTED003C73A0AFE     LDA        NOIMGCT:     PREPARE TO TEST `NO IMAGE CNTR`003CA47   MOV        B,A          B=<NO IMAGE CNTR>003CB3A49F7     IF:        FLG,CYCL*DN:,T                             IS CYCLE-DOWN REQUESTED003CE07003CFD2F803003D23A0FF4     IF:        FLG,IMGMADE:,F                             YES, HAS 1ST IMAGE BEEN MADE003D507003D6DADD03003D934   INR        M            NO, MOVE TO RUNNPRT: STATE003DAC3F503     ORIF:      FLG,SD1*TIMEO,T                             IS PROC MAKING SIDE 1'S - DUPLEX003DD3A07F4003E007003E1D2EE03003E478   IF:        XBYT,B,GE,16 YES, WERE THERE>15 NO IMAGES003E5FE10003E7DAEB03003EA34   INR        M            YES, MOVE TO RUNNPRT: STATE     ENDIF003EBC3F503     ORIF:      XBYT,B,GE,13 WERE THERE>12 NO IMAGES003EE78003EFFE0D003F1DAF503003F434   INR        M            YES, MOVE TO RUNNPRT: STATE     ENDIF003F5C34B04     ORIF:      FLG,NORM*DN:,T                             IS A NORMAL SHUTDOWN REQUESTED003F83A10F4003FB07003FCD20A04003FF3A0FF4     ANDIF:     FLG,IMGMADE:,F                             YES, AND ARE 0 IMAGES FLASHED004020700403DA0A040040634   INR        M            YES, MOVE TO RUNNPRT: STATE00407C34B04     ORIF:      FLG,SD1*TIMO,T                             IS PROC MAKING SIDE 1'S- DUPLEX0040A3A07F40040D070040ED22C04004113A39F4     IF:        FLG,ADH*MUTF,F                             YES, IS ADH IN MULT FEED MODE004140700415DA22040041878   IF:        XBYT,B,GE,36 NO, WERE THERE>35 NO IMAGES00419FE2400418DA1F040041E34   INR        M            YES, MOVE TO RUNNPRT: STATE     ENDIF0041FC32904     ELSE:0042278   IF:        XBYT,B,GE,16 WERE THERE>15 NO IMAGES00423FE1000425DA29040042834   INR        M            YES, MOVE TO RUNNPRT: STATE     ENDIF     ENDIF00429C34B04     ORIF:      FLG,ADH*MUTF,F                             IS ADH NOT IN MULTIPLE FEED0042C3A39F40042F0700430DA4404004333A38F4     ANDIF:     FLG,ADH*SINF,F                             YES, AND IS IT NOT IN SINGLE004360700437DA44040043A78   IF:        XBYT,B,GE,21 NO, WERE THERE>20 NO IMAGES0043BFE150043DDA41040044034   INR        M            YES, MOVE TO RUNNPRT: STATE     ENDIF00441C34B04     ELSE:                   ADH IS SELECTED0044478   IF:        XBYT,B,GE,13 WERE THERE>12 NO IMAGES00445FEOD00447DA4B040044A34   INR        M            YES, MOVE TO RUNNPRT: STATE     ENDIF     ENDIFPRINT STATE BACKGROUND-EPILOG0044B3A10F4     IF:        FLG,NORM*DN:,F                             IS NORMAL SHUTDOWN REQUESTED0044E070044FDA6304004523A49F7     ANDIF:     FLG,CYCL*DN:,F                             NO, IS CYCLE-DOWN REQUESTED004550700456DA6304004593A16F4     ANDIF:     FLG,SD1*DLY,F                             NO, IS PROC DEAD CYCLING0045C070045DDA630400460C37104     ELSE:                   1 OR BOTH COND'S REQUESTED004633E02 MVI        A,2          LOAD 2 INTO CYCLE-UP CNTR TO004653207FE     STA        CYCUPCT:     FORCE THE CYCLE-UP MODE AGAIN0046821DAFF     COBIT      ILLM$SPL     ILLM SPL OFF DURING DEAD CYCLE0046B3EF70046DF30046EA60046F7700470FB     ENDIF00471C34B03     ENDWHILE0047421D5FF     COBIT      PRNT$RLY     TURN OFF PRINT RELAY004773EF700479F30047AA60047B770047CFB0047DAF   CFLG       TBLD*FIN     SIGNAL NEW PITCH TABLE REQ'D0047E325DF40048121CB01     LXI        H,EV*STBY:   H&L= ADDR STBY EVENT TABLE004842250F8     SHLD       EV*PTR:      SAVE FOR MACH CLK ROUTINE0048721DCFF     COBIT      PFO$OFF      TURN OFF FADE-OUT LAMP0048A3EDF0048CF30048DA60048E770048FFB0049021EEFF     COBIT      EF0$11       CLEAR 11 IN EDGE FADE-OUT LAMP004933EF700495F300496A6004977700498FB0049921D9FF     COBIT      EFO$12$5     CLEAR 12.5 IN EDGE FADE-OUT0049C3EF70049EF30049FA6004A077004A1FB004A2CD0000     CALL       FUSNTRDY     TURN OFF FUSER STUFF004A5CD0000     CALL       SOS*STBY     CLEAR SOS ENABLE004A821EEFF     COBIT      DTCK$EDG004AB3EBF004ADF3004AEA6004AF77004B0FB004B121F6FF     COBIT      XER$CURR     TURN OFF TRANSFER CIRCUIT004B43EBF004B6F3004B7A6004B877004B9FB004BA21F0FF     COBIT      XER$LOAD     RELEASE TRANSFER ROLL004BD3EDF004BFF3004C0A6004C177004C2FB004C321F3FF     COBIT      AX$WT        TURN OFF AUXILIARY TRAY WAIT004C63EFD004C8F3004C9A600004CA77004CBFB004CC21F4FF     COBIT      MN$WT        TURN OFF MAIN TRAY WAIT004CF3EFD004D1F3004D2A6004D377004D4FB004D521FBFF     COBIT      AXFD$INT     TURN OFF AUXILIARY FEEDER004D83EFD004DAF3004DBA6004DC77004DDFB004DE21FAFF     COBIT      MNFD$INT     TURN OF MAIN FEEDER004E13EFD004E3F3004E4A6004E577004E6FB004E721DAFF     COBIT      ILLM$SPL     TURN OFF ILLUMINATION LAMP SUPPLY004EA3EF7004ECF3004EDA6004EE77004EFFB004F0CD0000     CALL       DVL*NRDY     TURNS OFF DVL IF JAM004F3C9   RET                     RETURN TO STATE CHECKERSYSTEM RUNNING, NOT PRINT STATE BACKGROUND- WHILE: LOOP004F43A08FE     RUNNPRT WHILE:                XBYT,STATE:,EQ,4                             DO RUNNPRT WHILE COND EXISTS004F7FE04004F9C28805004FCCD0000     CALL       READY*CK     CONTROL READY LAMP IN RUNNPRT:004FFCD0000     CALL       DSPL*CTL     CONTROL DIGITAL DISPLAY00502CD0000     CALL       RLTIM*DO     COMPLETE PROG PITCH EVENTS00505CD0000     CALL       ILK*CK00508CD0000     CALL       RILK*CK00508CD0000     CALL       FUS*RDUT     TEST FUSER FOR UNDER-TEMP0050ECD0000     CALL       MANL*DN      CHECK MANUAL DN SW00511CD0000     CALL       MN*ELV*S     MONITORS MAIN TRAY IN SDBY00514CD4B06     CALL       DELAY00517CD0000     CALL       SETJ6TOG     CHECK JAM6 SW FOR EXIT OF COPY0051A3A58F4     IF:        FLG,SRT*SETF,T                             IS SRT SELECTED (SETS MADE)0051D070051ED23205005213A6EF4     ANDIF:     FLG,SRT*COPY,F                             YES, AND ARE SRT COPIES ,NE.0005240700525DA3205005283A6CF4     ANDIF:     FLG,SRT*JAM,F                             YES, AND IS SRT JAM-FREE0052B070052CDA3205ALL TESTS PASSED- STAY IN RUNNPRT: STATE0052FC38505     ORIF:      FLG,SRT*STKF,T                             IS SRT SELECTED (STKS MODE)005323A59F4005350700536D24A05005393A6EF4     ANDIF:     FLG,SRT*COPY,F                             YES, AND ARE SRT COPIES ,NE.00053C070053DDA4A05005403A6CF4     ANDIF:     FLG,SRT*JAM,F                             YES, AND IS SRT JAM-FREE005430700544DA4A05ALL TESTS PASSED- STAY IN RUNNPRT: STATE00547C38505     ORIF:      FLG,SD1*TIMO,T                             ARE SIDE 1 COPIES GOING TO AUX0054A3A07F40054D070054ED25C05005513AF1FF     ANDIF:     OBIT,RET$MOT,T                             YES, AND IS RETURN PATH MOTOR ON00554E6080556 CA5C05ALL TESTS PASSED- STAY IN RUNNPRT: STATE00559C38505     ORIF:      FLG,SYS:TIME,T                             HAS TIMER BEEN INITIATED (PLL0055C3A1FF40055F0700560D27305                             UNLOCKED LAST TIME THRU)005633A21F8     IF:        TIM,SYS:TIMR,L                             YES, IS TIMER TIMED OUT00566D60100568C270050056B3E01 MVI        A,1          YES, LOAD 1 INTO STATE: FORCING0056D3208FE     STA        STATE:       MOVE TO NRDY STATE     ENDIF00570C38505     ORIF:      XBYT,RIS#BYT,AND,PLL,NZ TIMER NOT USED: IS PLL                LOCKED005733A003600576E61000578CA8505005783E1F STIM       SYS:TIMR,300 NO, SET TIMER TO 300 MSEC0057D3221F8005803E80 SFLG       SYS:TIMF     SET `TIMER IN USE` FLAG00582321FF4     ENDIF00585C3F404     ENDWHILESYSTEM RUNNING, NOT PRINT STATE BACKGROUND-EPILOG00588CD0000     CALL       DEL*CK       CALC COPIES DELIVERED INFO0058821F3FF     COBIT      FUS$TRAP     INSURE FUSER TRAP SOL OFF0058E3EDF00590F300591A6005927700593FB00594C9   RET                     RETURN TO STATE CHECKERTECH REP STATE BACKGROUND- WHILE: LOOP005953A08FE     TECHREP: WHILE                XBYT,STATE:,EQ,5                             DO TECHREP WHILE COND EXISTS00598FE050059AC2AB050059DCD0000     CALL       ILK*CK005A0CD0000     CALL       NRILK*CK005A33E01 MVI        A,1          LOAD 1 INTO STATE: TO FORCE A005A53208FE     STA        STATE:       CHANGE TO NRDY STATE005A8C39505     ENDWHILE005ABC9   RET                     RETURN TO STATE CHECKER__________________________________________________________________________

                                  TABLE II__________________________________________________________________________FIXED PITCH EVENT TABLE__________________________________________________________________________0001E    0200   EVENT  2,3,TRN2CUPR00020    0300021    000000023    0300   EVENT  3,2,ADC*ACT00025    0200026    000000028    0700   EVENT  7,0,SPLYS*ON0002A    000002B    00000002D    0A00   EVENT  10,2,FUS*LOAD0002F    0200030    000000032    3000   EVENT  48,8,DECG*INV                    DECISION GATE FOR INVTD COPIES00034    0800035    000000037    3600   EVENT  54,5,FUS*NTLD                    FUSER LOADED TEST00039    050003A    00000003C    3C00   EVENT  60,3,FDR6MELT                    CHECK IF MAIN FDR STILL ON0003E    030003F    000000041    4000   EVENT  64,2,FDR2MNFD                    MAIN FEED TIME00043    0200044    000000046    5D00   EVENT  93,8, JAM6*NON                    PAPER PATH JAM SW PITCH EVENT00048    0800049    00000004B    7600   EVENT  118,9,JAM5*INV                    PAPER PATH MAM SW PITCH EVENT0004D    090004E    000000050    7800   EVENT  120,0,FSH*OFF00052    0000053    000000055    8200   EVENT  130,0,FLASHING00057    0000058    00000005A    8700   EVENT  135,0,PROG&HST                    PROG HISTORY FILE UPDATE0005C    000005D    00000005F    8F00   EVENT  143,6,JAM4&CHK                    PAPER PATH JAM SW PITCH EVENT00061    0600062    000000064    AA00   EVENT  170,10,RET2*CHK                    PAPER PATH JAM SW PITCH EVENT00066    0A00067    000000069    CF00   EVENT  207,3,SOS*CLN0006B    030006C    00000006E    D100   EVENT  209,2,TRN5CURR00070    0200071    000000073    E300   EVENT  227,5,JAM*CHK                    PAPER PATH JAM SW PITCH EVENT00075    0500076    000000078    0901   EVENT  265,2,FDR3EDG                    ENABLE AUX EDR WT SENSOR0007A    020007B    00000007D    0B01   EVENT  267,4,JAM2*CHK                    PAPER PATH JAM SW PITCH EVENT0007F    0400080    000000082    0E01   EVENT  270,8,RET1*CHK                    PAPER PATH JAM SW PITCH EVENT00084    0800085    000000087    4201   EVENT  322,0,200US00089    000008A    00000008C    6901   EVENT  361,3,TRN3DTCK0008E    030008F    000000091    6C01   EVENT  364,2,FDR4MFDG                    ENABLE MAIN WT SENSOR00093    0200094    000000096    7A01   EVENT  378,0,DVLMR41800098    0000099    00000009B    B901   EVENT  441,9,JAM6*INV                    PAPER PATH JAM SW PITCH EVENT0009D    090009E    0000000A0    C201   EVENT  450,4,FUS*UNLD000A2    04000A3    0000000A5    C301   EVENT  451,2,TRN1ROLL000A7    02000A8    0000000AA    F401   EVENT  500,0,SMPL*ON000AC    00000AD    0000000AF    F501   EVENT  501,0,SMPL*OFF000B1    00000B2    0000000B4    0F02   EVENT  526,3,TRN4DICK000B6    03000B7    0000000B9    2602   EVENT  550,0,200US000BB    00000BD    0000000BE    5802   EVENT  600,0,BIL*PLOP                    TEST FOR PLATEN OPEN (BLG)000C0    00000C1    0000000C3    7602   EVENT  630,5,INVTRCTL                    INVTR GATE & RETURN CONTROL000C5    05000C6    0000000C8    8A02   EVENT  650,6,DECG*NON                    DECISION GATE FOR NON-INVTD000CA    06000CB    0000000CD    9A02   EVENT  660,0,JAM*DLY000CF    00000D0    0000000D2    BC02   EVENT  700,7,JAM5*NON                    PAPER PATH JAM SW PITCH EVENT000D4    07000D5    0000000D7    E702   EVENT  743,0,200US000D9    00000DA    0000000DC    EE02   EVENT  750,0,200US000DE    00000DF    0000000E1    1C03   EVENT  796,0,200US000E3    00000E4    0000000E6    2003   EVENT  800,0,PROGMODE000E8    00000E9    0000000EB    2203   EVENT  802,0,FSH*FNB000ED    00000EE    0000000F0    5203   EVENT  850,4,SRSK&EV                    INIT SRSK & SRT MOTOR000F2    04000F3    0000000F5    6B03   EVENT  875,0,200US000F7    0000078    0000000FA    6F03   EVENT  878,2,FDR5AFLT                    CHECK IF AUX FOR STILL ON000FC    02000FD    0000000FF    7203   EVENT  882,1,FDR1AXFD                    AUX FEED TIME00101    0100102    000000104    8403   EVENT  900,0,200US00106    0000107    000000109    8E03   EVENT  910,0,91*FV0010B    000010C    00000010E    E703   EVENT  999,0,OVER*RUN00110    0000111    0000   ENDTABLE__________________________________________________________________________

              TABLE III______________________________________VARIABLE PITCH EVENT TABLE______________________________________  00     01      FLSH*BSE    FQU   1  00     0F      FO&ONBSE    FQU   15  00     6F      FO*OFFBS    FQU   11100000    0100    ROM*FSH     DW    FLSH*BSE00002    00                  DB    O00003    0000                DW    FSH*ON00005    6F00    ROM*OFF     DW    FO*OFFBS00007    00                  DB    O00008    0000                DW    FO*OFF0000A    0F00    ROM*ON      DW    FO*ONBSE0000C    00                  DB    O0000D    0000                DW    FO*ON0000F    0100    ROM*FSHS    DW    FLSH*BSE00011    00                  DB    O00012    0000                DW    FSH*ON*S00014    6F00    ROM*OFFS    DW    FO*OFFBS00016    00                  DB    O00017    0000                DW    FO*OFF*S______________________________________

                                  TABLE IV__________________________________________________________________________PITCH TABLE BUILDER__________________________________________________________________________00113    2A0000    TBLD*PRT           LHLD               ROM*FSH   H&L= BASE CNT OF FLASH00116    EB   XCHG                 D&E= BASE CNT OF FLASH00117    2A56F8    LHLD       1FLSH*ON  H&L= RED ADJ0011A    19   DAD        D         H&L= BASE + ADJ0011B    2283F8    SHLD       RAM*FSH   RAM*FSH= BASE + ADJ0011E    2AC500    LHLD       ROM*OFF   H&L= BASE CNT OF FO OFF00121    EB   XCHG                 B&E= BASE CNT OF FO OFF00122    2A58F8    LHLD       1FO*OFF   H&L= BASE ADJ + TRIM ADJ00125    19   DAD        D         H&L= BASE + ADJ00126    2288F8    SHLD       RAM*OFF   RAM*OFF= BASE + ADJ00129    2A0A00    LHLD       ROM*ON    H&L= BASE CNT OF FO ON0012C    EB   XCHG                 B&E= BASE CNT OF FO ON0012D    2A5AF8    LHLD       1FO*ON    H&L= RED ADJ + TRIM ADJ00130    19   DAD        D         H&L= BASE + ADJ00131    CD0303    CALL       ON*MOD    CALL MOD ROUTINE TO MOD IF 000134    228DF8    SHLD       RAM*ON    RAM*ON= RESULTS OF ABOVE00137    3A1DF4    IF:        FLG,IMG*SFT,T                         IS THERE IMAGE SHIFT0013A    070013B    D26F010013E    3E06 MVI        A,6       YES, # OF VAR EVENTS TO USE= 600140    47   MOV        B,A       SET UP B-REG FOR LOOP CONTROL00141    3215FE    STA        TBLD*NUM  STORE # OF VAR EVENTS00144    3D   DCR        A         SET UP # OF TIMES TO GO00145    3221FE    STA        TBLD*TMP  THRU SORT00148    2A0F00    LHLD       ROM*FSHS  UPDATE ROM*FSHS TO0014B    EB   SCHG                 INCLUDE RED MODE ADJ + SHIFT0014C    2A5CF8    LHLD       2FLSH*ON  ADJ AND SAVE FOR THE0014F    19   DAD        D         IMAGE SHIFT00150    2292F8    SHLD       RAM*FSHS  FLASH EVENT00153    2A1400    LHLD       ROM*OFFS  UPDATE ROM*OFFS TO INCLUDE00156    EB   XCHG                 RED MODE ADJ + TRIM ADJ +00157    2A5EF8    LHLD       2FO*OFF   SHIFT ADJ AND SAVE0015A    19   DAD        D         FOR THE IMAGE SHIFT0015B    2297F8    SHLD       RAM*OFFS  FADE OUT EVENT0015E    2A1900    LHLD       ROM*ONS   UPDATE ROM*ONS TO INCLUDE00161    EB   XCHG                 RED MODE ADJ + TRIM ADJ +00162    2A60F8    LHLD       2FO*ON    SHIFT ADJ00165    19   DAD        D00166    CD0303    CALL       ON*MOD    CALL MOD ROUTINE TO MOD IF 000169    229CF8    SHLD       RAM*ONS   SAVE THE RESULTS0016C    C37901    ELSE:0016F    3F303    MVI        A,3       IF IMAGE SHIFT NOT SET00171    47   MOV        B,A       #OF VAR EVENTS TO USE = 300172    3215FE    STA        TBLD*NUM  SET UP B-REG LOOP CONTROL00175    3D   DCR        A         STORE # OF VAR EVENTS & SETUP00176    3221FE    STA        TBLD&TMP  #OF TIMES TO GO THRU SORT    ENDIF__________________________________________________________________________

                                  TABLE V__________________________________________________________________________SORTS VARIABLE RAM EVENT TABLE BYABS CLK COUNT & LOWEST ENDS IN EV*RAM__________________________________________________________________________00197    2183F8    1XI    H,FV*RAM     H&L= ADDR OF TOP OF VAR RAM TBL0019A    3A21FE    WHILE: XBYT,TBLD*TMP,NE,0                        TIMES TO GO THRU OUTER LOOP0019D    FE000019F    CA1602001A2    3223FE    STA    IN*LP*CT     INTER LOOP CNT=OUTER LOOP CNT001A5    3E80 SFLG   TBLD*1ST     SET 1ST FLAG FOR THIS POSITION001A7    3261F4001AA    227FF8    SHLD   FIX*ADDR     ADDR OF POSITION TO FULL001AD    B7   ORA    A            CLEAR Z CONDITION BIT001AE    CA0802    WHILE: CC,Z,C001B1    5F   MOV    E,M          E= LS PART OF ABS CLK COUNT001B2    23   INX    H001B3    56   MOV    D,M          D= MS PART OF ABS CLK COUNT001B4    D5   PUSH   D            STORE ABS CLK CNT OF FILL POS001B5    3A61F4    IF:    FLG,TB1D*1ST,T                        IS IT 1ST TIME FOR THIS POS001B8    07001B9    D2C701001BC    AF   CFLG   TB1D*1ST     YES, CLEAR ITS FLAG001BD    3261F4001C0    23   INX    H            AND INCREMENT001C1    23   INX    H            POINTER TO LS PART OF001C2    23   INX    H            ABS CLK COUNT OF NEXT001C3    23   INX    H            EVENT001C4    C3CF01    ELSE:001C7    2A7DF8    1HLD   VAR*ADDR     H&L= ADDR001CA    23   INX    H            OF LS PART OF001CB    23   INX    H            ABS CLK COUNT TO001CC    23   INX    H            COMPARE TO FILL001CD    23   INX    H            POSITION001CE    23   INX    H    ENDIF001CF    227DF8    SHLD   VAR*ADDR     STORE POINTER TO COMPARE EVENT001D2    5F   MOV    EM,          F= LS PART OF COMPARE ABS CLK001D3    23   INX    H001D4    56   MOV    D,M          D= MS PART OF COMPARE ABS CLK001D5    E1   POP    H            H&L= ABS CLK COUNT OF FILL POS001D6    EB   IF:    XWRD,D,LT,H  IS CLK OF COMPARE<FILL001D7    CD0000001DA    D2FE01001DD    2A7DF8    LHLD   VAR*ADDR     YES, SWITCH THE 2 EVENTS001E0    EB   XCHG                D&F= ADDR LOWER CLK VALUE001E1    2A7FF8    LHLD   FIX*ADDR     H&L= ADDR LARGER CLK VALUE001E4    3FFB MVI    A,-5         INITIALIZE LOOP COUNTER TO 5001E6    3222FE    STA    TSW*NUM      WHICH = # OF ITEMS TO MOVE001E9    B7   ORA    A            CLEAR Z CONDITION BIT001EA    CAFE01    WHILE: CC,Z,C001ED    1A   LDAX   D            A= CONTAINS OF COMPARE EVENT001EE    46   MOV    B,M          B= CONTAINS OF FILL EVENT001EF    77   MOV    M,A          UPDATE FILL POS001F0    78   MOV    A,B          UPDATE COMPARE POS001F1    12   STAX   D            WITH NEW VALUE001F2    13   INX    D            MOVE POINTERS TO001F3    23   INX    H            NEXT ITEM001F4    3A22FE    LDA    TSW*NUM      INC MOVE001F7    3C   INR    A            LOOP CONTROL001F8    3222FE    STA    TSW*NUM      COUNTER001FB    C3EA01    ENDWHILE    ENDIF001FE    2123FE    DECBYT IN*LP*CT     DECRM INNER LOOP CNTR00201    3500202    2A7FF8    LHLD   FIX*ADDR     H&L= ADDR OF FILL POSITION00205    C3AE01    ENDWHILE00208    110500    LXI    D,5          MOV H&L TO LOOK AT NEXT EVENT0020B    19   DAD    D            POSITION TO FILL0020C    3A21FE    LDA    TBLD*TMP     DECREMENT # OF EVENTS0020F    3D   DCR    A            TO SORT00210    3221FE    STA    TBLD*TMP00213    C39A01    ENDWHILE__________________________________________________________________________

                                  TABLE VI__________________________________________________________________________MOVE THE SR# & EVENT ADDR FROM ROM TABLE TO RAM TABLE__________________________________________________________________________00179    1183F8    1XI    D,RAM*FSH                   D&F= ADDR OF RAM TABLE0017C    210000    1XI    H,ROM*FSH                   H&L= ADDR OF ROM TABLE0017F    BO   CRA    B       CLEAR Z CONDITION BIT00180    CA9701    WHILE: CC,Z,C00183    23   INX    H       INCREMENT H&L AND D&E00184    23   INX    H       POINTERS OVER THE00185    13   INX    D       ABS CLK COUNT00186    13   INX    D00187    7E   MOV    A,M     LOAD A WITH SR#00188    12   STAX   D       STORE SR# IN RAM TABLE00189    23   INX    H       MOVE POINTERS TO LS0018A    13   INX    D       ADDR OF EVENT0018B    7F   MOC    A,M     LOAD A WITH LS ADDR OF EVENT0018C    1P   STAX   D       & STORE IT IN RAM TABLE0018D    23   INX    H       MOVE POINTERS TO MS0018E    13   INX    D       ADDR OF EVENT0018F    7E   MOV    A,M     MOVE MS ADDR OF EVENT00190    12   STAX   D       TO RAM00191    23   INX    H       MOVES POINTERS TO00192    13   INX    D       LS PART OF ABS CLK COUNT00193    05   DCR    B       DECREMENT LOOP COUNTER00194    C38001    ENDWHILE__________________________________________________________________________

                                  TABLE VII__________________________________________________________________________MERGE VARIABLE PITCH EVENT TABLE & FIXED EVENTTABLE CALCULATING THE REL DIFFERENCE WITH THERESULTS GOING INTO THE RUN EVENT TABLE__________________________________________________________________________00216    2A83F8    LHLD   EV*RAM       INITIALIZE VAR*CLK TO ABS CLK00219    227BF8    SHLD   VAR*CLK      COUNT OF 1ST VAR PITCH EVENT0021C    2183F8    LXI    H,EV*RAM     INITIALIZE VAR*ADDR TO ADDR OF0021F    227DF8    SHLD   VAR*ADDR     1ST VAR PITCH EVENT00222    211E00    LXI    H,EV*ROM     INITIALIZE FIX*ADDR TO ADDR OF00225    227FF8    SHLD   FIX*ADDR     1ST FIXED PITCH EVENT00228    3E80 SFLG   TB1D*1ST     NOTES 1ST EVENT TO RUN TABLE0022A    3261F40022D    3E31 MVI    A,TABLENUM   INITIALIZE TSW*NUM TO # OF0022F    3222FE    STA    TSW*NUM      EVENTS IN FIXED PITCH TABLE00232    2A1E00    LHLD   EV*ROM       INITIALIZE D&E WITH ABS CLOCK00235    EB   XCHG                COUNT OF 1ST FIXED EVENT00236    AF   CFLG   VAR*DONE     FLAG DENOTES VAR EVENTS00237    3262F40023A    3A62F4    WHILE: FLG,VAR*DONE,F                        WHILE THERE ARE MORE VAR EVENTS0023D    070023E    DA880200241    2A7BF8    IF:    XWRD,VAR*CLK,LE,D                        IS VAR CLK CNT = FIXED CLK CNT00244    CD000000247    DA4D020024A    C272020024D    2A7DF8    LHLD   VAR*ADDR     YES, H&L= VAR EVENT ADDR00250    CDAC02    CALL   TBLD*UPD     PLACE VAR EVENT AT END RUN TBL00253    3A15FE    LDA    TBLD*NUM     DECREMENT # OF00256    2D   DCR    A            VARIABLE EVENTS LEFT00257    3215FE    STA    TBLD*NUM     TO MERGE0025A    C26502    IF:    CC,Z,S       DID TBLD*NUM GO TO 00025D    3F80 SFLG   VAR*DONE     YES, DENOTE NO MORE VAR EVENTS0025F    3262F400262    036F02    ELSE:00265    227DF8    SHLD   VAR*ADDR     STORE ADDR OF NEXT VAR EVENT00268    5F   MOV    E,M          UPDATE VAR*CLK TO00269    23   INX    H            VALUE OF ABS CLK COUNT0026A    56   MOV    D,M          OF PRESENT VARIABLE0026B    EB   XCHG                EVENT0026C    227BF8    SHLD   VAR*CLK    ENDIF0026F    C37F02    ELSE:               IF FIXED TABLE CLK COUNT IS00272    2A7FF8    LHLD   FIX*ADDR     LESS THEN VAR TABLE UPDATE THE00275    CDAC02    CALL   TBLD*UPD     RUN TABLE WITH THAT EVENT00278    227FF8    SHLD   FIX*ADDR     UPDATE TO NEXT FIXED EVENT0027B    2122FE    LXI    H,TSW*NUM    DECREMENT # OF FIXED EVENTS0027E    35   DCR    M            LEFT    ENDIF0027F    2A7EF8    LHLD   FIX*ADDR00282    5F   MOV    E,M          UPDATE D&L TO =00283    23   INX    H            ABS CLK CNT VALUE00284    56   MOV    D,M          OF PRESENT FIXED TABLE00285    C33A02    ENDWHILE00288    3FFF MVI    A,X'FF'      CLEAR Z CONDITION0028A    B7   ORA    A            BIT FOR LOOP0028B    2A7FF8    LHLD   FIX*ADDR     NO MORE VAR EVENTS, USE FIXED0028E    CA9D02    WHILE: CC,Z,C       DONE WITH FIXED TABLE00291    CDAC02    CALL   TBLD*UPD     NO, UPDATE RUN TABLE00294    EB   XCHG                SAVE H&L IN D&F00295    2122FE    LXI    H,TSW*NUM    DECREMENT # OF FIXED00298    35   DCR    M            EVENTS LEFT00299    EB   XCHG                RESTORE H&L0029A    C38E02    ENDWHILE0029D    2A81F8    LHLD   P*TBL*A      H&L= ADDR OF LAST MS ADDR IN RUN002A0    2B   DCX    H            MOVE H&L POINTER BACK TO PRINT002A1    2B   DCX    H            AT THE BEGINNING OF THE LAST002A2    2B   DCX    H            EVENT (OVER*RUN) & STORE IT002A3    2250F8    SHLD   EV*PTR:      FOR MACH CLK INTERRUPT HANDLER002A6    3E80 SFLG   TB1D*FIN     DENOTES PITCH TABLE IS COMPLETE002A8    325DF4002AB    C9   RET__________________________________________________________________________

                                  TABLE VIII__________________________________________________________________________ PITCH RESET INTERRUPT HANDLER__________________________________________________________________________00  01   CSET    1          ALLOW THE USE OF C-REG000EE    FB   RSET:EI            RE-ENABLE INTERRUPTS000EF    F5   PUSH    PSW        SAVE A-REG & CONDITION BITS000F0    3A5DF4    IF:     FLG,TBLD*FIN,T                       IS RUN TABLE BUILD FINISHED000F3    07000F4    D25401000F7    3A21F4    IF:     FLG,SR*DONE,T                       YES, IS THERE A NEW SR VALUE000FA    07000FB    D24A0100145    3A60F4    ANDIF   FLG,910*DONE,T                       YET,DID 910 EVENT GET DONE00148    0700149    D29B01000FE    AF   CFLG    SR*DONE    YES, CLR FLAG FOR NEXT SR EVENT000FF    3221F400102    E5   PUSH    H          SAVE H&L00103    2101FE    LXI     H,SR*PTR:  H&L= ADDR OF REL PNTR TO SR#000106    7E   MOV     A,M        A = REL PNTR TO SR#000107    D601 SUI     1          MOVE PNTR BACK 1 SR POSITION                       (DECREMENT SR PTR)00109    E61F ANI     SR*ADJ:    CORRECT FOR POSSIBLE OVERFLOW0010B    77   MOV     M,A        SAVE NEW REL SR PNTR IN SR*PTR:0010C    26F8 MVI     H,SR*BASE:0010E    6F   MOV     L,A        H&L= ABS ADDR OF SR#00010F    3A05FE    LDA     SR*VALU:   A= NEW SR VALUE00112    77   MOV     M,A        UPDATE CONTENTS OF SR#000113    211FFE    LXI     H,EV*1*TIM H&L= ADDR OF TIME TO 1ST EVENT00116    4E   MOV     C,M        C= REL DIFF TO 1ST EVENT00117    2100FB    LXI     H,EV*BASE: H&L= ADDR OF 1ST EVENT0011A    2250F8    SHLD    EV*PTR:    SAVE IN EV*PTR:0011D    3A10F4    IF:     FLG,NORM*DN:,F                       IS NORMAL SHUTDOWN REQUESTED00120    0700121    DA460100124    3A49F7    ANDIF:  FLG,CYCL*DN:,F                       NO, IS CYCLE-DOWN REQUESTED00127    0700128    DA460100128    3A16F4    ANDIF:  FLG,SD1*DLY,F                       NO, IS PROC DEAD CYCLING0012E    070012F    DA460100132    2107FE    LXI     C,CYCUPCT: NO, H&L= ADDR OF CYCLE-UP CNTR00135    7E   IF:     XBYT,M,NE,5                       IS PROC IN CYCLE-UP MODE00136    FE0500138    CA46010013B    FE04 IF:     XBYT,A,EQ,4                       YES, IS IT RDY TO MAKE 1ST IMG0013D    C2450100140    3E80 SFLG    IMGMADE:   YES, SIGNAL 1ST IMAGE MADE00142    320FF4    ENDIF00145    34   INR     M          INCRM CYCLE-UP CNTR (UNTIL= 5)    ENDIF    ENDIF00146    E1   POP     H          RESTORE H&L00147    C35401    ELSE:              NEW SR VALUE NOT AVAILABLE0014A    3E80 SFLG    IMED*DN:   REQUEST AN IMED SHUTDOWN0014C    324AF70014F    3E80 SFLG    E*PR*FLT   SIGNAL EARLY PITCH RESET FAULT    ENDIF    ENDIF00154    3EFE MVI     A,RSETFF:  LOAD FLIP-FLOP RESET INSTR00156    3200E6    STA     RSINTFF:   RESET PITCH RESET FLIP-FLOP00159    F1   POP     PSW        RESTORE A-REG & CONDITION BITS0015A    C9   RET                RETURN TO INTERRUPTED ROUTINE__________________________________________________________________________

                                  TABLE IX__________________________________________________________________________ MACHINE CLOCK INTERRUPT HANDLER__________________________________________________________________________00  01       SET   1          ALLOW THE USE OF THE C-REG06  2B       ORIGIN              X`38`00038    F5   MCLK        PUSH  PSW        SAVE A-REG & CONDITION CODES00039    0D       DCR   C          DECRM MACH CLOCK CNTR0003A    C26400   IF:   CC,Z,S     IT IS ,EQ,00003D    E5       PUSH  H          YES, PREPARE TO DO EVENT0003E    D5       PUSH  D          SAVE H&L AND D&E0003F    2A50F8   LHLD  EV*PTR:    H&L= EVENT TABLE PNTR00042    4E       MOV   C,M        C= REL DIFF (CLOCK COUNTS)00043    C5       PUSH  B          SAVE B&C (C-REG NOT AFFECTED)00044    23       INX   H          H&L NOW PNT TO REL SR IN TABLE00045    3A01FE   LDA   SR*PTR:    A= PNTR TO `0` SR POSITION00048    86       ADD   M          A= PNTR TO PROPER SR POSITION00049    E61F     ANI   SR*ADJ:    ADJUST A-REG FOR TABLE OVERFLOW0004B    5F       MOV   E,A        E= LO ADDR OF PROPER SR0004C    47       MOV   B,A        B= LO ADDR OF PROPER SR0004D    16F8     MVI   D,SR*BASE: D= HI ADDR OF SHIFT REGS0004F    1A       LDAX  D          A= <PROPER SR>00050    23       INX   H          H&L NOW PNT TO LO EVENT ADDR00051    5E       MOV   E,M        E= LO EVENT ADDR00052    23       INX   H          H&L NOW PNT TO HI EVENT ADDR00053    56       MOV   D,M        D= HI EVENT ADDR00054    23       INX   H          H&L NOW PNT TO REL DIFF FOR                         NEXT EVENT00055    2250F8   SHLD  EV*PTR:    SAVE H&L FOR NEXT EVENT TIME00058    EB       XCHG             H&L= ADDR OF EVENT SUBR00059    115E00   LXI   D,RTN:     D&E= RETURN ADDR FOR EVENT SUBR0005C    D5       PUSH  D          SAVE ON STACK (EVENTS USE RET)0005D    E9       PCHL             `CALL` PROPER EVENT SUBR0005E    C1   RTN:        POP   B          RESTORE B&C0005F    D1       POP   D          RESTORE D&E00060    E1       POP   H          RESTORE H&L00061    C36D00   ELSE:00064    79       IF:   XBYT,C,AND,1,NZ                         IS IT TIME FOR A REFRESH00065    E60100067    CA6D000006A    3202E6   REFRESH          YES, INITIATE AN OUTPUT REFRESH        ENDIF        ENDIF0006D    FB       EI               RE-ENABLE INTERRUPT SYSTEM0006E    3EFD     MVI   A,MCLKFF:00070    3200E6   STA   RSINTFF:   RESET MCLK INTERRUPT FLIP-FLOP00073    F1       POP   PSW        RESTORE A-REG & CONDITION BITS00074    C9       RET              RETURN TO INTERRUPTED ROUTINE00  09       SET   9          DISALLOW THE USE OF THE C-REG__________________________________________________________________________

                                  TABLE X__________________________________________________________________________ AUTOMATIC DOCUMENT HANDLER INTERRUPT HANDLER__________________________________________________________________________00000001 C     SET    1          ALLOW PUSH B TO SAVE B ON STACK00075    FB   ADHCLK:          FI                ENABLE INTERRUPTS00076    F5         PUSH   PSW        SAVE A-REG & CONDITION CODES00077    E5         PUSH   H          SAVE H&L00078    212FFE     IXI    H,AD*D*CNT INR COUNTER TO COUNT CLK COUNTS0007B    34         INR    M          BETWEEN EVENTS FOR DIAGNOSTICS0007C    2116FE     IXI    H,AD*CLK   DEC COUNTER WHICH CONTENTS0007F    35         DCR    M          IS ADH CLK CNTS BETWEEN EVENTS00080    C2B300     IF:    CC,Z,S     HAS IT GONE TO ZERO00083    D5         PUSH   D          SAVE D&E00084    C5         PUSH   B          SAVE B&C00085    3A17FE     CASE:  VBYT,AD*STATE                            GO TO THE CORRECT SEQ SUB-00088    11B0000008B    FF100008D    CD000000090    0000       C,0    AD0STATE   ROUTINE00092    0000       C,1    AD1STATE00094    0000       C,2    AD2STATE00096    0000       C,3    AD3STATE00098    0000       C,4    AD4STATE0009A    0000       C,5    AD5STATE0009C    0000       C,6    AD6STATE0009E    0000       C,7    AD7STATE000A0    0000       C,8    AD8STATE000A2    0000       C,9    AD9STATE000A4    0000       C,10   ADASTATE000A6    0000       C,11   ADBSTATE000A8    0000       C,12   AD0STATE000AA    0000       C,13   AD0STATE000AC    0000       C,14   AD0STATE000AE    0000       C,15   ADESTATE          FINDCASE000B0    E1         POP    H          PULL B&C OFF STACK000B1    44         MOV    B,H        RESTORE ONLY B-REG00082    D1         POP    D          RESTORE D&E          ENDIF000B3    E1         POP    H          RESTORE H&L000B4    3FFB       MVI    A,ADHFF:   RESET ADH INTERRUPT00086    3200E6     STA    RSINTFF:   FLIP-FLOP000B9    F1         POP    PSW        RESTORE A & CONDITION CODES000BA    C9         RET               RETURN TO WHERE IT CAME FROM0000009  C     SET    9          DISALLOW USE FOR C-REG__________________________________________________________________________

                                  TABLE XI__________________________________________________________________________ REAL TIME CLOCK INTERRUPT HANDLER__________________________________________________________________________000A6    FB   RTC:        EI                    RE-ENABLE INTERRUPTS000A7    F5       PUSH   PSW            SAVE A-REG & CONDITION BITS000A8    E5       PUSH   H              SAVE H&L000A9    D5       PUSH   D              SAVE D&E000AA    2120F8   LXI    H,TMRBASE:     H&L= ADDR OF 1ST 10 MSEC TIMER000AD    160F     MVI    D,TIMCNTL:     D= # OF 10 MSEC TIMERS000AF    3A55F4   IF:    FLG,DOOR*OPN,T IS THERE AN INTERLOCK OPEN000B2    07000B3    D2B800000B6    160D     MVI    D,TIMCNTL:-2   YES, PUT 2 TIMERS INTO HOLD        ENDIF000B8    5A       MOV    E,D            D=E= # 10 MSEC TIMERS TO DECRM000B9    AF       XRA    A              A= 0 (SET `2` CONDITION CODE)000BA    3C       INR    A              A= 1 (TIMER TERMINAL COUNT)000BB    CAC800   WHILE: CC,Z,C         WHILE `# TIMERS` .NE. 0...000BE    35       DCR    M              DECRM PRESENT 10 MSEC TIMER000BF    C2C300   IF:    CC,Z,S         IS PRESENT TIMER .EQ. 0000C2    77       MOV    M,A            YES, RESET TO 1 (TERMINAL CNT)        ENDIF000C3    23       INX    H              H&L= NEXT TIMER ADDR000C4    1D       DCR    E              DECRM LOOP CNTR (# OF TIMERS)000C5    C3BB00   ENDWHILE000C8    2106FE   LXI    H,DIVD10:      H&L= ADDR OF DIVD BY 10 CNTR000CB    35       DCR    M              DECRM DIVD BY 10 CNTR000CC    C2E500   IF:    CC,Z,S         IS IT .EQ.0000CF    360A     MVI    M,10           YES, RESET IT TO 10000D1    212FF8   LXI    H,TMRBASE:+TIMCNTL:                              H&L= ADDR OF 1ST 100 MSEC TIMER000D4    7A       MOV    A,D            A= # TIMERS USED IN 1ST LOOP000D5    D60A     SUI    TIMCNT1:-TIMCNT2:                              A= # 100 MSEC TIMERS TO DECRM                              -000D7 1C  INR E E= 1 (TIMER TERMINAL                              COUNT)000D8    CAE500   WHILE: CC,Z,C         WHILE `# TIMERS` .NE. 0...000DB    35       DCR    M              DECRM PRESENT 100 MSEC TIMER000DC    C2E000   IF:    CC,Z,S         IS PRESENT TIMER .EQ. 0000DF    73       MOV    M,E            YES, RESET TO 1 (TERMINAL CNT)        ENDIF000E0    23       INX    H              H&L= NEXT TIMER ADDR000E1    3D       DCR    A              DECRM `# OF TIMERS` CNTR000E2    C3D800   ENDWHILE        ENDIF000E5    D1       POP    D              RESTORE D&E000E6    E1       POP    H              RESTORE H&L000E7    3EF7     MVI    A,RTCFF:       LOAD FLIP-FLOP RESET INSTR000E9    3200E6   STA    RSINTFF:       RESET RTC INTERRUPT FLIP-FLOP000EC    F1       POP    PSW            RESTORE A-REG & CONDITION BITS000ED    C9       RET                   RETURN TO INTERRUPTED__________________________________________________________________________                              ROUTINE

Referring particularly to the timing chart shown in FIG. 41, an exemplary copy run wherein three copies of each of two simplex or one-sided originals in duplex mode is made. Referring to FIG. 32, the appropriate button of copy selector 808 is set for the number of copies desired, i.e. 3 and handler button 822, sorter select button 825 and two sided (duplex) button 811 depressed. The originals, in this case, two simplex or one-sided originals are loaded into tray 233 of document handler 16 (FIG. 14) and the Print button 805 depressed. On depression of button 805, the host machine 10 enters the PRINT state and the Run Event Table for the exemplary copy run programmed is built by controller 18 and stored in RAM section 546. As described, the Run Event Table together with Background routines serve, via the multiple interrupt system and output refresh (through D.M.A.) to operate the various components of host machine 10 in integrated timed relationship to produce the copies programmed.

During the run, the first original is advanced onto platen 35 by document handler 16 where, as seen in FIG. 41, three exposures (1ST FLASH SIDE 1) are made producing three latent electrostatic images on belt 20 in succession. As described earlier, the images are developed at developing station 28 and transferred to individual copy sheets fed forward (1ST FEED SIDE 1) from main paper tray 100. The sheets bearing the images are carried from the transfer roll/belt nip by vacuum transport 155 to fuser 150 where the images are fixed. Following fusing, the copy sheets are routed by deflector 184 to return transport 182 and carried to auxiliary tray 102. The image bearing sheets entering tray 102 are aligned by edge patter 187 in preparation for refeeding thereof.

Following delivery of the last copy sheet to auxiliary tray 102, the document handler 16 is activated to remove the first original from platen 35 and bring the second original into registered position on platen 35. The second original is exposed three times (FLASH SIDE 2), the resulting images being developed on belt 20 at developing station 28 and transferred to the opposite or second side of the previously processed copy sheets which are now advanced (FEED SIDE 2) in timed relationship from auxiliary tray 102. Following transfer, the side two images are fused by fuser 150 and routed, by gate 184 toward stop 190, the latter being raised for this purpose. Abutment of the leading edge of the copy sheet with stop 190 causes the sheet trailing edge to be guided into discharge chute 186, effectively inverting the sheet, now bearing images on both sides. The inverted sheet is fed onto transport 181 and into sorter 14 where the sheets are placed in successive ones of the first three trays 212 of either the upper of lower arrays 210, 211 respectively depending on the disposition of deflector 220.

Other copy run programs, both simplex and duplex with and without sorter 14 and document handler 16 may be envisioned.

While the invention has been described with reference to the structure disclosed, it is not confined to the details set forth, but is intended to cover such modifications or changes as may come within the scope of the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3690760 *Apr 5, 1971Sep 12, 1972IbmElectrostatic printing system
US3909128 *Nov 29, 1974Sep 30, 1975Xerox CorpControl logic for changing a multi-mode copier/duplicator from one mode to another
US4025186 *Feb 13, 1975May 24, 1977Eastman Kodak CompanyWeb indicia for synchronizing control apparatus for electrophotographic apparatus utilizing digital computer
US4035072 *Nov 3, 1975Jul 12, 1977Xerox CorporationProgrammable controller for controlling reproduction machines
Non-Patent Citations
Reference
1 *Intel 8080 Microcomputer Systems User s Manual, Sep. 1975, pp. 5 101 to 5 108; 5 153 to 5 157.
2Intel 8080 Microcomputer Systems User's Manual, Sep. 1975, pp. 5-101 to 5-108; 5-153 to 5-157.
3Intel Data Catalog, 1977, "8259 Programmable Interrupt Controller", pp. 10-212 to 10-216.
4 *Intel Data Catalog, 1977, 8259 Programmable Interrupt Controller , pp. 10 212 to 10 216.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4556310 *Nov 28, 1983Dec 3, 1985Canon Kabushiki KaishaCopying or printing apparatus
US4627710 *Mar 4, 1985Dec 9, 1986Xerox CorporationCustomized job default set-up
US5057866 *May 4, 1990Oct 15, 1991Xerox CorporationRemotely accessible copier calculator
US5138377 *May 23, 1991Aug 11, 1992Xerox CorporationInternal expert system to aid in servicing
US5369469 *Jul 9, 1993Nov 29, 1994Xerox CorporationVoice of the customer acquistion system
US5490089 *May 2, 1995Feb 6, 1996Xerox CorporationInteractive user support system and method using sensors and machine knowledge
US5581335 *Nov 4, 1994Dec 3, 1996Xerox CorporationProgrammable toner concentration and temperature sensor interface method and apparatus
US6412907Jan 24, 2001Jul 2, 2002Xerox CorporationStitching and color registration control for multi-scan printing
US20100086880 *Jan 17, 2008Apr 8, 2010Sony CorporationDeveloping solution and method for production of finely patterned material
Classifications
U.S. Classification700/17, 399/77
International ClassificationG03G21/14
Cooperative ClassificationG03G21/14
European ClassificationG03G21/14
Legal Events
DateCodeEventDescription
Apr 23, 1985CCCertificate of correction