Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4485784 A
Publication typeGrant
Application numberUS 06/393,321
Publication dateDec 4, 1984
Filing dateJun 29, 1982
Priority dateJun 30, 1981
Fee statusLapsed
Publication number06393321, 393321, US 4485784 A, US 4485784A, US-A-4485784, US4485784 A, US4485784A
InventorsMasahiko Fujii, Yoshiaki Hirosawa
Original AssigneeNew Nippon Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
An engine ignition control circuit having a failsafe for a crank angle sensor
US 4485784 A
Abstract
An engine ignition control circuit includes a crank angle sensor and two reference position sensors. The engine ignition control circuit also includes an ignition timing control unit generating primary ignition signals and a replacement ignition signal generator device. The control circuit further includes a crank angle monitoring circuit which detects the failure of the crank angle sensor and generates a malfunction signal. The malfunction signal controls a data selector which outputs either the primary ignition signals or the replacement ignition signals to drivers and ignition coils for the engine.
Images(4)
Previous page
Next page
Claims(10)
What is claimed is:
1. An engine ignition control circuit, operatively connected to an engine crank by a crank angle rotor and to an ignition coil, comprising:
a crank angle sensor positioned across from the crank angle rotor, sensing and angle of the engine crank and generating crank angle signals therefrom;
reference position detection means for generating reference position signals in dependence upon a position of the engine crank;
ignition timing control means, operatively connected to said crank angle sensor and said reference position detection means, for generating primary ignition signals in dependence upon the crank angle signals and the reference position signals;
replacement ignition signals generation means, operatively connected to said reference position detection means, for generating replacement ignition signals, in dependence upon the reference position signals, as back-up for the primary ignition signals when the crank angle signals fail;
crank angle signal monitoring means, operatively connected to said crank angle sensor and said reference position detection means, for generating a malfunction detection signal when the crank angle signals fail; and
data selector means, operatively connected to said ignitiion timing control means, said replacement ignition signal generation means, said crank angle signal monitoring means and the ignition coil, for selecting and passing therethrough as ignition control signals and the primary ignition signals or the replacement ignition signals in dependence upon the malfunction detection signal, thereby replacing the primary ignition signals with the replacement ignition signals when the crank angle signals fail.
2. An engine ignition control circuit as recited in claim 1, wherein said crank angle signal monitoring means comprises:
an OR gate operatively connected to said reference position detection means;
a first AND gate operatively connected to said crank angle sensor;
a counter, operatively connected to said OR gate and said first AND gate, having outputs;
a NAND gate operatively connected to the outputs of said counter and said first AND gate;
a delay circuit operatively connected to one of the outputs of said counter;
an inverter operatively connected to said delay circuit;
a second AND gate operatively connected to said OR gate and said inverter;
a third AND gate operatively connected to said delay circuit and said OR gate; and
a flip-flop operatively connected to said second AND gate, said third AND gate and said data selector means.
3. An engine ignition control circuit as recited in claim 1, wherein said replacement ignition signal generation means comprises a flip-flop operatively connected to said reference position detection means and said data selector means.
4. An engine ignition control circuit as recited in claim 1,
wherein said engine crank has a reference position rotor attached thereto,
wherein said reference position detection means comprises:
a first reference position sensor positioned next to the reference position rotor, sensing the position of the engine crank and generating a first reference position signal in dependence thereon;
a second reference position sensor positioned next to the reference position rotor, sensing the position of the engine crank and generating a second reference position signal in dependence thereon;
a first waveform shaping circuit, operatively connected to said first reference position sensor, said ignition timing control means, said crank angle signal monitoring means and said replacement ignition signal generation means; and
a second waveform shaping circuit, operatively connected to said second reference position sensor, said ignition timing control means, said crank angle monitoring means and said replacement ignition signal generation means.
5. An engine ignition control circuit as recited in claim 1, wherein said ignition timing control means comprises;
a counter, operatively connected to the crank angle sensor, for counting the crank angle signals; and
a processor, operatively connected to said counter and said data selector means, for outputting the primary ignition signals in dependence upon the number of crank angle signals counted.
6. An engine ignition control circuit as recited in claim 1, wherein said data selector means comprises:
an inverter operatively connected to said crank angle signal monitoring means;
a first AND gate operatively connected to said inverter and the ignition coil; and
a second AND gate operatively connected to said crank angle signal monitoring means and to said ignition coil.
7. An engine ignition control circuit as recited in claim 1, 2, 3, 4, 5 or 6, further comprising:
a waveform shaping circuit, operatively connected to said crank angle sensor, said ignition timing control means and said crank angle signal monitoring means;
a driver circuit operatively connected to said data selector means; and
said ignition coil operatively connected to said driver circuit.
8. An engine ignition control circuit operatively connected to an engine crank and an ignition coil comprising:
a crank angle sensor positioned next to the engine crank, sensing the angle of the engine crank and generating crank angle signals therefrom;
reference position detection means for generating reference position signals in dependence upon the position of the engine crank;
ignition timing control means, operatively connected to said crank angle sensor and said reference position detection means, for generating primary ignition signals in dependence upon the crank angle signals and the reference position signals; and
means, operatively connected to said crank angle sensor, said reference position detection means, said ignition timing control means and the ignition coil, for generating and outputting primary ignition signals, for detecting the failure of the crank angle sensor and for generating and outputting replacement ignition signals when the crank angle sensor fails, the primary ignition signals or the replacement ignition signals being ignition control signals.
9. An engine ignition control circuit, operatively connected to an engine crank by a crank angle rotor and to an ignition coil, comprising:
a crank angle sensor positioned across from the crank angle rotor, sensing an angle of the engine crank and generating crank angle signals therefrom;
reference position detection means for generating reference position signals in dependence upon a position of the engine crank;
ignition timing control means, operatively connected to said crank angle sensor and said reference position detection means, for generating primary ignition signals in dependence upon the crank angle signals and the reference position signal;
replacement ignition signal generation means, operatively connected to said reference position detection means, for generating replacement ignition signals in dependence upon the reference position signals;
crank angle signal monitoring means, operatively connected to said crank angle sensor and said reference position detection means, for generating a malfunction detection signal in dependence upon the crank angle signals and the reference position signals, said crank angle signal monitoring means comprising:
an OR gate operatively connected to said reference position detection means;
a first AND gate operatively connected to said crank angle sensor;
a counter, operatively connected to said OR gate and said first AND gate, having outputs;
a NAND gate operatively connected to the outputs of said counter and said first AND gate;
a delay circuit operatively connected to one of the outputs of said counter;
an inverter operatively connected to said delay circuit;
a second AND gate operatively connected to said delay circuit and said OR gate;
a third AND gate operatively connected to said delay circuit and said OR gate; and
a flip-flop operatively connected to said second AND gate and said third AND gate; and
data selector means, operatively connecte said ignition timing control means, said replacement ignition signal generation means, said flip-flop of said crank angle signal monitoring means and the ignition coil, for selecting and passing therethrough as ignition control signals the primary ignition signals or the replacement igntion signals in dependence upon the malfunction detection signal.
10. An engine ignition control circuit as recited in claim 9, further comprising:
a waveform shaping circuit, operatively connected to said crank angle sensor, said ignition timing control means and said crank angle signal monitoring means;
a driver circuit operatively connected to said data selector means; and
said ignition coil operatively connected to said driver circuit.
Description
BACKGROUND OF THE INVENTION

The present invention relates to an ignition control circuit for an engine and, more particularly, to an ignition control circuit having a failsafe function which is activated when a crank angle sensor, for detecting the rotation of the crankshaft, is broken.

In recent years, with the advent of digital electronics, digital ignition controls for engines have been developed. For example, in a motorcycle both crank angle pulses, generated from each unit angle of rotation of a crankshaft, and reference position pulses, indicating the reference position of a crankshaft, are input into an electronically controlled ignition control circuit. The ignition control circuit counts the crank angle pulses with respect to the reference position pulses and thereby sets a dwell angle and controls ignition timing.

The crank angle pulses are generated by magnetic detecting teeth formed on an outer circumference of a crank angle rotor fixed to the crankshaft. A crank angle sensor detects the teeth which are set, for example, at a pitch of two degrees. The reference position pulses are generated by a reference position sensor which detects a tooth formed on an outer circumference of a reference position rotor fixed to the crankshaft.

In the above-described ignition control circuit, if the crank angle sensor breaks, the supply of crank angle sensor pulses is discontinued and the ignition signal cannot be generated.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an engine ignition control circuit which has a failsafe function which is activated when the crank angle pulses are blocked.

It is another object of the present invention to generate replacement ignition signals when the crank angle pulses are blocked.

The present invention includes a crank angle sensor that senses the crank angle of a crank angle rotor and two reference position sensors that detect a position of a reference position rotor. The invention also includes an ignition timing control means which generates primary ignition signals from the crank angle pulses and the reference position pulses. The invention further includes means for generating replacement ignition signals which replace the primary ignition signals when the crank angle pulses are blocked. The invention additionally includes means for detecting a malfunction of the crank angle sensor and generating a malfunction detection signal. The invention also includes means for selecting either the primary ignition signals or the replacement ignition signals in dependence upon the malfunction detection signal. The invention additionally includes drivers and ignition coils for generating the spark from the selected ignition signals.

These together with other objects and advantages which will be subsequently apparent, reside in the details of construction and operation as more fully hereinafter described and claimed, reference being had to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a circuit diagram illustrating an embodiment of an engine ignition control circuit according to the present invention;

FIG. 2 is a side elevation diagram illustrating a relationship between mounting positions of a crank angle sensor and reference position sensors;

FIGS. 3(a)-3(k), are time charts illustrating waveforms generated at respective portions generated at the circuit illustrated in FIG. 1;

FIGS. 4(a)-4(c) are time charts illustrating waveforms of respective portions of the circuit illustrated in FIG. 1;

FIG. 5 is a block diagram illustrating an ignition timing control unit;

FIG. 6 is a flow chart illustrating the operation of a microcomputer; and

FIG. 7 is a circuit diagram illustrating a data selector.

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 is a circuit diagram illustrating an embodiment of an engine control circuit according to the present invention as applied to a series four-cylinder motorcycle engine. In FIG. 1, a crank angle sensor 1 is disposed in the vicinity of the outer circumference of a crank angle rotor 3 fixed to a crankshaft 2, as illustrated in FIG. 2. The crank angle sensor 1 magnetically detects the passage of teeth 4 of the crank angle rotor 3. Reference position sensors 5a and 5b are arranged at diametrically opposite positions on the outer circumference of a reference position rotor 6 secured to the crankshaft 2, as illustrated in FIG. 2. The reference position sensors 5a and 5b magnetically detect the passage of a tooth 7 formed on the outer circumference of the position rotor 6. As a result, outputs are alternately generated from the reference position sensors 5a and 5b each time the crankshaft 2 makes a half rotation. Tooth 7 of reference position rotor 6 indicates the position of a piston, and the respective reference position sensors 5a and 5b are so positioned as to detect tooth 7 about 10 degrees before top dead center of the piston.

Waveform shaping circuits 8, 9 and 10 shape the waveforms of the detected outputs of the crank angle sensor 1 and the reference position sensors 5a and 5b, thereby generating crank angle pulses KP and reference position pulses RP1 and RP2, respectively.

An ignition timing control unit 11 receives the crank angle pulses KP at input port P1, and the reference position pulses RP1 and RP2 at input ports P2 and P3, respectively. The ignition timing control unit 11 starts counting the crank angle pulses based on the respective reference position pulses RP1 and RP2, thereby generating ignition signals A and B which have a predetermined dwell angle and ignition timing. The ignition signals A and B drive two ignition systems which are separated by a period of 180 degrees. Thus, the ignition signals A and B are generated with respect to the timing of the reference position signals RP1 and RP2, respectively, which are the reference position pulses.

Flip-flop circuit 12 is connected to the waveform shaping circuits 9 and 10 so that it is set by the reference position signal RP1 and reset by the reference position signal RP2. Flip-flop 12 generates replacement ignition signals A' and B' having opposite levels which are output from the set output terminal Q and the reset output terminal Q.

A crank angle pulse monitoring unit 13 receives the crank angle pulses KP and the reference position pulses RP1 and RP2, and generates a malfunction detection signal G at a high level when it detects the discontinuation of the crank angle pulses KP. The crank angle pulse monitoring unit 13 includes a counter 1 which is reset by an output of an OR gate 14 which receives the reference position pulses RP1 and RP2. The crank angle pulse monitoring unit 13 also includes an AND gate 17 for determining the coincidence between the output of NAND gate 16, which receives the outputs Q1-Q6 of the counter 15, and the crank angle pulses KP. When the crank angle pulses KP are in coincidence with the output of the NAND gate 16, the crank angle pulses KP are fed to a clock input terminal CL of the counter 15. The crank angle pulse monitoring circuit further includes a delay circuit 18 for delaying the output Q6 of the counter 15, and a flip-flop 22 which is set by an output of AND gate 20. AND gate 20 determines a coincidence between the output of OR gate 14 and an output of the delay circuit 18 which passes through inverter 19. Flip-flop 22 is reset by an output of AND gate 21. AND gate 21 determines a coincidence of the output of the OR gate 14 and the output of the delay circuit 18. A set output Q of the flip-flop 22 is used as the malfunction detection signal G which is input to a data selector 23. The data selector 23 selects, during a normal state, the ignition signals A and B from the timing control unit 11 and feeds the ignition signal to drivers 24a and 24b. During a malfunction state, the data selector 23 selects the replacement signals A' and B' from the flip-flop 12 when the malfunction detection signal G is input through a select input terminal SL.

Ignition coils 25a and 25b are driven by drivers 24a and 24b and generate high voltages. In the series four-cylinder engine of the motorcycle, the high voltage output of ignition coil 25a is fed simultaneously to ignition plugs which are mounted in first and fourth cylinders which are at opposite stroke cycles (e.g., the compression and exhaust strokes). While the high voltage output of ignition coil 25b is fed simultaneously to ignition plugs which are mounted in the second and third cylinders also at opposite ends of their stroke cycles.

In the above-described ignition control circuit, above-described, when the crankshaft 2 is rotated, the crank rotor 3 and the reference position rotor 6, which are both fixed to the crankshaft 2, are also rotated. As a result, the crank angle sensor 1 detects passage of the teeth 4 of the crank angle rotor, thereby generating a signal having a period corresponding to the rotational speed of the crankshaft 2. The signal output by the crank angle sensor 1 has its waveform shaped into pulses by the waveform shaping circuit 8 and output as the crank angle pulses KP at a pitch of 2 degrees, as illustrated in FIG. 3(a).

Since the reference position sensors 5a and 5b are arranged at diametrically opposite positions, they alternately detect the single tooth 7 which is formed on the reference position rotor 6, and generate an output each time the crankshaft 2 is rotated 180 degrees. The outputs of the reference position sensors 5a and 5b have their waveforms shaped into respective pulses by the waveform shaping circuits 9 and 10, respectively, and are output as reference position signals RP1 and RP2 as illustrated in FIGS. 3(b) and 3(c). When the reference position pulses RP1 and RP2 are input to input ports P2 and P3 of the ignition timing control unit 11, the ignition timing control unit 11 counts the crank angle pulses KP to set the dwell angle and the ignition timing, and outputs the ignition signals A and B, as illustrated in FIGS. 3(d) and 3(e). The flip-flop circuit 12 receives the reference position pulses RP1 at its set input and the reference position pulses RP2 at its reset input so that the flip-flop 12 always outputs, at its set output terminal Q, and its reset output terminal Q, the replacement ignition signals A' and B' (illustrated in FIGS. 3(f) and 3(g)), which respectively contain the generation periods of the ignition signals A and B.

The ignition timing control unit 11, as illustrated in FIG. 5, includes a counter 30 which counts the crank angle pulses and a microcomputer 31 which is interrupted by the reference position pulses RP1 and RP2. When the microcomputer 31 is interrupted, it inputs the value counted by the counter 30 and determines the dwell angle and ignition timing from the counted value based on predetermined values. The microcomputer 31 then outputs the ignition signals A or B depending upon which reference pulse caused the interrupt. The microcomputer 31 after inputting the counted value also resets the counter so that it can begin to count again. A flow chart illustrating the microcomputer process is illustrated in FIG. 6.

The counter 15, which is included in the crank angle pulse monitoring unit 13, consecutively counts the crank angle pulses KP which are passed through the AND gate 17 after the counter 15 has been reset by the reference position pulses RP1 or RP2 passed through the OR gate 14. When the counted value reaches 128 (i.e., when all the outputs of the output terminals Q1 to Q6 have a value "1"), the output of the NAND gate 16 is inverted to a low level so that the AND gate 17 is closed, thus stopping the counting operation until the counter 15 is reset by subsequent reference position pulses RP1 and RP2. When the counter 15 counts 64 (i.e., when crank shaft 2 rotates 128 degrees) pulses from the rise of the reference pulse RP1 or RP2 the output Q6 becomes high. The output Q6 remains high until the subsequent reference pulse RP1 or RP2 is generated, as illustrated in FIG. 3(h). The output from terminal Q6 of counter 15 is delayed and becomes a delay signal C, as illustrated in FIG. 3(i), output by the delay circuit 18 which has an integrator type construction and which is comprised of a resistor 26 and a capacitor 27. The delay signal C is passed through an inverter 19 to the AND gate 20. However, the coincidence between the reference position pulses RP1 or RP2, which are passed through the OR gate 14, cannot be achieved, because the delay signal C is delayed and inverted, so that a set input signal S of the flip-flop circuit 22 is held at a low state as illustrated in FIG. 3(j). Since the AND gate 21 receives the delay signal C without inversion, this delay signal C is in coincidence with a portion of the reference position pulses RP1 or RP2 passed through the OR gate 14, so that reset pulses R, illustrated in FIG. 3(k), are passed to the flip-flop circuit 22 upon the generation of each of the reference position pulses RP1 and RP2. As a result, when the crank angle pulses KP are normally generated, the flip-flop circuit 22 is held at its reset state, so that the signal output by the set output terminal Q is held at the low level.

The data selector 23, when the control input terminal SL is at the low level, selects the primary ignition signals A and B which are output by the timing control unit 11 and input through terminals X1 and X2. The selector feeds the selected signals to the drivers 24a and 24b. As a result, the ignition coil 25a and 25b are driven by the primary ignition signals A and B which have the dwell angle and the ignition timing controlled at the proper values.

The data selector 23, as illustrated in FIG. 7, includes inverter 36 which receives the malfunction detection signal G. The data selector also includes AND gates 32, 33, 34 and 35 which receive the primary ignition signals A and B and the replacement ignition signals A' and B'.

If the crank angle pulses KP are blocked for some reason, such as the breaking of the crank angle sensor 1, the ignition timing control unit 11 cannot perform the necessary counting using the crank angle pulses KP as its clock, so that setting the dwell angle and the ignition timing does not occur. As a result, the ignition timing control unit 11 does not generate the primary ignition signals A and B.

According to the present invention, however, the replacement ignition signals A' and B', as illustrated in 3(g) and 3(f), are always generated by the flip-flop circuit 12, which receives the reference position pulses RP1 and RP2 at its set and reset inputs. The data selector 23 changes to the backup replacement ignition signals A' and B' when the crank angle pulses KP are blocked. This change operation will be described hereinafter.

If the crank angle pulses KP are blocked, the signal to the clock input terminals CL of the counter 15 disappears, so that the counting operation of the counter 15 is interrupted. As a result, the output signal at the output terminal Q6 of the counter 15 remains at the low level as illustrated in FIG. 4(a). As a further result, the output of the inverter 19 continues at its high level, so that the AND gate 20 passes the set signal S, as illustrated in FIG. 4(b), to the flip-flop circuit 22 each time the reference signals RF1 or RP2 are passed through the OR gate 14. At the same time, the delay signal C output by the delay circuit 18 is held at the low level, so that the reset signal R output by the AND gate 21 to the flip-flop 22 is held at the low level, as illustrated in FIG. 4(c). As a result, flip-flop circuit 22 is continuously set by the set signal S which the flip-flop circuit 22 receives upon each generation of the reference position pulses RP1 and RP2, so that the set output from the terminal Q is inverted to the high level to output the malfunction detection signal G. If the malfunction detection signal G is generated, the data selector 23 changes from selecting the primary ignition signals A and B, which are input at the input terminals X1 and X2, to selecting the replacement ignition signals A' and B', which are input at the input terminals Y1 and Y2. Thus, when the crank angle pulses KP are blocked, the replacement ignition signals A' and B' are selected and passed to drivers 24a and 24b, respectively, so that the ignition coils 25a and 25b are accordingly driven to effect the ignitions even when the crank angle pulses KP are blocked. In this case, the replacement ignition signals A' and B' are generated with each rotation of 180 degrees made by the crankshaft 2 based on the reference position pulses RP1 and RP2. As a result, the dwell angle is 180 degrees and the ignition timing is fixed at the instant when the reference position pulses RP1 and RP2 are generated. Therefore, it is necessary that the reference position pulse generation conditions be included in the limit conditions necessary for the engine ignition control. In the foregoing embodiment, the description has been directed to the case where the present invention is applied to the series four-cylinder engine of a motorcycle. However, the present invention is not limited thereto but can be applied to other types of engines including engines of four wheel vehicles.

As has been above-described, in an engine ignition control circuit according to the present invention, the dwell angle and ignition timing are controlled by counting crank angle pulses generated from each unit angle rotation of a crankshaft based upon the generation of reference position pulses. The reference position pulses are generated in association with a cylinder position of each cylinder and replacement ignition signals are generated based upon the reference position pulses. The replacement ignition pulses are used to drive the ignition coils when the crank angle pulses are blocked. This invention results in an excellent effect in that a backup is insured when the crank angle pulses are blocked.

The many features and advantages of the invention are apparent from the detailed specification and thus it is intended by the appended claims to cover all such features and advantages of the system which fall within the true spirit and scope of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4239024 *Jan 9, 1979Dec 16, 1980Regie Nationale Des Usines RenaultFail-safe ignition coil dwell control system for an internal combustion engine
US4245591 *Sep 24, 1979Jan 20, 1981Nippon Soken, Inc.Ignition timing control system for internal combustion engines
US4317437 *Dec 10, 1979Mar 2, 1982General Motors CorporationInternal combustion engine ignition system
US4378004 *Feb 23, 1981Mar 29, 1983Motorola Inc.Engine control system with cylinder identification apparatus
US4378771 *Jun 16, 1981Apr 5, 1983Toyota Jidosha Kogyo Kabushiki KaishaSystem for controlling ignition timing in an engine
US4385605 *Oct 13, 1981May 31, 1983Motorola Inc.Electronic ignition input logic
DE2916336A1 *Apr 23, 1979Nov 6, 1980Volschskoe Ob Proizv LegkovychMesseinrichtung fuer die winkellage des zahnrades eines digitalen zuendsystems fuer einen verbrennungsmotor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4584645 *Jul 19, 1983Apr 22, 1986Robert Bosch GmbhEmergency operation device for microcomputer-controlled systems
US4584978 *Nov 15, 1984Apr 29, 1986Nippondenso Co., Ltd.Method and apparatus for controlling spark timing in internal combustion engines
US4644917 *Feb 6, 1986Feb 24, 1987Honda Giken Kogyo Kabushiki KaishaMethod and apparatus for controlling an internal combustion engine
US4649881 *Aug 12, 1985Mar 17, 1987Electromotive, Inc.Precision distributorless ignition control system for internal combustion engines
US4681082 *Apr 24, 1985Jul 21, 1987Nippondenso Co., Ltd.Ignition system for internal combustion engine
US4690123 *May 21, 1986Sep 1, 1987Honda Giken Kogyo Kabushiki KaishaControl of ignition timing upon occurrence of abnormality in a reference crank angle position sensing system
US4690124 *May 8, 1986Sep 1, 1987Nissan Motor Company LimitedSpark control system for an engine
US4711227 *Aug 15, 1986Dec 8, 1987Motorola, Inc.Apparatus and method for electronic ignition control
US4757798 *Mar 27, 1987Jul 19, 1988Hitachi, Ltd.Electronic distribution backup apparatus
US4788956 *May 23, 1986Dec 6, 1988Honda Giken Kogyo Kabushiki KaishaMethod of detecting abnormality in crank angle signal of internal combustion engines
US4814704 *Apr 8, 1987Mar 21, 1989Motorola, Inc.Rotor position indicator with correction for apparant acceleration and deceleration
US4895120 *Nov 4, 1985Jan 23, 1990Sanshin Kogyo Kabushiki KaishaIgnition control system for an internal combustion engine
US4957091 *Feb 24, 1989Sep 18, 1990Outboard Marine CorporationDual schedule ignition system
US4960092 *Oct 24, 1989Oct 2, 1990Hitachi, Ltd.Engine control system
US4962738 *Sep 26, 1989Oct 16, 1990Mitsubishi Denki Kabushiki KaishaIgnition control system for an internal combustion engine
US4979487 *Mar 7, 1990Dec 25, 1990Mitsubishi Denki Kabushiki KaishaIgnition controlling apparatus for multi-cylinder internal combustion engine
US5038743 *May 1, 1990Aug 13, 1991Outboard Marine CorporationDual schedule ignition system
US5040519 *May 23, 1990Aug 20, 1991Outboard Marine CorporationSystem to prevent reverse engine operation
US5041979 *Jun 21, 1989Aug 20, 1991Motorola, Inc.Bounded synchronous angle counter
US5042449 *Dec 19, 1989Aug 27, 1991Fiat Auto S.P.A.Method and related system for controlling the ignition in internal combustion engines, particularly direct-ignition engines with individual coils
US5105788 *Jun 24, 1991Apr 21, 1992Robert Bosch GmbhFuel injection system for an internal-combustion engine
US5209202 *Jul 27, 1992May 11, 1993Ford Motor CompanyMethod of operating an internal combustion engine
US5213079 *Apr 30, 1992May 25, 1993Mitsubishi Denki K.K.Ignition timing control apparatus
US5239962 *Jun 16, 1992Aug 31, 1993Mitsubishi Denki Kabushiki KaishaEngine control apparatus for a multi-cylinder engine
US5245968 *Aug 4, 1992Sep 21, 1993Ford Motor CompanySystem to determine cam phase and cylinder identification for a variable cam timing engine
US5267542 *Dec 17, 1991Dec 7, 1993Delco Electronics CorporationElectronic control module
US5345910 *Apr 19, 1993Sep 13, 1994Outboard Marine CorporationEngine ignition system having improved warmup advanced timing control
US5372112 *Apr 21, 1993Dec 13, 1994Toyota Jidosha Kabushiki KaishaDevice for controlling a multi-cylinder engine
US5494017 *May 19, 1994Feb 27, 1996Unisia Jecs CorporationIgnition control apparatus and method for a multi-cylinder two cycle engine
US6019086 *May 28, 1998Feb 1, 2000Cummins Engine Co. Inc.Redundant sensor apparatus for determining engine speed and timing values
US6834216Dec 13, 2001Dec 21, 2004Freescale Semiconductor, Inc.Method and apparatus for the automatic synchronization of dynamic angular and time domain control systems
USRE34183 *Nov 23, 1990Feb 23, 1993Electromotive Inc.Ignition control system for internal combustion engines with simplified crankshaft sensing and improved coil charging
DE3618079A1 *May 30, 1986Dec 4, 1986Honda Motor Co LtdVerfahren zur detektion einer abnormitaet im kurbelwinkelsignal bei brennkraftmaschinen
EP0240858A1 *Mar 26, 1987Oct 14, 1987Hitachi, Ltd.Electronic distribution backup apparatus
EP0375635A1 *Dec 19, 1989Jun 27, 1990FIAT AUTO S.p.A.A method and related system for controlling the ignition in internal combustion engines, particularly direct-ignition engines with individual coils
Classifications
U.S. Classification123/406.18, 123/406.6, 123/643
International ClassificationF02P5/15, F02P7/03, F02D45/00, F02P15/00, F02P5/155
Cooperative ClassificationF02P7/035, F02P15/008, Y02T10/46, F02P5/1553
European ClassificationF02P15/00C, F02P7/03B, F02P5/155D
Legal Events
DateCodeEventDescription
Feb 11, 1997FPExpired due to failure to pay maintenance fee
Effective date: 19961204
Dec 1, 1996LAPSLapse for failure to pay maintenance fees
Jul 9, 1996REMIMaintenance fee reminder mailed
Aug 7, 1992SULPSurcharge for late payment
Aug 7, 1992FPAYFee payment
Year of fee payment: 8
Jul 7, 1992REMIMaintenance fee reminder mailed
Apr 28, 1988FPAYFee payment
Year of fee payment: 4
Jul 30, 1985CCCertificate of correction
May 22, 1985ASAssignment
Owner name: NEC SYLVANIA CORPORATION NO. 37-8 SHIBA 5-CHOME MI
Free format text: CHANGE OF NAME;ASSIGNOR:NEW NIPPON ELECTRIC CO., LTD;REEL/FRAME:004402/0306
Effective date: 19841018
Jan 21, 1983ASAssignment
Owner name: HONDA GIKEN KOGYO KABUSHIKI KAISHA NO 27-8, JINGUM
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FUJII, MASAHIKO;HIROSAWA, YOSHIAKI;REEL/FRAME:004082/0688
Effective date: 19820927
Owner name: NEW NIPPON ELECTRIC CO., LTD. NO. 8-17, UMEDA 1-CH