Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4512905 A
Publication typeGrant
Application numberUS 06/432,795
Publication dateApr 23, 1985
Filing dateDec 23, 1982
Priority dateMay 18, 1982
Fee statusLapsed
Publication number06432795, 432795, US 4512905 A, US 4512905A, US-A-4512905, US4512905 A, US4512905A
InventorsAbraham Clearfield, Paul Jerus
Original AssigneeThe Texas A&M University System
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of making sodium zirconium silico-phosphates
US 4512905 A
Abstract
Homogeneous sodium zirconium silico-phosphates having the formula
Na1+x+4y Zr2-y (SiO4)x (PO4)3-x 
where x is from 1 to 2.8 and y is between 0 and about 0.5, are prepared by heating a zirconium phosphate with an aqueous, alkaline sodium silicate solution and calcining the resulting solid orthorhombic crystalline product. The calcined product is useful as a solid electrolyte for transporting sodium ions in a sodium-sulfur storage battery.
Images(4)
Previous page
Next page
Claims(9)
We claim:
1. A method of preparing a crystalline compound which provides fast sodium ion transport which comprises heating a hydrated orthorhombic crystalline solid having the formula on a water-free basis
Na1+x+4y Zr2-y (SiO4)x (PO4)3-x 
where x is between about 1.0 and about 2.8 and y is between 0 and 0.5, at a temperature between about 1,000° C. and about 1,250° C. until the orthorhombic crystalline solid is converted to a homogeneous, fast sodium ion conducting, monoclinic or rhombohedral crystalline sodium zirconium silico-phosphate of the formula indicated above, or a mixture of the two free from any separate, detectable zirconia phase.
2. A method of preparing a crystalline compound which provides fast sodium ion transport in accordance with claim 1 in which x is between about 1.8 and about 2.3.
3. A method of preparing a crystalline compound which provides fast sodium ion transport in accordance with claim 1 which comprises heating the orthorhombic crystalline solid at a temperature between about 1,100° C. and about 1,225° C.
4. A method of preparing a crystalline compound which provides fast sodium ion transport and having the formula:
Na1+x+4y Zr2-y (SiO4)x (PO4)3-x 
where x is between about 1.0 and about 2.8 and y is between 0 and 0.5, which comprises the steps:
heating an aqueous dispersion comprising soda and silica in solution in a mol ratio of soda to silica of between about 0.9:1 and about 4:1 and a powdered zirconium phosphate having the formula Zr(MPO4)2.zH2 O where M is hydrogen, sodium or a mixture of hydrogen and sodium, and z is an integer from 0 to 10, in an amount to provide a mol ratio of silica to zirconium phosphate of between about 1.2:1 and about 1.8:1, the proportions of the soda, silica and phosphate in the reaction mixture being in excess of the proportions of these materials in the final product, said heating being conducted at a temperature between about 250° C. and about 350° C., until reaction occurs and a precipitate is formed,
separating precipitated material from supernatant liquid, and washing and drying such separated precipitate to recover a hydrated orthorhombic crystalline solid, and
calcining the hydrated orthorhombic crystalline solid at a temperature between about 1000° C. and about 1250° C. until conversion to a homogeneous, fast sodium ion conducting, monoclinic or rhombohedral crystalline, sodium zirconium silico-phosphate of the formula indicated above, or a mixture of the two, free from any separate, detectable zirconia phase, is substantially complete.
5. A method of preparing a crystalline compound which provides fast sodium ion transport in accordance with claim 4 in which the mol ratio of soda to silica is between about 1:1 and about 3:1.
6. A method of preparing a crystalline compound which provides fast sodium ion transport in accordance with claim 4 in which the aqueous dispersion is heated at a temperature between about 275° C. and about 325° C.
7. A method of preparing a crystalline compound which provides fast sodium ion transport in accordance with claim 4 in which the solid product is calcined at a temperature between about 1,100° C. and about 1,225° C.
8. A method of preparing a crystalline compound which provides fast sodium ion transport in accordance with claim 4 in which M is hydrogen.
9. A method of preparing a crystalline compound in accordance with claim 4 in which x is between about 1.8 and about 2.3.
Description

This is a continuation-in-part of U.S. Ser. No. 379,567, filed May 18, 1982, now abandoned.

SUMMARY OF THE INVENTION

Sodium zirconium silico-phosphates having the formula

Na1+x+4y Zr2-y (SiO4)x (PO4)3-x 

where x is between about 1.0 and about 2.8 and y is between 0 and about 0.5, are prepared as pure, single-phase compositions in a multi-stage process which includes the hydrothermal preparation of a novel hydrated orthorhombic crystalline intermediate composition and the subsequent calcination of the orthorhombic material to form the pure, single-phase, crystalline product.

DESCRIPTION OF THE INVENTION

Storage batteries with the same energy and power as the conventional lead-lead oxide battery but much lighter in weight and much smaller in size can be made using liquid sodium and liquid sulfur as the negative and positive electrodes, together with a suitable solid electrolyte membrane separating the liquid electrodes. In order to function effectively as an electrolyte between the liquid electrodes, the solid membrane must have high sodium ion conductivity and low electronic conductivity, and must be chemically stable, both to the liquid sodium and to the liquid sulfur.

Hong et al. in Mat. Res. Bull. Vol. 11, pp. 173-182 and 203-220, 1976, and U.S. Pat. No. 4,049,891, have proposed a crystalline membrane for the sodium-sulfur cell formed from a sodium zirconium silico-phosphate having the formula:

Na1+x Zr2 Six P3-x O12 

where x is between about 0.4 and about 2.8. Hong et al., Mat. Res. Bull., Vol. 13, p. 757, 1978, call this material "Nasicon" for Sodium Superionic Conductor. These compositions were produced by heating powdered sodium carbonate, zirconia, silica and ammonium acid phosphate in stages to a final temperature of about 1200° C. over a period of time. The resulting powdered monoclinic or rhombohedral sodium zirconium silico-phosphate product was pressed into flat shapes which demonstrated good sodium ion transport properties. However, this method results in a product containing free zirconia which reduces the product's ionic conductivity, as pointed out by Bayard et al. in J. Electroanal. Chem., 91 (1978) 201-209.

Boilot et al., Mat. Res. Bull. Vol. 14, pp. 1469-1477, 1979, have proposed a different method for the preparation of the sodium zirconium silico-phosphates by using different initial reactants to make a gel intermediate which dries to an amorphous powder for subsequent calcination. Von Alpen et al., Solid State Ionics 3/4 (1981) pp. 215-218, North-Holland Publishing Company, postulate that sodium zirconium silico-phosphate conforming to the formula:

Na1+x Zr2 Six P3-x O12 

where x is from 0.4 to 2.8, i.e. Nasicon, cannot be produced as a pure monophase. However, Von Alpen et al. additionally demonstrate that certain single-phase compositions outside the ranges defined by this formula can be produced. Quon et al., Mat. Res. Bull., Vol. 15, pp. 1533-1539, 1980 have postulated that zirconia precipitates out of Nasicon as a result of sodium loss during high temperature calcination. When sintering was carried out in the presence of high soda vapor obtained from adjacent sodium aluminate, zirconia precipitation was substantially reduced.

We have discovered a multi-step process for preparing a homogeneous sodium zirconium silico-phosphate composition having fast sodium ion transport properties which has the formula:

Na1+x+4y Zr2-y Six P3-x O12 

where x is between about 1.0 and about 2.8, preferably between about 1.8 and about 2.3, and y is between 0 and about 0.5. By "homogeneous" we mean that the sodium zirconium silico-phosphate is a single-phase crystalline product which does not contain a significant or detectable amount of any non-sodium zirconium silico-phosphate component, such as zirconia, dispersed or deposited within the crystal lattice. Such foreign material would reduce the ionic conductivity of the product by interfering with or blocking the migration of the sodium cation through the crystal lattice.

In our process, the various ions are permitted to combine in optimum ratios different from their relative concentration in the reaction solution to form a novel hydrated orthorhombic crystalline intermediate having the same general formula on a water-free basis as set out in the preceding paragraph. When calcined, this orthorhombic intermediate is converted to the desired homogeneous sodium zirconium silicophosphate having high ionic conductivity without producing a separate, detectable zirconia phase and without requiring an atmosphere of soda vapor during calcination. Our process involves, in its first stage, heating an aqueous solution containing sodium ion, silicate ion, and a suspension of a suitable zirconium phosphate for sufficient time to obtain sodium ion and silicate ion exchange within the zirconium phosphate. When appropriate conditions and proportions are used, the washed and dried precipitate produces a unique X-ray diffraction pattern, showing an orthorhombic cell.

In the second stage of our process the purified and dried orthorhombic material is heated at a temperature between about 1000° C. to about 1250° C. until it has been converted to the homogeneous sodium zirconium silico-phosphate fast ion conductor. At the lower temperatures within this temperature range, the conversion reaction tends to be quite slow, and at the higher temperatures decomposition of the desired product tends to occur. For this reason we prefer a calcination temperature within the range of about 1100° C. to about 1225° C.

As stated, one of the initial reactants is a zirconium phosphate. By this we mean to include that class of compounds having the formula

Zr(MPO4).zH2 O

where M is hydrogen, sodium, or a mixture of hydrogen and sodium and z is from 0 to 10. This formula includes:

α-zirconium phosphate, Zr(HPO4)2.H2 O;

γ-zirconium phosphate, Zr(HPO4)2.2H2 O;

sodium acid zirconium phosphate, NaHZr(PO4)2 ;

sodium zirconium phosphate, Na2 Zr(PO4)2 ; and the like.

The sodium and silica ions required in the solution can be obtained from a single compound, a suitable sodium silicate, or several compounds such as a sodium silicate and sodium hydroxide. A key to our process is the presence in the solution of a proper ratio of the sodium and silicate ions, in order to keep the silicate in solution. For convenience, we specify this ratio as the mol ratio of Na2 O to SiO2, that is, the soda to silica mol ratio. Thus the Na2 O:SiO2 mol ratio in sodium orthosilicate, Na4 SiO4.2H2 O is 2:1, and the mol ratio in sodium metasilicate, Na2 SiO3.9H2 O is 1:1. For this purpose sodium hydroxide can be viewed as Na2 O.H2 O. In our process, the Na2 O:SiO2 mol ratio in the reaction solution should be between about 0.9:1 and about 4:1, and preferably between about 1:1 and about 3:1 in order to carry out our process to the best advantage. This means that the solution will have a sufficiently high pH, such as at least about 10.0, to ensure that all of the silica is in solution, and it will include sufficient sodium to exchange with any hydrogen in the zirconium phosphate compound.

Also important to the successful reaction is the maintenance of a suitable silica to zirconium phosphate mol ratio. We have determined that the mol ratio of SiO2 to the zirconium phosphate compound should broadly be within the range of between about 1:1 and about 2:1, and preferably within the range of between about 1.2:1 and about 1.8:1. When the relative proportions of soda, silica and zirconium phosphate are suitably proportioned, the desired homogeneous product can be obtained.

A special feature of our process further distinguishes it from prior procedures. In the prior art procedures, the relative proportion of the elements in the reaction mixture and in the product are the same. However, this is not true in our reaction. Thus, we utilize excess soda, silica and phosphate which is not incorporated in the final product. The relative excess amount of these components and the reaction conditions determine the nature and composition of the final product. When the reactants are suitably proportioned and the reaction conditions are suitably selected, the novel solid, orthorhombic intermediate product is obtained. The X-ray diffraction pattern of this orthorhombic material does not correspond to any known phosphate in the ASTM Powder Diffraction file.

The conditions which are particularly desirable for obtaining this orthorhombic product include a suitable reaction temperature and sufficient time to complete the reaction. The reaction temperature should desirably be at least about 250° C., preferably at least about 275° C. The maximum temperature will generally be about 350° C. and preferably it will be no higher than about 325° C. The reaction is advantageously carried out for at least about 1 hour up to about 100 hours, more preferably within the range of between about 2 and about 30 hours. Since time and temperature are inter-related, albeit inversely, the reaction time for the desired complete reaction, in part, is determined by the reaction temperature. Pressure is not critical to the success of the reaction but will generally be elevated since the reaction will generally be carried out in a closed vessel in order to avoid the loss of the aqueous phase at the elevated temperature required for reaction.

After the reaction is completed, the powdered orthorhombic product is filtered, washed and dried. It is then heated up to the calcination temperature for slow conversion to the monoclinic or rhombohedral ionic conducting form. The composition determines whether the product develops the monoclinic or the rhombohedral form, or a mixture of the two. When x in the above formula approaches 2.0, the monoclinic form tends to develop, while the rhomobohedral form tends to prevail as x moves away from the vicinity of 2.0. The mono-clinic crystalline form is preferred because it possesses greater ionic conductivity and is more resistant to degradation under thermal shock.

DESCRIPTION OF PREFERRED EMBODIMENTS Example 1

A solution was prepared containing 1.84 g (0.01 mol) of Na4 SiO4 in about 40 ml of water. To this solution was added approximately 2 g (0.0066 mol) of α-zirconium phosphate. This mixture was transferred to a closed teflon-lined reactor vessel and heated at 300° C. for 20 hours. The pressure was estimated to be from about 100 to about 120 atmospheres. At the completion of the reaction the powdered solid product was recovered by filtration, then washed and dried. The X-ray pattern for this material was as follows:

______________________________________d(Å) 6.07   4.98    4.50 4.38 3.85 3.77  3.55 3.36______________________________________I/Io  60     100     10   15   30   30    40   5______________________________________d(Å) 3.23   3.13    3.03 2.81 2.63 2.55______________________________________I/Io   8      20      8   90   20   35______________________________________

The product could be indexed on the basis of an orthorhombic cell with cell dimensions:

a=8.743 Å,

b=10.587 Å, and

c=7.317 Å

On heating at 1200° C. for 3 to 4 hours, the material converted completely to Nasicon as determined from the published X-ray data. No trace of zirconia was identified in the X-ray pattern. Its unit cell dimensions were determined to be:

a=15.609 Å,

b=9.023 Å,

c=9.215 Å, and

β=123.98°.

Example 2

A 12.8 g (0.32 mol) portion of sodium hydroxide was dissolved in 500 ml of water (0.64M) and 19.5 g (0.16 mol) of sodium metasilicate, Na2 SiO3, was dissolved in this alkaline solution. This was followed by the addition of 30.2 g (0.1 mol) of powdered α-zirconium phosphate, Zr(HPO4)2.H2 O, which was dispersed throughout the solution with stirring. The mixture was transferred to a telfon-lined pressure reactor which was filled to the 50-percent level. The reactor contents were treated at 275°-285° C. for 20 hours. Completion of reaction was indicated by the following X-ray pattern for the recovered solid orthorhombic material:

______________________________________d(Å) 6.07   5.02    4.50 4.38 3.86 3.77  3.56 3.38______________________________________I/Io  66     88       15  22   31   31    31   5______________________________________d(Å) 3.24   3.18    2.88 2.64 2.56______________________________________I/Io   5     33      100  22   33______________________________________

Analysis of this orthorhombic crystalline material showed 13.89 percent sodium, 29.87 percent zirconium, 3.57 percent phosphorus, 10.25 percent silicon, 6.66 percent water. After the solid was heated at 1150°-1200° C. for about 10 hours, it provided the following X-ray pattern which identified it as Nasicon:

______________________________________d(Å)6.51   6.47   4.658                   4.609                        4.519                             4.505                                  3.597                                       3.904                                            3.885______________________________________I/Io 45     43     82   60   100  100  38   38   40______________________________________d(Å)3.869  3.682  3.250                   3.223                        2.939                             2.925                                  2.906                                       2.632                                            2.603______________________________________I/Io 35      4     27   60    60   70  50   23   50______________________________________

No impurity such as zirconia was identified in the X-ray pattern. By elemental analysis, this calcined product was found to contain 14.06 percent sodium, 29.83 percent zirconium, 3.72 percent phosphorus, and 9.66 percent silicon.

Another powdered product prepared by this procedure was compressed to a solid disk, about 4 mm thick and about 21 mm in diameter, to a solid having a density of about 92 percent of theoretical. Its electrical conductance, which was measured in a vector-impedance meter (5 Hz to 500 kHz) made by Hewlett-Packard, Model 4800A, was found to be 0.115 ohm-1 cm-1 at 300° C.

This compressed solid product can be used in the form of a membrane as a solid electrolyte for the transport of sodium ion in chemical sensors, solid-state displays, storage batteries of the sodium-sulfur type, and the like.

It is to be understood that the above disclosure is by way of specific example and that numerous modifications and variations are available to those of ordinary skill in the art without departing from the true spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4049891 *Jun 21, 1976Sep 20, 1977Massachusetts Institute Of TechnologyCompositions for fast alkali-metal-ion transport
US4166159 *Aug 2, 1978Aug 28, 1979Massachusetts Institute Of TechnologyProcess for forming fast sodium-ion transport compositions
US4394280 *Apr 19, 1982Jul 19, 1983Varta Batterie A.G.Ion conductive mixed crystal
GB2052462A * Title not available
Non-Patent Citations
Reference
1Bayard, M. L., "A Complex Impedance Analysis of the Ionic Conductivity of Nal+x Zr2 Six P3-x O12 Ceramics", J. Electroanal. Chem. 91, (1978), pp. 201-209.
2 *Bayard, M. L., A Complex Impedance Analysis of the Ionic Conductivity of Na l x Zr 2 Si x P 3 x O 12 Ceramics , J. Electroanal. Chem. 91, (1978), pp. 201 209.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4587172 *Jun 1, 1984May 6, 1986The Perkin-Elmer CorporationMirror substrate of atomically substituted Na Zr2 PO12 low expansion ceramic material
US4663139 *Dec 16, 1985May 5, 1987Union Carbide CorporationCrystalline AlPO4 -39
US4946614 *Jun 14, 1989Aug 7, 1990Agency Of Industrial Science & TechnologyBy adding solid super acid dispersion
US4985317 *Jun 28, 1989Jan 15, 1991Japan Synthetic Rubber Co., Ltd.Electrochemical cells, microstructure
US5871866 *Sep 23, 1996Feb 16, 1999Valence Technology, Inc.Lithium-containing phosphates, method of preparation, and use thereof
US6136472 *Jun 26, 1998Oct 24, 2000Valence Technology, Inc.Lithium-containing silicon/phosphates, method of preparation, and uses thereof including as electrodes for a battery
US6153333 *Mar 23, 1999Nov 28, 2000Valence Technology, Inc.Lithium-containing phosphate active materials
US6203946Dec 3, 1998Mar 20, 2001Valence Technology, Inc.Lithium-containing phosphates, method of preparation, and uses thereof
US6447951Nov 19, 1998Sep 10, 2002Valence Technology, Inc.Upon electrochemical interaction, such material deintercalates lithium ions, and is capable of reversibly cycling lithium ions
US6528033Jan 18, 2000Mar 4, 2003Valence Technology, Inc.Novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and
US6541443Aug 17, 1999Apr 1, 2003The Procter & Gamble CompanyMultifunctional detergent materials
US6645452Nov 28, 2000Nov 11, 2003Valence Technology, Inc.Methods of making lithium metal cathode active materials
US6716372Oct 19, 2001Apr 6, 2004Valence Technology, Inc.Usable as electrode active materials; for use in batteries
US6720110Feb 5, 2001Apr 13, 2004Valence Technology, Inc.Mixed phosphates; electrolytic cell
US6730281May 17, 2002May 4, 2004Valence Technology, Inc.Methods of making transition metal compounds useful as cathode active materials
US6777132Oct 26, 2001Aug 17, 2004Valence Technology, Inc.Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
US6815122Mar 6, 2002Nov 9, 2004Valence Technology, Inc.A mixed oxide of sodium, lithium or potassium, one or more metals capable of oxidation to a higher valence state and phosphorus and silicon; rechargeable; high energy density; lightweight; shelf life; voltage
US6855462Apr 26, 2002Feb 15, 2005Valence Technology, Inc.Stable charging, discharging cycles
US6872492Apr 4, 2002Mar 29, 2005Valence Technology, Inc.Reversibly cycling; electrochemistry
US6884544Nov 25, 2002Apr 26, 2005Valence Technology, Inc.Battery containing lithium phosphate compound
US6890686Feb 22, 2000May 10, 2005Valence Technology, Inc.Rechargeable lithium battery which has an electrode
US6936175Jul 15, 2002Aug 30, 2005Magnesium Elektron, Inc.Nuclear magnetic resonance; for use in ion exchange and catalysis
US6960328Jul 15, 2002Nov 1, 2005Magnesium Elektron, Inc.Zirconium phosphate and method of making same
US6960331Oct 9, 2003Nov 1, 2005Valence Technology, Inc.Reacting metal compound, phosphate and reducing agents
US6964827Nov 7, 2001Nov 15, 2005Valence Technology, Inc.Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
US7001690Jan 18, 2000Feb 21, 2006Valence Technology, Inc.Composite lithium phosphate
US7060206May 17, 2002Jun 13, 2006Valence Technology, Inc.Using alkali metal and transition metal; controlled reduction using carbohydrate; forming inorganic reaction product
US7169297Oct 5, 2004Jan 30, 2007Magnesium Elektron, Inc.pH adjuster-based system for treating liquids
US7214448Jun 16, 2004May 8, 2007Valence Technology, Inc.Composite oxide electrode
US7252767Jul 15, 2002Aug 7, 2007Magnesium Elektron, Inc.Hydrous zirconium oxide, hydrous hafnium oxide and method of making same
US7261977Jan 14, 2005Aug 28, 2007Valence Technology, Inc.Lithium metal fluorophosphate and preparation thereof
US7270915Sep 9, 2005Sep 18, 2007Valence Technology, Inc.Alkali/transition metal HALO-and hydroxy-phosphates and related electrode active materials
US7276218Jan 29, 2004Oct 2, 2007Valence Technology, Inc.Solid state reactions with inorganic cations with reducing carbon
US7438992Feb 16, 2006Oct 21, 2008Valence Technology, Inc.Lithium-based active materials and preparation thereof
US7442310Dec 13, 2006Oct 28, 2008Magnesium Elektron, Inc.Radial flow device for treating liquids comprising a containment member in the form of inner and outer porous polymer tubes, which are constructed and arranged so as to form a generally annular space between them; nonbonded particulate media contained in space; water treatment
US7524584Sep 14, 2006Apr 28, 2009Valence Technology, Inc.Electrode active material for a secondary electrochemical cell
US7759008Feb 7, 2005Jul 20, 2010Valence Technology, Inc.Sodium ion batteries
US7767332Jul 12, 2006Aug 3, 2010Valence Technology, Inc.Alkali/transition metal phosphates and related electrode active materials
US7955733Aug 20, 2010Jun 7, 2011Hydro-QuebecCathode materials for secondary (rechargeable) lithium batteries
US7960058Sep 8, 2010Jun 14, 2011Hydro-QuebecCathode materials for secondary (rechargeable) lithium batteries
US7964308Sep 8, 2010Jun 21, 2011Hydro-QuebecCathode materials for secondary (rechargeable) lithium batteries
US7972728Aug 20, 2010Jul 5, 2011Hydro-QuebecCathode materials for secondary (rechargeable) lithium batteries
US7998617Dec 29, 2006Aug 16, 2011HYDRO-QUéBECCathode materials for secondary (rechargeable) lithium batteries
US8057769Jun 9, 2008Nov 15, 2011Valence Technology, Inc.reacting cobalt carbonate with sodium fluorophosphonate ( Na2FPO3) and carbon to form Na2CoPO4F( sodium cobalt fluorophosphate)
US8067117Nov 23, 2010Nov 29, 2011HYDRO-QUéBECCathode materials for secondary (rechargeable) lithium batteries
US8282691Oct 7, 2011Oct 9, 2012Hydro-QuebecCathode materials for secondary (rechargeable) lithium batteries
US8785043Oct 4, 2012Jul 22, 2014Hydro-QuebecCathode materials for secondary (rechargeable) lithium batteries
EP1501137A2Apr 23, 1997Jan 26, 2005Board Of Regents The University Of Texas SystemCathode materials for secondary (rechargeable) lithium batteries
WO1988000215A1 *Jul 2, 1987Jan 14, 1988Ravaine Lucienne Heritiere DeNew compositions based on derivatives of silica modified by organic groups, preparation and application thereof, particularly as cationic conductors
WO2014052439A1 *Sep 25, 2013Apr 3, 2014University Of Maryland, College ParkHigh conductivity nasicon electrolyte for room temperature solid- state sodium ion batteries
Classifications
U.S. Classification252/62.2, 429/104, 423/306
International ClassificationG02F1/15, G01N27/407, C01B33/20, H01M10/39, H01M6/18
Cooperative ClassificationC01B33/20, Y02E60/12, G02F1/1525, H01M6/185, H01M10/3909, G01N27/4073
European ClassificationH01M6/18D, G02F1/15W2, G01N27/407C, H01M10/39B, C01B33/20
Legal Events
DateCodeEventDescription
Jul 13, 1993FPExpired due to failure to pay maintenance fee
Effective date: 19930425
Apr 25, 1993LAPSLapse for failure to pay maintenance fees
Apr 20, 1989FPAYFee payment
Year of fee payment: 4
Apr 20, 1989SULPSurcharge for late payment
Nov 22, 1988REMIMaintenance fee reminder mailed
Sep 17, 1984ASAssignment
Owner name: TEXAS A&M UNIVERSITY SYSTEM THE, COLLEGE STATION,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CLEARFIELD, ABRAHAM;JERUS, PAUL;REEL/FRAME:004300/0544
Effective date: 19840725