Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4565910 A
Publication typeGrant
Application numberUS 06/673,118
Publication dateJan 21, 1986
Filing dateNov 19, 1984
Priority dateSep 30, 1982
Fee statusPaid
Publication number06673118, 673118, US 4565910 A, US 4565910A, US-A-4565910, US4565910 A, US4565910A
InventorsJeff L. Musick, Robert D. Blaker, David G. Blaker
Original AssigneeBed-Check Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
By the weight of a patient in a bed
US 4565910 A
Abstract
An improved switch apparatus for monitor presence of the patient in a hospital or nursing home bed and responsible to distortion by the weight of the patient, the switch being formed of an elongated, thin rectangular base member of insulating, flexible material having an elongated generally rectangular cutout in it, a first and second plastic cover members encompassing the base member, the plastic cover members being sealed around the edges and the plastic cover members having conductive layers affixed to the opposed surfaces on either side of the base member and arranged so that the conductive layers are spaced apart from each other in the area of the cutout and held apart by the memory of the base and plastic covers and a cable having one conductor connected to the conductive layer on one cover member and another conductor connected to the conductive layer on the other cover member, the conductive surfaces contacting each other through the cutout in the base member when the switch apparatus is subject to bending or twisting distortion.
Images(2)
Previous page
Next page
Claims(3)
What is claimed is:
1. An improved switch responsive to distortion by the weight of a patient in a bed comprising
an elongated, thin, generally rectangular base member of insulating flexible material providing a top and bottom surface and having an elongated generally rectangular cutout therein;
a first non-conductive, thin, generally rectangular upper cover member of flexible material having a bottom and a top surface;
a second non-conductive, thin, generally rectangular lower cover member of flexible material having a bottom and a top surface, the dimensions of said first and second cover members being of length and width greater than said base member, said base member being received between said upper and lower cover members, and said cover members providing overlapping edges;
a first electrically conductive layer affixed to said bottom surface of said upper cover and a second conductive layer affixed to said top surface of said lower cover, the width of said conductive layers being less than the width of said cover members; and
a cable having a first and second conductor, the first conductor having engagement with said first conductive layer and the second conductor having engagement with said second conductive layer, the peripheries of said cover members being sealed, the conductive layers being normally supported by said base member in spaced apart relationship by the memory of said base and said cover member, but which surfaces contact each other through said cutout in said base member when the apparatus is subject to bending or twisting distortion.
2. An improved switch apparatus according to claim 1 wherein said first and second electrically conductive layers are in the form of electrically conductive paint applied to said cover members.
3. An improved switch apparatus according to claim 1 wherein said first and second electrically conductive layers are of a width approximately that of the width of said cutout in said base member.
Description
CROSS-REFERENCE

This is a continuation-in-part of application Ser. No. 429,047 filed Sept. 30, 1982 and entitled "Switch Apparatus Responsive to Pressure or Distortion", now U.S. Pat. No. 4,484,043 issued Nov. 20, 1984.

SUMMARY OF THE INVENTION

One continuous problem encountered in hospitals and nursing homes is that of patients evacuating a hospital bed when the patient is not of a condition so that he or she can be safely trusted out of bed. Many instances have been reported of elderly or infirm patients evacuating hospital beds and falling, breaking bones or causing injury to themselves. Other patients are sometimes disoriented and confused because of an unfamiliar environment or the effect of drugs utilized for treatment purposes and can wander about, even sometimes leaving the hospital. Under these conditions it is important that attendants be apprised if a patient leaves a hospital bed. To provide equipment to accomplish this purpose, bed monitoring devices have been developed such as disclosed in previously issued U.S. Pat. Nos. 4,179,692 and 4,295,133.

In order for electronic circuitry to function properly to indicate the evacuation of a bed by a patient, a convenient and dependable switch mechanism must be provided to open and close a circuit. The present invention provides an improved switch apparatus for this purpose and particularly one which is economical to construct, easy to use, and is more dependable than previously known types of switching devices.

The switch apparatus includes an elongated, thin, generally rectangular base member of insulating flexible material such as high-density polyethylene foam. The base portion is preferably about 1/16 inch thick and 31/2 to 5 inches wide and about 25 to 40 inches long. Formed in the base member is a generally rectangular cut out opening which is preferably about 13/4 to 21/4 inches wide and of a length of about 11/2 to 2 inches less than the length of the base member.

In a first embodiment there is secured on opposite faces of the base member a first and second generally rectangular, thin, electrically conductive member. The electrically conductive members may be such as foil or foil backed with plastic, or metallized plastic material. These are secured to the base member such as by adhesive. The base member thereby supports the conductive elements normally spaced apart from each other about 1/16 of an inch. A cable having two conductors is provided, a conductor being connected to each of the conductive members. Over this assembly is positioned plastic cover members which are slightly longer and wider than the base member and the conductive elements so that the cover members may be sealed along the peripheral edges, thereby completely sealing the apparatus.

The conductive elements are bonded to the cover members and are held in spaced apart relationship at the opening formed in the base member as long as the apparatus is not subject to weight or distortion. It can be positioned under a patient and, more particularly, under sheets, bedding or the like positioned on top of a mattress. The device need not come into contact with the patient. When the device is placed on a bed which receives a patient, the weight of the patient will distort the apparatus, causing the conductive elements to contact each other. As long as the patient remains in the bed, the weight of the patient will cause a closed signal to be provided which, when connected to proper electrical circuits, provides an indication of the presence of a patient in the bed. When the patient evacuates the bed, the normal rigidity of the device is sufficient to cause the conductive elements to separate from each other, providing an open circuit which can be employed to indicate the absence of the patient from the bed.

In a second embodiment conductive surfaces are formed directly on the cover members. More particularly, a conductive surface is formed on the bottom surface of the upper cover member and another conductive layer is formed on the top surface of the lower cover member. These conductive layers may be applied in a variety of ways including rolling or spraying conductive ink, paint or other material directly on the plastic cover members. Depending upon the type of material used, the conductive layers may be sprayed onto the cover members using one, two or more passes depending upon the nature of the material and the thickness of the conductive layer which is required to insure full and complete conductivity of the entire strip. The conductive material is sometimes referred to as a conductive flexible ink or paint and the expression "painted on" includes rolling, spraying or any other means of applying a non-rigid material to the cover sheets to attain a flexible conductive layer.

In the second embodiment the cable conductors are connected to the conductive layers.

The second embodiment functions as does the first embodiment and is different substantially only in the use of conductive layers of material rather than separate conductive elements. The switch functions to provide a closed circuit when it is bent or distorted in any way. Bending may be an arcuate bend as when it is more or less uniformly curved by the weight of the patient in a bed or the switch may function to close when it is twisted or otherwise distorted. The switch does not require direct pressure to deform one of the cover members with its conductive layer to contact the conductive layer of the other cover member; that is, the switch functions by deformation rather than depending upon directly applied pressure.

DESCRIPTION OF THE DRAWING

FIG. 1 is a top plan view of a switch for monitoring patient presence in a hospital bed.

FIG. 2 is a fragmentary plan view of the switch broken away, to show the internal construction.

FIG. 3 is a cross-sectional view taken along the line 3--3 of FIG. 2 showing more details of the construction of the apparatus.

FIG. 4 is a top plan view of an improved embodiment of the invention.

FIG. 5 is a fragmentary plan view improved embodiment, enlarged, which shows more details of the switch construction.

FIG. 6 is a cross-sectional view taken along the lines 6--6 of FIG. 5 showing additional details of the construction of the switch.

DETAILED DESCRIPTION

Referring to the drawings, the apparatus for monitoring patient presence in a hospital bed is indicated generally by the numeral 10. It includes a base member 12 which is formed of non-electrically conductive, flexible, thin material. An ideal material for use in practicing the invention is high-density polyethylene foam. The base member 12 is of generally rectangular configuration having opposed sides 14 and 16 and ends 18 and 20. Formed in the base member is a cutout opening 22 which is generally rectangular and of dimensions about 11/2 to 21/2 inches less in width and length than the base member itself. In the typical embodiment of the invention the base member length, from end 18 to end 20, is about 25 to 40 inches long. The width from sides 14 to 16 is preferably about 33/4 to 5 inches. The thickness of the base member is preferably about 1/16 inch. The opening 22 is preferably about 13/4 to 21/4 inches wide and about 221/2 to 381/2 inches long, depending on the width and length of the base member.

The base member 12 can be described as generally rectangular, and the opening cutout 22 can likewise be described as generally rectangular. However, both may have curved corners if desired.

Affixed to the base member top surface 24 is the first surface 26 of a generally rectangular, thin, electrically conductive member 28. In like manner, the bottom surface 30 of the base member 12 receives the first surface 32 of a second conductive member 34. The conductive members 28 and 34 are preferably of thin metal, such as tin foil, aluminum foil or the like, or of metal surfaces bonded to a plastic backing core, or are of metalized plastic. The dimensions of the conductive members 28 and 34 are substantially equal to or slightly less than that of the base member 12.

As can be seen in FIG. 3, the base member opening 22 causes the conductive members 28 and 34 to be supported in spaced-apart relationship.

Positioned over the conductive members are plastic cover members. Specifically, a top plastic cover member 36 has one surface 38 in engagement with of the first conductive member 28. A bottom cover member 40 engages the second surface 42 of the second conductive member 34. The cover members 36 and 40 are slightly larger in both length and width than that of base member 12 so that they provide an overlapping peripheral edge 44 around the entire apparatus.

The end 18 of base member 12 has a notch 28 formed in it which receives the end portion of a cable 48. The notch may extend at an angle to the end 18 of the base member 50 so that the conductor emerges at or near edge 14 or 16. The cable has a first current carrying conductor 50 which is positioned to contact the first conductive member 28. A second conductor 52 contacts the second conductive element 34. This may be achieved by merely exposing the conductive portions 50 and 52 of the cable 48 to contact the surfaces of the conductive members as the conductive members are secured to the base member.

The apparatus is constructed in this manner. First, the base member 12 is provided with the dimensions as previously set out and with the notch 46 formed in it. An adhesive is applied to the top and bottom surfaces of the base member. Next, the cable 48 is positioned with the end in notch 46 and with conductors 50 and 52 exposed on opposed surfaces of the base member. The conductive members 28 and 34 are then positioned on the base member. The conductive members 28 and 34 thereby engage the conductors 50 and 52 respectively. Next, the cover members 36 and 40 are positioned over the conductive members with adhesive therebetween. The assembly is then pressed securely together by means of a press or rollers to bond the portions to each other. The edge 44 is sealed around the complete assembly. The switch is then completed. It can be seen that all of the elements used to construct the switch are inexpensive and the switch can be expeditiously assembled. This is important in that the device can be considered a throw-away item, that is, it can be limited in usage to one patient. Others may elect to sanitize the device for reuse, which can be easily accomplished since it is hermetically sealed and only the exterior surfaces of the cover are exposed.

The construction of the device means that when no pressure or distorton takes place it is self-rigid so that no contact is provided between the conductive members 28 and 34. However, with the weight of a patient on the device, distortion is sufficient to cause the conductive members 28 and 34 to contact at one place or another, or at a plurality of places along the length of the device, providing a closed circuit.

Referring to FIGS. 4, 5 and 6 an alternate embodiment of the invention is shown which is considered to be an improvement over the embodiment of FIGS. 1, 2 and 3 in that the cost of manufacture is reduced and the accuracy and dependability of the switch is advanced. The letter 10a refers to the alternate embodiment and as seen in FIG. 1 the external appearance, ignoring the dotted lines indicating internal arrangements, of the alternate embodiment is the same as that of the first described embodiment.

Referring to FIGS. 5 and 6, details of the alternate embodiment are shown and include a base member 12 which is formed of non-electrically conductive, flexible, thin material, such as high-density polyethylene foam. The base 12 is of generally rectangular configuration and has opposed sides 14 and 16 and ends 18 and 20. Formed in a base member is a cutout opening 22 which is generally rectangular and has dimensions as described with reference to the first embodiment.

Base member 12 has a top surface 24 and a bottom surface 30. Encompassing the base member is a first nonconductive, thin generally rectangular upper cover member 36 and a similar lower cover member 40. Upper cover member 36 has a bottom surface 36A and a top surface 36B which forms the top exterior surface of the switch. In like manner, lower cover member 40 has a top surface 40A and a bottom surface 40B, the bottom surface forming the exterior bottom of the switch.

Formed on the bottom surface 36A of top cover 36 is a first electrically conductive layer 54 and in like manner formed on the top surface 40A of the lower cover 40 is a conductive layer 56. In one method of manufacturing the switch the conductive layers 54 and 56 run the full length of the upper and lower covers 36 and 40. The width of the conductive layers 54 and 56 is preferably about that of cutout 22 in the base portion 12. As shown in FIGS. 5 and 6 the width of the conductive layers is somewhat less than that of the cutout 22 although the width could be greater than the width of the cutout.

The conductive layers 54 and 56 are formed of conductive ink which may be applied by rolling the ink onto the upper and lower plastic covers 36 and 40 or the ink may be sprayed onto the material which is used to form the covers. If sprayed, more than one layer of conductive ink may be sprayed on. Since the conductive layer may be sprayed, rolled or brushed on it may be generally described as being "painted" onto one surface of each of the upper and lower cover members.

The switch includes a cable 48 with conductors 50 and 52 which are secured to the conductive layers 54 and 56, respectively. The switch is completed by sealing the edges of the cover members beyond the periphery of the base member 12. These may be sealed or bonded such as by the use of adhesives or by heat sealing.

To attain economy of manufacture, a conductive layer may be applied the full length of an elongated strip of plastic material and the strip then cut in lengths to form the upper cover 36 and lower cover 40. When manufactured in this way some means must be provided to prevent the conductive layers from contacting each other at the ends 58 and 60 of the switch. This can be accomplished by inserting small pieces 62 and 64 of thin, non-conductive material between the upper and lower covers 36 and 40 before the edges are sealed or bonded to each other. These thin, non-conductive pieces 62 and 64 may be of plastic material which is heat fused or chemically bonded to the cover portions 36 and 40.

The embodiment of FIGS. 4, 5, and 6 employs the "painted on" conductive layers 36 and 40 in place of conductive members 28 and 34 of the first embodiment and otherwise the switch functions in the same way as in the first described embodiment. When used on a hospital bed the weight of a patient lying or sitting on the bed will distort the switch and thereby cause the conductive layers 36 and 40 to contact each other. This is so whether or not the patient's weight is directly on the switch or not. As long as the switch is placed sufficiently near the portion of the bed where most of the patient's weight will exist, whether the patient is lying or sitting in the bed, the switch will be distorted so as to provide a closed electrical circuit. If the patient moves on the bed so as to shift his or her weight away from the area where the weight of the patient normally occurs, such as the patient moving to the foot of the bed in preparation for exiting from the bed, the decrease in the distortion of the switch will cause the switch to open and such change in circuitry can be employed to provide a signal that the patient is about to or has exited from the bed.

While the invention has been described as it particularly pertains to use in a hospital bed as an example of application of the device, it can be seen that the invention can be applied to use in the beds of nursing homes, in the home of individual users, or for any other switching purpose where or distortion is to be detected.

While the invention has been described with a certain degree of particularity, it is manifest that many changes may be made in the details of construction and the arrangement of components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the exemplified embodiments set forth herein but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3860771 *Oct 29, 1973Jan 14, 1975Chomerics IncKeyboard switch assembly with dome shaped actuator having associated underlying contactor means
US4194099 *Oct 25, 1977Mar 18, 1980W. H. Brady Co.Control panel overlay
US4237358 *May 7, 1979Dec 2, 1980Oak Industries Inc.Isolation membrane switch
US4484043 *Sep 30, 1982Nov 20, 1984Bed-Check CorporationSwitch apparatus responsive to pressure or distortion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4845323 *Aug 28, 1987Jul 4, 1989Tactilitics, Inc.Flexible tactile switch
US4947298 *Aug 21, 1989Aug 7, 1990Stephen John LBed lighting apparatus
US5068504 *Mar 1, 1990Nov 26, 1991Rogers John ESeat cushions and body supports, and fitting instruments for the same
US5148911 *Oct 31, 1991Sep 22, 1992Miller Edge, Inc.For controlling movement of an object
US5353012 *May 14, 1992Oct 4, 1994Bartronix, Inc.Bed position and activity sensing apparatus
US5471198 *Nov 22, 1994Nov 28, 1995Newham; PaulDevice for monitoring the presence of a person using a reflective energy beam
US5554835 *Jul 27, 1994Sep 10, 1996Bed-Check CorporationTraversing conductor pressure sensitive switch
US5600108 *Aug 29, 1994Feb 4, 1997Bed-Check CorporationDocking module enclosure including connectors and power switching
US5623760 *Sep 9, 1996Apr 29, 1997Bed-Check CorporationPressure sensitive switch
US5633627 *Sep 23, 1994May 27, 1997Bed-Check CorporationHard-wired monitoring system for hospital bed or short term care patients
US5640145 *Oct 11, 1994Jun 17, 1997Bed-Check CorporationRemote controlled system for monitoring the occupancy of an infant bearing device
US5647265 *Jun 30, 1993Jul 15, 1997The United States Of America As Represented By The Secretary Of The NavyTool and system for machining a round strand
US5654694 *Sep 23, 1994Aug 5, 1997Bed-Check CorporationMobile battery powered patient bed and chair occupancy monitoring system
US5945914 *Jun 11, 1998Aug 31, 1999Bed-Check CorporationFor monitoring a patient on a toilet seat
US6025782 *Jun 9, 1997Feb 15, 2000Newham; PaulDevice for monitoring the presence of a person using proximity induced dielectric shift sensing
US6078261 *Nov 10, 1998Jun 20, 2000Alert Systems, Inc.System for monitoring a bed patient
US6111509 *Feb 26, 1998Aug 29, 2000Bed-Check CorporationMicroprocessor based bed patient monitor
US6165142 *Sep 21, 1998Dec 26, 2000Roho, Inc.Biomedical apparatus
US6180893Mar 3, 1999Jan 30, 2001Peter SalgoPatient weighing apparatus
US6204767Jun 4, 1999Mar 20, 2001Donald A. EdwardsChair monitor
US6297738Sep 22, 1999Oct 2, 2001Paul NewhamModular system for monitoring the presence of a person using a variety of sensing devices
US6307168Mar 22, 2000Oct 23, 2001Paul NewhamLinear spaced dielectric dot separator pressure sensing array incorporating strain release stabilized releasable electric snap stud connectors
US6307476Apr 2, 1999Oct 23, 2001Bed-Check CorporationSmart binary switch for use with an electronic patient monitor
US6417777Feb 23, 2001Jul 9, 2002Bed-Check CorporationPressure sensitive mat with breathing tube apparatus
US6545236Feb 7, 2001Apr 8, 2003Lear CorporationVehicle interior component having a flexible cover with integrated circuitry
US6611783Jan 5, 2001Aug 26, 2003Nocwatch, Inc.Attitude indicator and activity monitoring device
US6696653Jun 7, 2001Feb 24, 2004Bed-Check CorporationBinary switch apparatus and method for manufacturing same
US6778090Oct 2, 2001Aug 17, 2004Paul NewhamModular system for monitoring the presence of a person using a variety of sensing devices
US6784797Aug 1, 2002Aug 31, 2004Bed-Check CorporationMicroprocessor based bed patient monitor
US6788206Sep 5, 2002Sep 7, 2004Donald A. EdwardsPatient monitoring system
US6791460Nov 19, 2001Sep 14, 2004Hill-Rom Services, Inc.Patient position detection apparatus for a bed
US6858811 *Nov 5, 2003Feb 22, 2005Bed-Check CorporationBinary switch apparatus and method for manufacturing same
US6864795Apr 18, 2002Mar 8, 2005Bed-Check CorporationApparatus for lighting a patient monitor front panel
US6998986Mar 18, 2003Feb 14, 2006Bed-Check CorporationPower latch for use with an electronic patient monitor
US7030764Sep 9, 2003Apr 18, 2006Bed-Check CorporationApparatus and method for reducing the risk of decubitus ulcers
US7078676Oct 18, 2004Jul 18, 2006Bed-Check CorporationDisplacement sensor apparatus
US7079036Jun 24, 2004Jul 18, 2006Bed-Check CorporationMethod and apparatus for alarm volume control using pulse width modulation
US7253366Dec 10, 2004Aug 7, 2007Hill-Rom Services, Inc.Exit alarm for a hospital bed triggered by individual load cell weight readings exceeding a predetermined threshold
US7319400Oct 15, 2004Jan 15, 2008Bed-Check CorporationMethod and apparatus for monitoring a restraint device
US7378975Jan 5, 2006May 27, 2008Bed-Check CorporationMethod and apparatus for mitigating the risk of pressure sores
US7437787Aug 3, 2007Oct 21, 2008Hill-Rom Services, Inc.Load-cell based hospital bed control
US7570152Aug 21, 2006Aug 4, 2009Bed-Check CorporationMethod and apparatus for temporarily disabling a patient monitor
US7821415Apr 4, 2008Oct 26, 2010Kimberlin Denver KPneumatically operated patient bed monitor
US7834768Sep 7, 2007Nov 16, 2010Hill-Rom Services, Inc.Obstruction detection apparatus for a bed
US7940187Jan 30, 2009May 10, 2011Paul NewhamModular systems for monitoring the presence of a person using a variety of sensing devices
US7978084Oct 26, 2010Jul 12, 2011Hill-Rom Services, Inc.Body position monitoring system
US7986242Jul 9, 2007Jul 26, 2011Hill-Rom Services, Inc.Electrical connector assembly suitable for a bed footboard
US8042206Sep 11, 2009Oct 25, 2011Anodyne Medical Device, Inc.Bed exit alarm
US8154413 *Jun 1, 2009Apr 10, 2012Proacticare LlcSystem and methods for monitoring caregiver performance
US8258963Jun 7, 2011Sep 4, 2012Hill-Rom Services, Inc.Body position monitoring system
US8344860May 15, 2012Jan 1, 2013Hill-Rom Services, Inc.Patient support apparatus alert system
US8400311Dec 16, 2011Mar 19, 2013Hill-Rom Services, Inc.Hospital bed having alert light
US8432287Jul 30, 2010Apr 30, 2013Hill-Rom Services, Inc.Apparatus for controlling room lighting in response to bed exit
US8464380Dec 22, 2011Jun 18, 2013Hill-Rom Services, Inc.Patient support apparatus having alert light
US8525682Aug 1, 2012Sep 3, 2013Hill-Rom Services, Inc.Hospital bed having alert light
US8537008Aug 23, 2012Sep 17, 2013Hill-Rom Services, Inc.Bed status indicators
US8564445Mar 5, 2012Oct 22, 2013Proacticare LlcSystem and methods for monitoring caregiver performance
US8593284Sep 19, 2008Nov 26, 2013Hill-Rom Services, Inc.System and method for reporting status of a bed
US8830070Aug 28, 2013Sep 9, 2014Hill-Rom Services, Inc.Hospital bed having alert light
WO1997020294A1 *Nov 28, 1995Jun 5, 1997Newham PaulDevice for monitoring the presence of a person using a reflective energy beam
WO1998010391A1 *Sep 4, 1997Mar 12, 1998Paul NewhamDevice for monitoring the presence of a person using proximity induced dielectric shift sensing
WO1998018318A1 *Oct 22, 1997May 7, 1998Gregory MarkRodent detection apparatus
WO1999063876A1Jun 10, 1999Dec 16, 1999Bed Check CorpToilet seat occupancy monitoring apparatus
Classifications
U.S. Classification200/85.00R, 200/86.00R
International ClassificationA61B5/11, G08B21/22
Cooperative ClassificationG08B21/22
European ClassificationG08B21/22
Legal Events
DateCodeEventDescription
Apr 21, 2003ASAssignment
Owner name: J. T. POSEY COMPANY, CALIFORNIA
Free format text: SETTLEMENT AGREEMENT AFFECTING PATENT RIGHTS;ASSIGNOR:BED-CHECK CORPORATION;REEL/FRAME:013974/0402
Effective date: 20030115
Owner name: J. T. POSEY COMPANY 5635 PECK ROADARCADIA, CALIFOR
May 19, 1997FPAYFee payment
Year of fee payment: 12
Mar 5, 1993FPAYFee payment
Year of fee payment: 8
Feb 2, 1989FPAYFee payment
Year of fee payment: 4
Nov 19, 1984ASAssignment
Owner name: BED-CHECK CORPORATION TULSA OKLAHOMA A CORP OF OKL
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MUSICK, JEFF L.;BLAKER, ROBERT D.;BLAKER, DAVID G.;REEL/FRAME:004337/0340
Effective date: 19841119
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUSICK, JEFF L.;BLAKER, ROBERT D.;BLAKER, DAVID G.;REEL/FRAME:004337/0340
Owner name: BED-CHECK CORPORATION,OKLAHOMA