Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4611203 A
Publication typeGrant
Application numberUS 06/591,099
Publication dateSep 9, 1986
Filing dateMar 19, 1984
Priority dateMar 19, 1984
Fee statusLapsed
Also published asDE3583251D1, EP0155488A2, EP0155488A3, EP0155488B1
Publication number06591099, 591099, US 4611203 A, US 4611203A, US-A-4611203, US4611203 A, US4611203A
InventorsTony N. Criscimagna, Harry S. Hoffman, Jr., William R. Knecht
Original AssigneeInternational Business Machines Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Video mode plasma display
US 4611203 A
Abstract
An A.C. Plasma Display Panel is operated in a video mode using the same signal train as applied to a conventional cathode ray tube terminal. For character generation, a selective erase technique is employed in which all cells in a raster line are discharged and then selectively erased in accordance with the video data to be displayed. To facilitate the erase operation, a line of cells in close proximity to the scan line being selectively erased is employed to provide adequate and uniform priming for the erase operation, and is synchronized to maintain its position with respect to the line being erased. A short plasma erase signal is utilized to fit within the scan rate of the display. The invention is also applicable to character generation in block or multi-line mode.
Images(4)
Previous page
Next page
Claims(4)
What is claimed is:
1. In a plasma display system adapted for character generation and display in video mode, the combination comprising;
a plasma display video monitor having a plurality of display cells arranged in a matrix configuration;
a data stream of video signals for display; and
means for generating a visual representation of said data stream during a raster scanning operation, said means including;
means for applying drive signals to first and second scan lines wherein all cells in said lines are selected;
means for selectively erasing said first scan line in accordance with the contents of said data stream to be displayed;
said second scan line providing uniform priming for the selective erasure of the cells in said first scan line;
said priming permitting said selected erasure to be performed on said first scan line with short duration erase pulses; and
means for synchronizing the movement of said second scan line with said raster scanning operation during said character generation whereby a line of priming cells is always maintained in the same relative position with respect to the scan line being selectively erased.
2. A device of the character claimed in claim 1 wherein said second scan line comprising said priming line is positioned contiguous to said first scan line during said selective erase operation.
3. A device of the character claimed in claim 2 wherein said second scan line is positioned immediately below said first scan line during said selective erase operation.
4. A method of operating a plasma display monitor in video mode comprising the steps of
generating a data stream identifying the data to be displayed;
generating a first scan line wherein all cells are selected;
generating a second scan line wherein all cells are selected;
selectively erasing said first scan line in accordance with the contents of said data stream during a horizontal scan thereof;
said second scan line providing the priming for said selective erase; and
moving said priming line in single line increments in synchronism with generating said data stream whereby said priming line is always positioned adjacent said first scan line during said selective erase operation.
Description
CROSS REFERENCE TO RELATED PATENT APPLICATIONS

U.S. application Ser. No. 372,384 "Improved Method and Apparatus for Gas Display Panel" filed by Tony N. Criscimagna et al, June 21, 1973.

U.S. application Ser. No. 829,692 "Pilot Light Gas Cells for Gas Panels" filed by Parviz Soltan June 2, 1969, now U.S. Pat. No. 3,609,658.

BACKGROUND OF THE INVENTION

In plasma display devices, conductor arrays disposed on glass plates are overcoated with a dielectric layer, and the glass plates edge sealed with the conductor arrays disposed orthogonal to each other, the conductor intersections defining display cells. By selectively applying appropriate signals to the conductor arrays, the display cells are discharged to provide a visible display, the discharge forming a wall charge and corresponding wall charge potential on the wall of selected cells. The display is maintained by a lower amplitude sustain signal which combines with the wall charge potential formed at the selected intersections to continuously discharge the cells at about a 40 kHz rate. Selective erasing is performed by effectively neutralizing the wall charge at the selected cells such that the wall charge potential when combined with the sustain signal is insufficient to discharge the cell. The above described operation is known in the art as all points addressable (APA) plasma panel using XY addressing.

The AC Plasma Display Panel (ACPDP) would be a more flexible device if it could operate from a video interface as well as from an XY interface. With the development of video interface technology, the ACPDP's image qualities and small thin package are available to potential users regardless of the system environment.

SUMMARY OF THE INVENTION

The subject invention is directed to an AC plasma display panel which is designed to operate in a horizonal scan raster (video) mode rather than the conventional all points addressable mode normally associated with such devices. A plasma display panel was driven by a CRT controller and refreshed at a video frame rate. The panel video interface logic is driven by vertical and horizontal synchronization, video, and clock signals originating from the CRT controller. This is the identical signal sequence normally utilized for a CRT display terminal.

A particular problem in selective erasing of a plasma display device is associated with the pattern sensitivity and sequence (PASS) history of selected cells wherein a successful erase depends on ambient priming which in turn is a function of the particular pattern being erased. To resolve this problem as well as to afford compatibility for the gas panel signals in a video mode, the normal operating sequence of the PDP was modified. A write before erase sequence is employed in which a panel line of pels (picture elements) is written and then selectively erased rather than erased and then selectively written. Additionally, a complete line of data is written immediately below the scan line being selectively erased prior to erase and maintained in this relationship whereby abundant and uniform priming for the cells being erased is always provided. By eliminating the PASS problem, the operating margin of the panel is improved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates in block schematic form a Personal Computer connected to a monochrome CRT monitor and to an experimental video gas panel monitor.

FIG. 2a illustrates the erase waveform currently used in the conventional XY plasma display panel, while FIG. 2b illustrates the modified erase waveform used in the ACPDP video monitor.

FIG. 3 illustrates the panel operations that take place during the CRT beam deflection and retrace time.

FIG. 4 is a simplified block diagram of the ACPDP video monitor.

FIG. 5 illustrates the operating ranges of a 72 line per inch 3 mil gap plasma display panel operating in both XY random address and video modes.

FIG. 6 illustrates the operating ranges of a 72 line per inch 4 mil gap panel operating in both XY random address and video modes.

FIG. 7 illustrates the operating ranges of a higher resolution 105 line per inch small gap panel operating in both XY random address and video modes.

DESCRIPTION OF A PREFERRED EMBODIMENT

Referring now to the drawings and more particularly to FIG. 1 thereof, a conventional CRT controller shown as an IBM PC (Personal Computer) monochrome CRT adapter 21 has the following basic outputs; Video, Vsync, Hsync and Intensity signals. The clock signal shown in FIG. 1 is a signal required by the gas panel monitor 27. The gas panel monitor 27, like a CRT monitor, operates in a horizontal scanning mode and utilizes the same signal train to generate the display. Characters tagged for highlighting are reduced in brightness by skipping every other frame and interlacing both vertically and horizontally to handle flicker. To refresh a gas panel in video mode, a panel line can be updated by erasing and then selectively writing the video data or by writing all cells followed by selectively erasing. The latter method is employed in the preferred embodiment of the invention, as it produces less crosstalk and improves the panel's operating ranges.

FIG. 2 illustrates the erase waveforms used by the IBM 3290 and 581 Plasma Display Assemblies, large size high resolution commercially available plasma display panels having a line resolution of 72 lines per inch and 960768 pels (picture elements) in both conventional and video mode. In the preferred embodiment of the invention, a 720350 section of the panel was driven by CRT monochrome adapter 21 and refreshed at a 50 frame per second rate with 3 intensity levels, normal, dim and off.

Referring to FIG. 2a, there is illustrated the erase waveform used in the IBM 3290 Information Processor and the IBM 581 Plasma Display Subassembly (PDSA). This erase waveform was designed to maximize write and erase operating ranges under widely varying image sequences that can occur in random X, Y addressing mode, especially in a highly interactive environment. Every erase cycle, shown as the 16.5 microsecond crosshatched waveform in FIG. 2a, is followed by a short burst of sustain cycles shown as +V Sust and -V Sust, to minimize or buffer the effect of the long erase cycle on the sustain function, since consecutive erase cycles take over 90 microseconds. Such time is not available for a non-interlaced video mode operation as that a faster erase waveform is required. A more complete description of the XY plasma panel operation is found in "Write and Erase Waveforms For High Resolution AC Plasma Display Panels", published in the IEEE Transactions of Electronic Devices, by T. N. Criscimagna et al, Vol. ED-28, No. 6, June 1981.

Video mode using a conventional raster scan technique does not have the widely varying image sequences available in XY addressing mode. Therefore, the write and erase waveforms can be modified without degrading the operating ranges. The conventional plasma display erase waveform is wide and operates over a large voltage range. Though it is not normally used at sustain amplitude (approximately 90 volts), it functions well at this amplitude, and the flat portion of the erase pulse can be seen to be identical to the sustain alternation that it precedes.

FIG. 2b illustrates the modified erase waveform used to speed up the erase operation. The rise time of FIG. 2b is faster and the flat sustain like portion of the erase pulse of FIG. 2a is eliminated. When a cell(s) is not selected for erase, the crosshatched triangular leading edge is not present, leaving a normal sustain alternation; when a cell is selected to erase, the presence of the triangular leading edge creates a waveform almost identical to the old erase waveform at sustain amplitude. Functionally, the new waveform functions like the old waveform, but is much shorter in duration. Reducing the width of the erase pulse from 16.5 to approximately 6 microseconds permitted operating in video mode.

Referring now to FIG. 3, the new write and erase waveforms and a NRZ transition (non-return to zero) after the write pulse, as shown in FIG. 3, fit within the 54 microsecond horizontal scan period. The two sustain cycles within the 54 microseconds establishes a 37 kHz sustain frequency, only 3 kHz lower than the 40 kHz optimum sustain frequency for these panels. The sustain cycles previously required between consecutive write or erase operations were also eliminated. In place of a long post write pedestal to eliminate or control self erase during write, the NRZ transition reduces the tendency of the write pulse to self erase at high write amplitude. The NRZ transition represents an Engineering compromise which is not quite as effective as the post write pedestal in eliminating self erase, but allows for a much shorter write operation.

Referring now to FIG. 4, the system which comprises the environment of the instant invention is illustrated in simplified block form. The sustain, write and erase operations are continuous, and are synchronized to the H signals and to the video data as shown in FIG. 3. The first horizontal sweeps in a frame are not accompanied by video data, and therefore write and erase pulses are not generated. The waveforms of FIG. 3 are generated with time allotted for the non existent write and erase pulses. A few sweeps later, when video data is present, the write and erase pulses are generated to update the panel lines. For convenience, alternate odd and even lines are driven from opposite sides of the panel so that two shift registers for each axis are used to store the contents of the display being generated.

The frame sequence starts with a V sync signal applied to the video control unit 31. During the vertical retrace time, all cells of the upper two panel lines 1 and 2 are selected by single one bits shifted into both horizontal selection circuit shift registers 33 and 35. The right (even) Sel None line 37 is then used to deselect line 2, leaving line 1 (odd) selected. Vertical "Sel All" lines 41, 43 are used to select all vertical lines and all cells of line 1 are turned on by writing. This completes frame initialization and the logic waits for the first active H sweep with all cells on line 1 lit. Consecutive horizontal line pairs (1/2, 2/3, 3/4 etc.) are selected by alternately shifting the single one bit in either the left or the right shift register, after each horizontal sweep.

When the first active H Sync signal accompanied by video occurs, line 2 of the 1/2 pair is selected and all cells are written while the video data for line 1 is being shifted into the vertical shift registers 45, and 47. In the preferred embodiment of the invention herein described, a total of 720 bits of data, 360 odd and 360 even, are generated in each horizontal sweep. At this point all cells of line 1 and line 2 are on. When all the video data is loaded into the shift registers, line 1 is next selectively erased with excellent and uniform piloting provided by adjacent line 2. This pilot action virtually eliminates failures due to incomplete erasure, the heretofore defined PASS problem. Before the next H sync signal occurs, the horizontal line pair is advanced to lines 2/3. The next horizontal sequence therefore turns on all the cells on line 3 and then selectively erase line 2. This horizontal sequence continues down the entire panel until one entire frame of video data is written and displayed. When the next V sync signal occurs, the next frame is initialized, as described above, and the entire sequence is repeated 50 times a second.

With respect to the erase operation, when a cell(s) is erased in an environment where there is normal piloting, the residual wall charge of the "erased" cell can be considerably greater than the OFF state wall charge. The dielectric and gas crosstalk following an adjacent cell write operation can then turn the erased cell(s) on again. As previously described, this failure mode is very sensitive to the present and past image patterns on the screen, and to the rate at which they are erased and updated. Such failures can be substantially reduced but not eliminated by careful design and control of both the pitch and the line width to gap ratios of the plasma display device. The sequence of turning on all the cells of line (n+1) and then selectively erasing the cells on line n was specifically designed to eliminate the PASS type failure in video mode operation. Only in video mode can the pattern and sequence of image updating be controlled and thereby guarantee uniform and excellent piloting.

In conventional AC plasma display devices, border pilot cells are generally employed to initially light the panel from a power-on start and to condition the cells for discharge in a write operation. However, in the instant invention, such pilot cells are not required, and the expense of pilot line driver circuits and the panel area needed for the pilot lines are not required.

Two basic test modes were used to measure the operating ranges of various panels, XY random address and video refresh mode. The XY random address mode test pattern, the PASS test, heretofore described, is a worst case testing consisting of a sequence of test patterns which promote PASS type failures by provoking noisy write and incomplete erase conditions. It is felt that video mode does not exhibit patterning sensitivity for the following reasons:

(1) the image on each line prior to each selective erasure is always the same, since all cells are lit. The history of a cell prior to erase is constant.

(2) the excellent and uniform piloting leaves a minimum of residual wall charge to guarantee the cell will remain off.

(3) selective writing, which tends to produce crosstalk, is not used.

FIGS. 5 through 7 represent typical plots of write, erase and sustain operating ranges used in AC plasma panel operated in video mode. Experimental panels were made with chamber gaps from 3 to 4 mils, and resolution from 72 lines per inch to 105 lines per inch. Each plot in FIGS. 5 through 7 represents the operating parameters for a specified panel tested in both XY addressing and video modes. The only significant difference in operating parameters for a panel tested in both modes is the panels Vs max. Therefore, for simplification, the sustain write and erase minimums have been normalized and are shown as coincident, and the two Vs max points are labeled to illustrate the difference.

Referring first to FIG. 5, the write, erase and sustain operating ranges for a 72 line per inch panel with a 3.0 mil chamber gap and appropriate pressure and gas mixture is illustrated. The essential difference in this panel operating in both test modes was that the video mode produced a slightly larger sustain operating range then the XY address mode. The increase in Vs max. is attributable to the improved erase operation. Vs max. is one of the components of the operating margin of a panel, which is defined as the difference between the maximum sustain voltage Vs max and the minimum sustain voltage Vs min., or (Vs max.-Vs min.).

Referring next to FIG. 6, the write, erase and sustain operating ranges for a 72 line per inch panel having a 4 mil chamber gap are illustrated. The wider gap promotes crosstalk PASS failures, as evidenced by the small operating margin of only 1.6 volts, while the write and erase operating ranges were fairly normal. In the video mode, however, the panel operates very well with an operating range of 6.4 volts, even without waveform optimization in the large gap. This is a relatively dramatic increase in sustain operating range without any optimization of the write and erase waveforms. Again, this improvement is the result of the improved erase operation.

Referring finally to FIG. 7, the write, erase and sustain operating ranges of a 3 mil gap panel with a resolution of 105 lines per inch is illustrated. This panel tested rather well in both X-Y address and video mode tests. The small chamber gap required for such high resolution precludes a great deal of PASS failure. Even so, the video mode still produced a slightly larger sustain operating range.

In view of the foregoing, it is clear that an ACPDP can be used to replace a CRT as a display component in a computer terminal or monitor. In this mode, the ACPDP operates better than it does in the X, Y random address mode and has the following advantages:

1. The fast update allows for fast real time display, easy smooth scrolling and instantaneous response in highly interactive application.

2. A very simple interface is required; making it very easy to use in computer video terminals and monitors with a totally flicker-free display.

3. Improved panel yields in manufacturing because of the larger operating ranges and insensitivity to PASS type failures and relaxation of gap and line width manufacturing tolerances.

4. The pilot operation for panel start up and and write operations is no longer needed, providing a small but real cost saving.

5. Using the ACPDP in refresh mode allows the use of an inexpensive light pen designed for CRT use. This may represent a significant cost advantage, when compared to the more expensive X, Y tablets used in conventional plasma operation.

While the invention has been shown and described with reference to a preferred embodiment thereof, it will be understood that various substitutions in form and detail may be made by those skilled in the art without departing from the spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3940757 *Feb 5, 1975Feb 24, 1976Autotelic Industries, Ltd.Method and apparatus for creating optical displays
US4176298 *May 23, 1977Nov 27, 1979Modern Controls, Inc.Display panel apparatus and method of driving
US4247854 *May 9, 1979Jan 27, 1981Ncr CorporationGas panel with improved circuit for display operation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4756528 *Jul 24, 1986Jul 12, 1988Ramon UmashankarVideo system for passenger vehicles
US4887003 *May 10, 1988Dec 12, 1989Parker William PScreen printable luminous panel display device
US4900987 *Jun 2, 1987Feb 13, 1990Fujitsu LimitedMethod for driving a gas discharge display panel
US4956577 *Aug 24, 1988Sep 11, 1990Parker William PInteractive luminous panel display device
US4980678 *Jun 17, 1988Dec 25, 1990Kabushiki Kaisha ToshibaDisplay controller for CRT/flat panel display apparatus
US4990902 *Jun 17, 1988Feb 5, 1991Kabushiki Kaisha ToshibaDisplay area control system for flat panel display device
US4990904 *Jun 17, 1988Feb 5, 1991Kabushiki Kaisha ToshibaDisplay mode switching system for flat panel display apparatus
US5126632 *Mar 15, 1991Jun 30, 1992Parker William PLuminous panel display device
US5142200 *Nov 26, 1990Aug 25, 1992Toshihiro YamamotoMethod for driving a gas discharge display panel
US5198723 *Dec 11, 1989Mar 30, 1993Parker William PLuminous panel display device
US5218274 *Jul 25, 1990Jun 8, 1993Kabushiki Kaisha ToshibaFlat panel display controller using dual-port memory
US5237315 *Apr 26, 1991Aug 17, 1993Thomson Tubes ElectroniquesMethod for adjusting the luminosity of display screens
US5293485 *Jan 21, 1993Mar 8, 1994Kabushiki Kaisha ToshibaDisplay control apparatus for converting color/monochromatic CRT gradation into flat panel display gradation
US5351064 *Dec 13, 1993Sep 27, 1994Kabushiki Kaisha ToshibaCRT/flat panel display control system
US5396258 *Nov 8, 1991Mar 7, 1995Kabushiki Kaisha ToshibaPlasma display control system
US5430457 *Sep 30, 1994Jul 4, 1995Kabushiki Kaisha ToshibaCRT/flat panel display control system
US5438652 *Feb 5, 1993Aug 1, 1995Kabushiki Kaisha ToshibaDisplay control apparatus for converting color/monochromatic CRT gradation into flat panel gradation
US5448260 *Jun 16, 1994Sep 5, 1995Kabushiki Kaisha ToshibaColor LCD display control system
US5467470 *Apr 19, 1994Nov 14, 1995Kabushiki Kaisha ToshibaComputer able to determine whether or not a display is connected to it, in accordance with the status data stored in a register, and method of detecting whether or not a display is connected to a computer
US5491496 *May 2, 1994Feb 13, 1996Kabushiki Kaisha ToshibaDisplay control device for use with flat-panel display and color CRT display
US5508714 *Sep 9, 1994Apr 16, 1996Kabushiki Kaisha ToshibaDisplay control apparatus for converting CRT resolution into PDP resolution by hardware
US5519414 *Feb 19, 1993May 21, 1996Off World Laboratories, Inc.Video display and driver apparatus and method
US5592187 *Oct 19, 1994Jan 7, 1997Kabushiki Kaisha ToshibaPlasma display control system
US5663741 *Mar 18, 1996Sep 2, 1997Fujitsu LimitedController of plasma display panel and method of controlling the same
US5745086 *Nov 29, 1995Apr 28, 1998Plasmaco Inc.Plasma panel exhibiting enhanced contrast
US6414654 *Jun 29, 1998Jul 2, 2002Nec CorporationPlasma display panel having high luminance at low power consumption
US6707436Jun 17, 1999Mar 16, 2004Fujitsu LimitedMethod for driving plasma display panel
US6982685Jul 5, 2002Jan 3, 2006Fujitsu LimitedMethod for driving a gas electric discharge device
US6985125Jun 13, 2001Jan 10, 2006Imaging Systems Technology, Inc.Addressing of AC plasma display
US7009585Dec 31, 2003Mar 7, 2006Fujitsu LimitedMethod for driving plasma display panel
US7122961Nov 29, 2005Oct 17, 2006Imaging Systems TechnologyPositive column tubular PDP
US7157854May 20, 2003Jan 2, 2007Imaging Systems TechnologyTubular PDP
US7176628May 19, 2005Feb 13, 2007Imaging Systems TechnologyPositive column tubular PDP
US7345667Sep 14, 2005Mar 18, 2008Hitachi, Ltd.Method for driving plasma display panel
US7456808Feb 2, 2004Nov 25, 2008Imaging Systems TechnologyImages on a display
US7589697Aug 18, 2005Sep 15, 2009Imaging Systems TechnologyAddressing of AC plasma display
US7595774Aug 24, 2005Sep 29, 2009Imaging Systems TechnologySimultaneous address and sustain of plasma-shell display
US7619591Aug 23, 2005Nov 17, 2009Imaging Systems TechnologyAddressing and sustaining of plasma display with plasma-shells
US7675484Jul 25, 2007Mar 9, 2010Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas electric discharge device
US7719487Jul 18, 2005May 18, 2010Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas electric discharge device
US7817113Mar 24, 2009Oct 19, 2010Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas electric discharge device
US7825875Jan 19, 2006Nov 2, 2010Hitachi Plasma Patent Licensing Co., Ltd.Method for driving plasma display panel
US7906914Aug 21, 2007Mar 15, 2011Hitachi, Ltd.Method for driving plasma display panel
US7911414Jul 24, 2007Mar 22, 2011Imaging Systems TechnologyMethod for addressing a plasma display panel
US7965261Jul 25, 2007Jun 21, 2011Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas electric discharge device
US8018167Aug 21, 2007Sep 13, 2011Hitachi Plasma Licensing Co., Ltd.Method for driving plasma display panel
US8018168Aug 21, 2007Sep 13, 2011Hitachi Plasma Patent Licensing Co., Ltd.Method for driving plasma display panel
US8022897Aug 21, 2007Sep 20, 2011Hitachi Plasma Licensing Co., Ltd.Method for driving plasma display panel
US8248328May 6, 2008Aug 21, 2012Imaging Systems TechnologyPlasma-shell PDP with artifact reduction
US8289233Nov 18, 2008Oct 16, 2012Imaging Systems TechnologyError diffusion
US8305301Nov 17, 2008Nov 6, 2012Imaging Systems TechnologyGamma correction
US8344631Aug 8, 2011Jan 1, 2013Hitachi Plasma Patent Licensing Co., Ltd.Method for driving plasma display panel
US8558761Aug 21, 2007Oct 15, 2013Hitachi Consumer Electronics Co., Ltd.Method for driving plasma display panel
USRE41817Feb 19, 2009Oct 12, 2010Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas-discharge panel
USRE41832Feb 19, 2009Oct 19, 2010Hitachi Plasma Patent Licensing Co., LtdMethod for driving a gas-discharge panel
USRE41872Jan 20, 2006Oct 26, 2010Hitachi Plasma Patent Licensing Co., LtdMethod for driving a gas-discharge panel
USRE43267Jan 8, 2010Mar 27, 2012Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas-discharge panel
USRE43268Jan 8, 2010Mar 27, 2012Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas-discharge panel
USRE43269Oct 12, 2010Mar 27, 2012Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas-discharge panel
USRE44003Oct 19, 2010Feb 19, 2013Hitachi Plasma Patent Licensing Co., Ltd.Method for driving a gas-discharge panel
USRE44757Mar 27, 2012Feb 11, 2014Hitachi Consumer Electronics Co., Ltd.Method for driving a gas-discharge panel
EP0344621A2 *May 26, 1989Dec 6, 1989Kabushiki Kaisha ToshibaPlasma display control system
EP0344622A2 *May 26, 1989Dec 6, 1989Kabushiki Kaisha ToshibaPlasma display control system
EP0344623A2 *May 26, 1989Dec 6, 1989Kabushiki Kaisha ToshibaPlasma display control system
EP0359234A2 *Sep 13, 1989Mar 21, 1990Kabushiki Kaisha ToshibaDisplay control apparatus for converting CRT resolution into PDP resolution by hardware
EP0359236A2 *Sep 13, 1989Mar 21, 1990Kabushiki Kaisha ToshibaDisplay control apparatus for converting color/monochromatic CRT gradation into PDP gradation
EP0395942A2 *Apr 19, 1990Nov 7, 1990Kabushiki Kaisha ToshibaComputer able to determine whether or not a display is connected to it, in accordance with the status data stored in a register, and method of detecting whether or not a display is connected to a computer
EP1801768A1Dec 22, 2005Jun 27, 2007Imaging Systems Technology, Inc.SAS Addressing of surface discharge AC plasma display
Classifications
U.S. Classification345/66, 345/467, 315/169.4
International ClassificationG09G1/00, G06F3/147, G09G3/28, G09G3/288, G09G3/20, H04N5/66
Cooperative ClassificationG09G3/288, G09G1/00, G09G3/2935
European ClassificationG09G3/293E, G09G3/288
Legal Events
DateCodeEventDescription
Nov 17, 1998FPExpired due to failure to pay maintenance fee
Effective date: 19980909
Sep 6, 1998LAPSLapse for failure to pay maintenance fees
Mar 31, 1998REMIMaintenance fee reminder mailed
Jan 10, 1994FPAYFee payment
Year of fee payment: 8
Nov 2, 1989FPAYFee payment
Year of fee payment: 4
Mar 30, 1984ASAssignment
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CRISCIMAGNA, TONY N.;HOFFMAN, HARRY S. JR.;KNECHT, WILLIAM R.;REEL/FRAME:004264/0325;SIGNING DATES FROM 19840322 TO 19840323
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION,NEW YO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRISCIMAGNA, TONY N.;HOFFMAN, HARRY S. JR.;KNECHT, WILLIAM R.;SIGNING DATES FROM 19840322 TO 19840323;REEL/FRAME:004264/0325