Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4678281 A
Publication typeGrant
Application numberUS 06/716,218
Publication dateJul 7, 1987
Filing dateMar 26, 1985
Priority dateMar 26, 1984
Fee statusLapsed
Also published asDE3411048A1
Publication number06716218, 716218, US 4678281 A, US 4678281A, US-A-4678281, US4678281 A, US4678281A
InventorsRainer Bauer
Original AssigneeRainer Bauer
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Circuit for the actuation of liquid crystal layers in mirrors
US 4678281 A
Abstract
Circuit layout for the actuation of liquid crystal layers, formed by flip-flops (4, 5) arranged in the feeder lines of the conducting layers, with a common dimmer-IC preceding the reset inlets (R) and synchronized in a frequency dependent manner, wherein the flip-flops (4, 5) are timed synchronously, so that their preparatory inlets (4/5, 5/9) are actuated with a phase shift of 180 and the clocking inlets (4/3, 5/11) are timed with the double frequency of the preparatory inlets (4/5, 5/9). The timing means consists of an oscillator (10a) and a decoupling gate (10b), the outlets of which are connected with a frequency divider, each (8, 9) preceding the dimmer-IC (7) and the flip-flops (4, 5), of which the frequency divider (9) preceding the flip-flops (4, 5) serves as an alternator, the inverted outlets (9/1, 9/2) of which are connected with a preparatory inlet (4/5, 3/9) of the flip-flops (4, 5). The liquid crystal layer, the conducting layers arranged on transparent support layers and one of the polarizing filter layers are combined in a composite, while the other polarizing filter layer is formed in a spaced apart support.
Images(2)
Previous page
Next page
Claims(8)
What is claimed is:
1. A dimmable composite pane comprising:
two polarizing filter layers;
two transparent support layers;
a liquid crystal layer bounded on a first and a second side by conducting layers positioned between the two polarizing filter layers and arranged on the two transparent support layers;
means for controlling the pane including first and second flip-flop means for feeding the first and second conducting layers, said flip-flop means having outputs connected to respective inputs of said conducting layers;
dimmer means for simultaneous resetting, in a frequency dependent manner, of the flip-flop means connected to a reset input of the first and second flip-flop means;
means for driving said flip-flop means including means for providing synchronously timed input signals such that the input signal for the first flip-flop means is 180 degrees out of phase with the input signal for the second flip-flop means and timing means for providing clock signals to said first and second flip-flop means at a rate twice the frequency of the synchronously timed input signals.
2. A dimmable composite pane as in claim 1 wherein said timing means comprises an oscillator with an output connected to a decoupling gate and the means for providing synchronously timed input signals comprises means for dividing the frequency of the clock signals, with an output connected to said dimmer means and wherein the means for dividing the frequency serves as an alternator with a noninverted output and an inverted output are connected to the first and second flip-flop means respectively.
3. A dimmable composite pane as in claim 2 wherein the means for dividing frequency comprises a first frequency divider connected to the dimmer means and a second frequency divider connected to the flip-flop means and wherein the means for driving further comprises a commutator means for connecting the first frequency divider in series with the second frequency divider, connected between the decoupling gate and the means for dividing frequency.
4. A dimmable composite pane as in claim 3 wherein the means for controlling further comprises a first and second buffer connected between the respective flip-flop means and the conducting layer, and a common means for setting an input supply or feeding voltage for the conducting layers connected to the first and second buffers.
5. A dimmable composite pane as in claim 2 wherein the means for controlling further comprises a first and second buffer connected between the respective flip-flop means and the conducting layer, and a common means for setting an input supply or feeding voltage for the conducting layers connected to the first and second buffer.
6. A dimmable composite pane as in claim 1 wherein the means for controlling further comprises a first and second buffer connected between the respective flip-flop means and the conducting layer, and a common means for setting an input supply or feeding voltage for the conducting layers connected to the first and second buffers.
7. A dimmable composite pane as in any one of of claim 1 to 6, wherein the liquid crystal, the conducting layers, the transparent support layers, and one of the polarizing filter layers are combined in a compact composite;
the other polarizing filter layer is positioned in a spaced apart fashion; and
further comprising a reflective surface arranged on a transparent support layer furthest away from the spaced apart polarizing filter.
8. A dimmable composite pane as in claim 7, wherein the polarizing filter layers are positioned such that a polarizing pane of one of the polarizing filters is parallel to a polarizing plane of the other polarizing filter.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention concerns a circuit for the actuation of liquid crystal layers in mirrors, windows or similar dimmable panes, consisting of two polarization filter layers arranged on transparent support layers and a liquid crystal layer bonded on both sides by conductive layers.

2. Description of the Prior Art

The older German patent application No. P 33 30 305.3 proposed a window consisting of a frame and at least one composite glass pane, wherein the composite glass pane is formed by two polarization filter panels provided on the surface facing each other with an electrically insulating coating and with an electrically actuated liquid crystal layer being included between them. Actuation in this case is effected when a pulse-width modulation electrical potential is applied to one of the conductive layers, said potential being produced by an oscillator as the frequency generator, with a frequency divider, a dimmer switch, a pulse-width modulator and a voltage limiter. The circuit proposed in the older application is not capable of satisfying practical requirements because after extended operation, degeneration phenomena appear in the liquid crystal layer, whereby the optical efficiency of the liquid crystal layer under the same electrical actuation--as viewed over a period of time--is significantly altered.

SUMMARY OF THE INVENTION

The object of the present invention is to provide a technically simple circuit for the actuation of panes dimmable or opacifiable by means of liquid layers. The liquid layers comprise two polarization filter layers arranged on transparent support layers and a liquid crystal layer bounded on both sides by conductive layers. This makes possible the continuous dimming of the panes without the occurrence of a degeneration of the liquid crystal layer, crystal orientations or other disturbances detrimentally affecting the appearance or functioning of the pane. The invention comprises forming a circuit by placing a flip-flop in the feeder lines to the conductive layers, together with a common dimmer-IC preceding the reset inlets and synchronized in a frequency dependent manner, wherein the flip-flops are synchronously cycled in a fashion such that their preparation inlets are actuated with a phase shift of 180 and the clocking inlets cycled with a double frequency.

The invention provides a circuit for the aforementioned object assuring an actuation in absolutely equal proportions of the two conductive layers and thus of the liquid crystal layer, so that unilateral electrostatic orientations of the liquid crystals and the resulting degeneration phenomena are reliably avoided. The circuit layout is simple in its design and may therefore be produced in a cost effective manner, while making possible the continuous control of the liquid crystal layer. It may be used in an essentially completely unchanged form universally, i.e., both for dimmer panes, dimmable rearview mirrors for automotive vehicles, or the like.

The timing device consists appropriately of an oscillator and a decoupling gate, the outlet of which is connected with frequency dividers preceding both the dimmer-IC and the flip-flops. The frequency divider that precede the flip-flops serves as an alternator, the inverted outlets of which are each connected with a preparatory inlet of the flip-flops. It is especially advantageous here to place a commutator between the decoupling gate and the frequency divider serving as the alternator, thus allowing the frequency divider to be connected in place of the frequency generator with the frequency divider preceding the dimmer-IC. In this manner the repeat frequency of the circuit may be adapted without problems to the prevailing gradation of the cell. Thus, in case of the steep gradation of the cell, i.e., in controlling a cell reacting to even slight voltage variations, the selector is set to 50% values by connecting the frequency dividers in series. The result is that--beginning with an initial frequency at the decoupling gate of 100 Hz and a 1:2 frequency division of the two frequency dividers--timing is effected with 50 Hz, and the repeat frequency (preparation inlets of the flip-flops) amounts to 25 Hz.

Finally, it is appropriate to connect buffer elements in series with the flip-flops, to be supplied in common by a feeder voltage control element, whereby by means of the setting of the feeder voltage for the buffer element, the output amplitude may be limited to a desirable and predetermined value.

As set forth above, the circuit according to the invention is suitable for universal application to any type of dimmable glass panes or other comparable, transparent flat structures. The circuit is particularly advantageous in rearview mirror applications. In such applications the liquid crystal layer, the conductive layers arranged on transparent support layers, and one of the polarization filter layers, are combined in a compact composite and the other polarization filter layer is formed in a support placed at a distance from the said composite. In this way the panes, i.e., the mirror on the one hand, and the remote transparent support layer on the other, appear transparent or clear when viewed directly, independently of their state of actuation, and when viewed through both supports, they appear dimmed under appropriate actuation. It is advantageous here to arrange the polarization filter layers with their polarization planes parallel to each other, with the effect that in the inactive, i.e., currentless system, the supports appear clear and transparent both to direct and indirect viewing, and dimming is present only in an actuated system.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is made more apparent by certain embodiments with reference to the drawings. In the drawings:

FIG. 1 shows the circuit layout according to the invention,

FIG. 2 an embodiment of an internal mirror layout dimmable by the circuit according to the invention for automotive vehicles,

FIG. 3 is a further embodiment of an internal mirror assembly,

FIG. 4 an embodiment of an external mirror assembly dimmable by the circuit according to the invention, for automotive vehicles,

FIG. 5 another embodiment of an external mirror assembly.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The drawing shows a circuit layout for the actuation of liquid crystal layers in mirrors, windows or similar dimmable panes, which--FIGS. 2 to 5--consist of two polarizing filter layers 16, 20 arranged on transparent support layers 14a, 14b and a liquid crystal layer 18 bounded on both sides by conducting layers. The circuit is formed by the flip-flops 4, 5 placed in the feeder lines to the conducting layers with a common dimmer-IC, preceding the reset inlets R and synchronized in a frequency dependent manner, with the flip-flops 4, 5 being timed synchronously so that their preparation inlets 4/5, 5/9 are actuated with a phase shift of 180 and the timing inlets 4/3, 5/11 are clocked with the double frequency of the preparation inlets 4/5, 5/9. The timing means consists of an oscillator 10a and a decoupling gate 10b, the outlet whereof is connected with one of the frequency dividers 8, 9 preceding the dimmer-IC 7 and the flip-flops 4,5. The frequency divider 9 that precedes the flip-flops 4, 5 serves as an alternator, the inverted outlets 9/1, 9/2 of which are connected with one of the preparatory inlets 4/5, 5/9 of the flip-flops 4, 5. Between the decoupling gate 10b and frequency divider 9, serving as the alternator, a commutator 11 is arranged, whereby the frequency divider 9 may be connected in series with the frequency distributor 8 preceding the dimmer-IC 7 in place of the frequency generator 10a. The flip-flops 4, 5 are followed by a buffer element 13, each of which are supplied in common by a feeder voltage control element 12.

The liquid crystal layer 18, the conducting layers arranged on transparent support layers 17, 19, and one of the polarizing filter layers 16, are combined in a compact composite--FIGS. 2 to 5--while the other polarizing filter layer 20 is formed in a spaced apart support, appropriately in the rear window or--in the case of external mirrors--in the side window. FIG. 2 shows an internal mirror of a conventional configuration with a mirror layer 15a applied behind a support layer. FIG. 3 shows a front surface mirror with a mirror layer 15b advantageously placed between the support layer 14b and the polarizing layer 16. In this manner, the number of reflecting surfaces and the corresponding risk of the appearance of double mirror images is reduced.

The circuit layout according to the invention operates as follows:

The initial state is a setting of the switch 11 whereby the timing inlets 4/3 and 5/11 of the flip-flops 4, 5 are connected directly with the decoupling gate 10b. In this position the inlets 4/3, 5/11, 8/11 and 9/3 of all of the flip-flops are actuated simultaneously with the generator frequency of 100 Hz. Furthermore, the preparation inlets (D inlets) 4/5 and 5/9 are released by the inverted Q outputs 9/1 and 9/2 of the flip-flop 9 alternatingly in the 50 Hz alternation, whereby the release takes place in each instance on the positive flank. The flip-flops 4, 5 are reset by the dimmer-IC 7, which as a function of the setting of the dimmer-IC 7 issues time delayed (negative) pulses that following inversion in the inverter 6, effect the resetting of the flip-flop 4 or 5 released. In this manner the two conducting layers of the liquid crystal layer 18--FIGS. 2 to 5--are charged with a potential with an absolute equality in time of the current phases in both of the conductive layers, so that the actuation is absolutely free of direct current.

As a function of the setting of the phase shift at the dimmer-IC, the actuation causes a more or less extensive tilting of the crystal plane of the liquid crystals. This tilting, however, is visible to an observer 21, located between the polarization filter layers 16 and 20, only when viewing the mirror through both polarizing filter layers as a more or less strong damping of the beam passage. In direct viewing through the transparent support of the polarizing layer or in mirror images outside the field of the polarized beam no changes are visible. As the reflection caused by the support of the polarizing layer 20 is located outside the mirror system, the danger of the occurrence of edge blurring of the mirror image is reduced by the spatial separation of the polarizing filter layer from the spatial assembly of the mirror. This risk may be reduced further when a front surface mirror is used in the manner shown in FIG. 3, in place of the rear surface mirror system of FIG. 2.

FIGS. 2 and 3 show the beam path in the case of an internal mirror for automotive vehicles, while FIGS. 4 and 5 display in a corresponding schematic manner the beam of an external mirror system. The drawing shows that in this case again the reflection from the carrier of the outer polarization filter layer (20) is not visible to the observer, i.e., it does not lead to edge blurring of the mirror image.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3862798 *Nov 19, 1973Jan 28, 1975Hopkins Charles LAutomatic rear view mirror adjuster
US4161653 *Feb 24, 1978Jul 17, 1979Fiat Societa Per AzioniControl circuit for rear view mirrors provided with a liquid crystal cell
US4299444 *Aug 7, 1980Nov 10, 1981Vdo Adolf Schindling AgDimmable rear view mirror, particularly for automotive vehicles
US4603946 *Sep 22, 1983Aug 5, 1986Kabushiki Kaisha Tokai Rika Denki SeisakushoReflection controllable view mirror device for motor vehicle or the like
EP0070034A1 *Jul 14, 1982Jan 19, 1983Hohe KgDimmable rear view mirror, especially for motor cars
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4820933 *Dec 30, 1987Apr 11, 1989Samsung Electronics Co., Ltd.Control circuit for liquid crystal rear-vision mirror
US5223814 *Nov 14, 1991Jun 29, 1993Prince CorporationSensor for vehicle accessories
US5444559 *Mar 26, 1993Aug 22, 1995Warnar; Robert B. J.Method and apparatus for controlling optical characteristics of a programmable surface medium
US5583485 *Jun 5, 1995Dec 10, 1996Prince CorporationTrainable transmitter and receiver
US5614885 *Aug 14, 1990Mar 25, 1997Prince CorporationElectrical control system for vehicle options
US5661455 *Jan 31, 1995Aug 26, 1997Prince CorporationElectrical control system for vehicle options
US5691848 *Jan 31, 1995Nov 25, 1997Prince CorporationElectrical control system for vehicle options
US5699044 *Jan 31, 1995Dec 16, 1997Prince CorporationElectrical control system for vehicle options
US6020770 *May 6, 1998Feb 1, 2000Motorola, Inc.Transparent latch-based sequencer and sequence controlling method
US6144042 *Jun 24, 1999Nov 7, 2000Hyundai Electronics Industries Co., Ltd.Polysilicon thin film transistor
US6191831Jun 25, 1999Feb 20, 2001Hyundai Electronics Industries Co., Ltd.LCD having a pair of TFTs in each unit pixel with a common source electrode
US6391693Aug 31, 2000May 21, 2002Hyundai Display Technology Inc.Method for making polysilicon thin film transistor having multiple gate electrodes
US6759945Mar 29, 2001Jul 6, 2004Vtec Technologies, Inc.Variable transmittance birefringent device
US7821697Nov 9, 2009Oct 26, 2010Donnelly CorporationExterior reflective mirror element for a vehicular rearview mirror assembly
US7855755Oct 31, 2006Dec 21, 2010Donnelly CorporationInterior rearview mirror assembly with display
US7859737Sep 8, 2009Dec 28, 2010Donnelly CorporationInterior rearview mirror system for a vehicle
US7864399Mar 19, 2010Jan 4, 2011Donnelly CorporationReflective mirror assembly
US7871169Jan 18, 2011Donnelly CorporationVehicular signal mirror
US7888629May 18, 2009Feb 15, 2011Donnelly CorporationVehicular accessory mounting system with a forwardly-viewing camera
US7898398Mar 1, 2011Donnelly CorporationInterior mirror system
US7898719Mar 1, 2011Donnelly CorporationRearview mirror assembly for vehicle
US7906756Apr 23, 2010Mar 15, 2011Donnelly CorporationVehicle rearview mirror system
US7914188Mar 29, 2011Donnelly CorporationInterior rearview mirror system for a vehicle
US7916009Mar 29, 2011Donnelly CorporationAccessory mounting system suitable for use in a vehicle
US7918570Nov 15, 2010Apr 5, 2011Donnelly CorporationVehicular interior rearview information mirror system
US7926960Dec 7, 2009Apr 19, 2011Donnelly CorporationInterior rearview mirror system for vehicle
US7994471Aug 9, 2011Donnelly CorporationInterior rearview mirror system with forwardly-viewing camera
US8000894Aug 16, 2011Donnelly CorporationVehicular wireless communication system
US8019505Sep 13, 2011Donnelly CorporationVehicle information display
US8044776Aug 6, 2009Oct 25, 2011Donnelly CorporationRear vision system for vehicle
US8047667Nov 1, 2011Donnelly CorporationVehicular interior rearview mirror system
US8049640Nov 1, 2011Donnelly CorporationMirror assembly for vehicle
US8063753Nov 22, 2011Donnelly CorporationInterior rearview mirror system
US8072318Oct 30, 2009Dec 6, 2011Donnelly CorporationVideo mirror system for vehicle
US8083386Aug 28, 2009Dec 27, 2011Donnelly CorporationInterior rearview mirror assembly with display device
US8094002Jan 10, 2012Donnelly CorporationInterior rearview mirror system
US8095260Jan 10, 2012Donnelly CorporationVehicle information display
US8095310Jan 10, 2012Donnelly CorporationVideo mirror system for a vehicle
US8100568Jan 24, 2012Donnelly CorporationInterior rearview mirror system for a vehicle
US8106347Jan 31, 2012Donnelly CorporationVehicle rearview mirror system
US8121787Aug 15, 2011Feb 21, 2012Donnelly CorporationVehicular video mirror system
US8134117Jul 27, 2011Mar 13, 2012Donnelly CorporationVehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element
US8154418Mar 30, 2009Apr 10, 2012Magna Mirrors Of America, Inc.Interior rearview mirror system
US8162493Apr 24, 2012Donnelly CorporationInterior rearview mirror assembly for vehicle
US8164817Apr 24, 2012Donnelly CorporationMethod of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly
US8170748May 1, 2012Donnelly CorporationVehicle information display system
US8177376Oct 28, 2011May 15, 2012Donnelly CorporationVehicular interior rearview mirror system
US8179236Apr 13, 2010May 15, 2012Donnelly CorporationVideo mirror system suitable for use in a vehicle
US8179586Feb 24, 2011May 15, 2012Donnelly CorporationRearview mirror assembly for vehicle
US8194133Jun 5, 2012Donnelly CorporationVehicular video mirror system
US8228588Dec 10, 2010Jul 24, 2012Donnelly CorporationInterior rearview mirror information display system for a vehicle
US8267559Sep 18, 2012Donnelly CorporationInterior rearview mirror assembly for a vehicle
US8271187Feb 17, 2012Sep 18, 2012Donnelly CorporationVehicular video mirror system
US8277059Oct 2, 2012Donnelly CorporationVehicular electrochromic interior rearview mirror assembly
US8282226Oct 9, 2012Donnelly CorporationInterior rearview mirror system
US8282253Dec 22, 2011Oct 9, 2012Donnelly CorporationMirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US8288711Oct 16, 2012Donnelly CorporationInterior rearview mirror system with forwardly-viewing camera and a control
US8294975Jan 11, 2010Oct 23, 2012Donnelly CorporationAutomotive rearview mirror assembly
US8304711Jan 20, 2012Nov 6, 2012Donnelly CorporationVehicle rearview mirror system
US8309907Nov 13, 2012Donnelly CorporationAccessory system suitable for use in a vehicle and accommodating a rain sensor
US8325028Dec 4, 2012Donnelly CorporationInterior rearview mirror system
US8325055Dec 4, 2012Donnelly CorporationMirror assembly for vehicle
US8335032Dec 28, 2010Dec 18, 2012Donnelly CorporationReflective mirror assembly
US8355839Jan 15, 2013Donnelly CorporationVehicle vision system with night vision function
US8379289May 14, 2012Feb 19, 2013Donnelly CorporationRearview mirror assembly for vehicle
US8400704Jul 23, 2012Mar 19, 2013Donnelly CorporationInterior rearview mirror system for a vehicle
US8427288Apr 23, 2013Donnelly CorporationRear vision system for a vehicle
US8462204Jul 1, 2009Jun 11, 2013Donnelly CorporationVehicular vision system
US8465162Jun 18, 2013Donnelly CorporationVehicular interior rearview mirror system
US8465163Oct 8, 2012Jun 18, 2013Donnelly CorporationInterior rearview mirror system
US8503062Aug 27, 2012Aug 6, 2013Donnelly CorporationRearview mirror element assembly for vehicle
US8506096Oct 1, 2012Aug 13, 2013Donnelly CorporationVariable reflectance mirror reflective element for exterior mirror assembly
US8508383Mar 26, 2012Aug 13, 2013Magna Mirrors of America, IncInterior rearview mirror system
US8508384Nov 30, 2012Aug 13, 2013Donnelly CorporationRearview mirror assembly for vehicle
US8511841Jan 13, 2011Aug 20, 2013Donnelly CorporationVehicular blind spot indicator mirror
US8525703Mar 17, 2011Sep 3, 2013Donnelly CorporationInterior rearview mirror system
US8543330Sep 17, 2012Sep 24, 2013Donnelly CorporationDriver assist system for vehicle
US8559093Apr 20, 2012Oct 15, 2013Donnelly CorporationElectrochromic mirror reflective element for vehicular rearview mirror assembly
US8577549Jan 14, 2013Nov 5, 2013Donnelly CorporationInformation display system for a vehicle
US8608327Jun 17, 2013Dec 17, 2013Donnelly CorporationAutomatic compass system for vehicle
US8610992Oct 22, 2012Dec 17, 2013Donnelly CorporationVariable transmission window
US8653959Dec 2, 2011Feb 18, 2014Donnelly CorporationVideo mirror system for a vehicle
US8654433Aug 5, 2013Feb 18, 2014Magna Mirrors Of America, Inc.Rearview mirror assembly for vehicle
US8676491Sep 23, 2013Mar 18, 2014Magna Electronics Inc.Driver assist system for vehicle
US8705161Feb 14, 2013Apr 22, 2014Donnelly CorporationMethod of manufacturing a reflective element for a vehicular rearview mirror assembly
US8727547Aug 12, 2013May 20, 2014Donnelly CorporationVariable reflectance mirror reflective element for exterior mirror assembly
US8779910Nov 7, 2011Jul 15, 2014Donnelly CorporationInterior rearview mirror system
US8797627Dec 17, 2012Aug 5, 2014Donnelly CorporationExterior rearview mirror assembly
US8833987Oct 8, 2012Sep 16, 2014Donnelly CorporationMirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US8884788Aug 30, 2013Nov 11, 2014Donnelly CorporationAutomotive communication system
US8908039Jun 4, 2012Dec 9, 2014Donnelly CorporationVehicular video mirror system
US9014966Mar 14, 2014Apr 21, 2015Magna Electronics Inc.Driver assist system for vehicle
US9019090Mar 17, 2009Apr 28, 2015Magna Electronics Inc.Vision system for vehicle
US9019091Mar 17, 2011Apr 28, 2015Donnelly CorporationInterior rearview mirror system
US9045091Sep 15, 2014Jun 2, 2015Donnelly CorporationMirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US9073491Aug 4, 2014Jul 7, 2015Donnelly CorporationExterior rearview mirror assembly
US9090211May 19, 2014Jul 28, 2015Donnelly CorporationVariable reflectance mirror reflective element for exterior mirror assembly
US9221399Nov 7, 2014Dec 29, 2015Magna Mirrors Of America, Inc.Automotive communication system
US9278654Apr 20, 2012Mar 8, 2016Donnelly CorporationInterior rearview mirror system for vehicle
US9315151Apr 3, 2015Apr 19, 2016Magna Electronics Inc.Driver assist system for vehicle
US9341914Jul 27, 2015May 17, 2016Donnelly CorporationVariable reflectance mirror reflective element for exterior mirror assembly
US9352623Feb 17, 2014May 31, 2016Magna Electronics Inc.Trailer hitching aid system for vehicle
US20020140884 *Mar 29, 2001Oct 3, 2002Richard David A.Variable transmittance birefringent device
US20090015736 *Oct 31, 2006Jan 15, 2009Donnelly CorporationInterior rearview mirror assembly with display
US20110058040 *Nov 15, 2010Mar 10, 2011Donnelly CorporationVehicular interior rearview information mirror system
Classifications
U.S. Classification349/195
International ClassificationG02B5/08, G02F1/133
Cooperative ClassificationG02F1/13318
European ClassificationG02F1/133D2
Legal Events
DateCodeEventDescription
Feb 5, 1991REMIMaintenance fee reminder mailed
Jul 7, 1991LAPSLapse for failure to pay maintenance fees
Sep 17, 1991FPExpired due to failure to pay maintenance fee
Effective date: 19910707