Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4689378 A
Publication typeGrant
Application numberUS 06/809,444
Publication dateAug 25, 1987
Filing dateDec 16, 1985
Priority dateDec 16, 1985
Fee statusPaid
Also published asCA1258944A, CA1258944A1, DE3664779D1, EP0227598A1, EP0227598B1
Publication number06809444, 809444, US 4689378 A, US 4689378A, US-A-4689378, US4689378 A, US4689378A
InventorsMohammad A. Chaudhari, John J. King
Original AssigneeCiba-Geigy Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Stable imide-containing composition from diamino phenyl indane-bis-maleimide and alkenyl phenol
US 4689378 A
Abstract
Imide-containing mixture and prepolymer compositions resulting from the combination of diaminophenylindane-bis-maleimide together with amines, alkenyl phenols, alkenyl phenol ethers or mixtures thereof, said compositions being heat curable and suitable for the preparation of prepregs, composites, adhesives, molded articles, coatings, and the like.
Images(5)
Previous page
Next page
Claims(12)
What is claimed is:
1. A heat curable composition comprising the mixture or prepolymer reaction product of (a) diaminophenylindane-bis-maleimide, and (b) an alkenyl phenol, an alkenyl phenol ether or mixtures thereof.
2. The composition of claim 1 as a mixture.
3. The composition of claim 1 as a prepolymer reaction product.
4. The composition of claim 1, wherein component (b) is present in a concentration of from 0.05 to 2.0 moles per mole of component (a).
5. The composition of claim 4, wherein components (a) and (b) are present in equimolar amounts.
6. The composition of claim 1, wherein component (b) is an alkenyl phenol corresponding to the formulae ##STR7## wherein R1 represents a direct bond, or R1 is methylene, isopropylidene, --O--, --S--, --SO-- or --SO2 --; and R4, R5, R6 and R7 are independently hydrogen or C2 -C10 alkenyl, with the proviso that at least one of R4 -R7 is an alkenyl group; ##STR8## wherein R4, R5 and R6 are independently hydrogen or C2 -C10 alkenyl, with the proviso that at least one of R4 -R6 is alkenyl; and ##STR9## wherein R8, R9, R10, R11, R12 and R13 are independently hydrogen, C1 -C4 alkyl or C2 -C10 alkenyl, with the proviso that at least one of R8 -R13 is alkenyl; or
the ethers thereof containing at least one --OR3 radical wherein R3 is C1 -C10 alkyl, aryl or alkenyl.
7. The composition of claim 6, wherein said alkenyl group is allyl or propenyl.
8. The composition of claim 7, wherein said alkenyl phenol is o,o'-diallyl-bisphenol A.
9. The product obtained by curing the mixture of claim 2.
10. The product obtained by curing the prepolymer reaction product of claim 3.
11. The laminate structure comprising the cured product of a wound yarn impregnated with the mixture of claim 2.
12. A laminate structure comprising the cured product of a wound yarn impregnated with the prepolymer reaction product of claim 3.
Description

It is known that polymaleimides can be utilized for the preparation of various polyaddition and polymerization products. Particular emphasis has been placed on bis-maleimide materials which exhibit thermal stability and thus are being more frequently utilized in high performance composite applications.

The currently utilized bis-maleimide systems include aromatic amines and alkenyl phenols as coreactants. U.S. Pat. Nos. 3,658,764 and Re. 29,316 are examples of patents that disclose reaction products of unsaturated bis-imides and amines. U.S. Pat. No. 4,100,140, U.S. Pat. No. 4,127,615, U.S. Pat. No. 4,130,600 and U.S. Pat. No. 4,131,632 are examples of patents that disclose crosslinked polymers resulting from the reaction of polymaleimides with alkenyl phenols or alkenyl phenol ethers optionally in the presence of epoxy resins. The preferred bis-maleimide in many of these systems is N,N'-4,4'-diphenylmethane-bis-maleimide. It has been noted, however, that such bis-maleimides and the prepolymers thereof are not readily soluble in common organic solvents and, if soluble, are not especially stable in solution form. Such solubility and stability are required in order to provide the desired improved processing conditions and the prolonged storage capability.

It has now been discovered that by utilizing diaminophenylindane-bis-maleimide as the maleimide component, significantly improved products are obtained. Thus, the imide and the resulting mixtures and prepolymers are readily soluble in common organic solvents such as methyl ethyl ketone, acetone, methylene chloride and the like. The resulting materials whether in melt or solution form, are stable at room and elevated temperatures for extended periods of time. The prepolymers exhibit surprisingly high reactivity with the amines and thus can be cured with such amines at comparatively lower temperatures (e.g. 177-200 C.). Upon further heating, the prepolymers convert into high temperature resistant crosslinked polymers with good mechanical, thermal and electrical properties. Curing of the mixture provides the same. For example, glass transition temperatures of the crosslinked polymers exceed 300 C. The polymers are thus well-suited for use in high performance composites and similar areas of application.

The diaminophenylindane-bis-maleimide corresponds to the formula ##STR1## and can be prepared by the reaction of phenylindane diamine and maleic anhydride in the presence of a tertiary amine such as triethylamine and a solvent such as acetone. A further preparative approach may be found in U.S. Pat. No. 4,130,564.

As suitable amines, there may be mentioned aliphatic, cycloaliphatic or aromatic primary and secondary amines, with the aromatic amines particularly C6 -C10 arylene diamines, being preferred. Typical amines include monoethanolamine, ethylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, N,N-dimethylpropylenediamine-1,3, N,N-diethylpropylenediamine-1,3,-bis(4-amino-3-methyl-cyclohexyl)methane, bis(p-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, 3,5,5-trimethyl-s-(aminomethyl)-cyclohexylamine, N-aminoethyl-piperazine, m-phenylenediamine, p-phenylenediamine, bis(p-aminophenyl)methane, bis(p-aminophenyl)-sulfone, m-xylyenediamine, 1,2-diaminocyclohexane, N,N,N',N'-tetramethyl-4,4'-diamino-diphenylmethane 1,4-diaminocyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane isophorone diamine, 1-methyl-imidazole and diaminophenylindane. Polyamides are also applicable and are included within the "amine" definition for purposes of this invention.

As the preferred aromatic diamines, there may be mentioned C6 -C10 arylene diamines such as p-phenylenediamine, m-phenylenediamine and m-xylylenediamine, bis(p-aminophenyl)methane, N,N,N',N'-tetramethyl-4,4'-diaminophenylmethane, diaminophenylindane, and the like.

According to the invention, allylphenols and methallylphenols, or the ethers thereof, are preferably employed as the alkenylphenols or alkenylphenol ethers. Both mononuclear and polynuclear, preferably binuclear, alkenylphenols and alkenylphenol ethers can be employed. Preferably, at least one nucleus contains both an alkenyl group and a phenolic, optionally etherified OH group.

As is known, alkenylphenols are manufactured by rearrangement of the alkenyl ethers of phenols (for example of the allyl ether of phenol) by the action of heat (Claisen reaarangement). These alkenyl ethers are also obtained according to known processes by reacting phenols and, for example, allyl chloride in the presence of an alkali metal hydroxide and solvents. As is known, a condensation reaction takes place (elimination of an alkali metal chloride).

Typical examples are: Compounds of formula I ##STR2## wherein R1 is a direct bond, methylene, isopropylidene, --O--, --S--, --SO-- or --SO2 ;

Propenyl-substituted phenols of formula II ##STR3## wherein R4, R5 and R6 are each independently a hydrogen atom or C2 -C10 alkenyl, preferably, an allyl or propenyl group, with the proviso that at least one of R4 to R6 is alkenyl, preferably a propenyl group;

Compounds of formula III ##STR4## wherein R4, R5, R6 and R7 are each independently a hydrogen atom or C2 -C10 alkenyl, preferably an allyl or propenyl group, with the proviso that at least one of R4 to R7 is alkenyl, preferably a propenyl group, and R1 is as defined for formula I; and

Compounds of formula IV ##STR5## wherein R8, R9, R10, R11, R12 and R13 are each independently a hydrogen atom, C1 -C4 alkyl, C2 -C10 alkenyl, preferably allyl or propenyl, with the proviso that at least one of R8 to R13 is alkenyl, preferably a propenyl group, and a is a value from 0 to 10.

Compounds of formula III are preferred in which each of R4 and R6 is a propenyl group and each of R5 and R7 is a hydrogen atom and R1 is methylene, isocpropylidene or --O--.

It is also possible to use mixtures of isomers of propenyl- and allyl-substituted mono- or polyhydric phenols. Among the mixtures of isomers it is preferred to use mixtures of propenyl- and allyl-substituted phenols of formula III, preferably those which are obtained by partial isomerization of allyl-substituted phenols of formula IIIa ##STR6## wherein R2 is methylene, isopropylidene or O.

According to the invention, the use of mixtures of polynuclear alkenylphenols and/or alkenylphenol ethers with mononuclear alkenylphenols and/or alkenylphenol ethers also gives good results. The alkenylphenol ethers preferably employed are those substances which contain one or more molecular radicals of the formula V

--O--R3                                               (V)

in which R3 denotes an alkyl radical with 1 to 10 C atoms, an aryl radical or an alkenyl radical, preferably allyl or methallyl, the O atom in formula V representing the phenolic ether bridge.

A further embodiment of the invention in the use of mixtures of those substances which contain only one OH group and only one alkenyl group on the aromatic nucleus with substances which contain several OH groups and/or several alkenyl groups on the aromatic nucleus, or of mixtures of the corresponding phenol ethers of these substances. The corresponding methallyl compounds can also be used.

Such alkenyl-substituted phenols and polyols are disclosed e.g. in U.S. Pat. No. 4,100,140 and 4,371,719.

Typical materials include o,o'-diallyl-bisphenol A, 4,4'-dihydroxy-3,3'-diallyldiphenyl, bis(4-hydroxy-3-allylphenyl)methane, 2,2-bis-(4-hydroxy-3,5-diallylphenyl)propane, eugenol, o,o'-dimethallyl-bisphenol A, 4,4'-dihydroxy-3,3'-dimethallyldiphenyl, bis-(4-hydroxy-3-methallylphenyl)methane, 2,2-bis-(4-hydroxy-3,5-dimethallylphenyl)-propane, 4-methallyl-2-methoxyphenol, 2,2-bis(4-methoxy-3-allylphenyl)propane, 2,2-bis(4-methoxy-3-methallyphenyl)propane, 4,4'-dimethoxy-3,3'-diallyldiphenyl, 4,4'-dimethoxy-3,3'-dimethallyldiphenyl, bis(4-methoxy-3-allylphenyl)methane, bis(4-methoxy-3-methallylphenyl)methane, 2,2-bis(4-methoxy-3,5-allylphenyl)propane, 2,2-bis-(4-methoxy-3,5-dimethallylphenyl)propane, 4-allylveratrole and 4-methallyl-veratrole.

In terms of relative concentration, the amine or the alkenyl phenol component or a mixture thereof is employed in a range of 0.05 to 2.0 moles per mole of maleimide, and preferably in a range of 0.1 to 1.0, and most preferably in a 1:1 molar ratio. When mixtures of amines and phenols are present, they are present in relative weight ratios of 19:1 to 1:19 amine to phenol, and preferably 9:1 to 1:9.

The reaction products of this invention may be prepared by merely combining the components to prepare mixtures thereof or to heat the mixture at a temperature of from 75 to 130 C. for a period of about 15 to 60 minutes in order to prepare the prepolymer form. Volatile solvents such as chlorinated hydrocarbons, esters, ether alcohols and tetrahydrofuran may be used to facilitate the reaction. The solvent is then removed to yield the desired prepolymer material.

The subsequent curing of the mixture and prepolymer compositions of this invention is within the knowledge of the art. Curing is effected at temperatures of between 100 to 250 C. for the appropriate period of time.

Upon curing at elevated temperatures, a network of high crosslink density occurs. Accordingly, the expression "cure" as used herein, denotes the conversion of the mixtures or prepolymers into insoluble and infusible crosslinked products, with simultaneous shaping to give shaped articles such as castings, pressings or laminates, or to give two dimensional structures such as coatings, enamels or adhesive bonds. The modified systems are advantageous for the formation of coatings because of the improved toughness of the resulting cured coatings.

The mixtures and prepolymers prepared according to the invention can furthermore be mixed, at any stage before cure, with usual modifiers such as extenders, fillers and reinforcing agents, pigments, dyestuffs, organic solvents, plasticizers, tackifiers, rubbers, accelerators, diluents, and the like. As extenders, reinforcing agents, fillers and pigments which can be employed in the curable mixtures according to the invention there may be mentioned, for example: coal tar, bitumen, glass fibers, boron fibers, carbon fibers, cellulose, polyethylene powder, polypropylene powder, mica, asbestos, quartz powder, gypsum, antimony trioxide, bentones, silica aerogel ("aerosil"), lithopone, barite, titanium dioxide, carbon black, graphite, iron oxide, or metal powders such as aluminum powder or iron powder. It is also possible to add other usual additives, for example, flameproofing agents, agents for conferring thixotropy, flow control agents such as silicones, cellulose acetate butyrate, polyvinyl butyrate, waxes, stearates and the like (which are in part also used as mold release agents) to the curable mixtures.

It is also possible in adhesive formulations, for example, to add rubbers such as carboxyl-terminated acrylonitrile-butadiene rubber, modifying resins such as triglycidyl p-aminophenol and accelerators such as boron trifluoride monoethylamine complexes or imidazole complexes.

The curable mixtures can be manufactured in the usual manner with the aid of known mixing equipment (stirrers, kneaders, rollers and the like).

The mixtures and prepolymers of this invention are distinguished by high reactivity, ready solubility in common solvents, stability in melt or solution form and good thermal mechanical properties of the products when properly cured, for example, good flexural and shear strength of interlaminar shear strength. Products obtained with them have good mechanical, thermal and electrical properties, have high glass transition temperatures and are substantially non-brittle. The mixtures and prepolymers of this invention can also be readily applied from the melt, especially without the addition of non-volatile solvents, for example, for impregnation.

Mixtures and prepolymers such as those described above have application in a broad range of end uses such as in composites, printed circuit boards, castings, molding compounds, adhesives and coatings. In view of the improved performance characteristics, the application of greatest interest is in high performance composite applications, pertinent, for example, to the aerospace industry. Thus, the modified resins are utilized to pre-impregnate various fibers for eventual use as honeycomb skins or structural parts. Techniques for preparing prepregs are well known to those skilled in the art. In terms of honeycomb skins and structural parts, graphite, glass, Kevlar reinforced skins and parts as well as others, can be readily prepared from the instant systems. Correspondingly, techniques for preparing laminates are well known. Such laminates may be prepared by compression or autoclave molding and may comprise a broad range of thicknesses. A further preferred area of use is adhesion promotion wherein the instant systems effectively improve adhesive performance characteristics.

The following examples illustrate the preferred embodiments of this invention. In these examples, all parts given are by weight unless otherwise noted.

EXAMPLE 1

A prepolymer is prepared by reacting 438 grams (1 mole) of diaminophenylindane-bis-maleimide and 308 grams (1 mole) of o,o'-diallyl-bisphenol A at a temperature of 100-120 C. for 30-60 minutes with constant stirring and under vacuum conditions. The resulting prepolymer is a clear, viscous liquid.

The prepolymer is then dissolved at 50%, by weight, solids in methyl ethyl ketone. Complete dissolution with no appearance change is noted. The solution is then maintained at room temperature for a period of >26 weeks. No settling of solids or change in viscosity is noted.

EXAMPLE 2

Cured resin plaques are prepared utilizing the prepolymer of Example 1 after degassing at 26+inch Hg of vacuum for 15 minutes. The molten solution is then poured into 1/8" thick sheet molds and cured by the following cure cycle:

1 hr. @ 180 C.

2 hrs. @ 200 C.

6 hrs. @ 250 C.

A fully cured panel is thus obtained.

EXAMPLE 3

The glass transition temperature of the crosslinked resin of Example 2 is determined on a Perkin-Elmer TMA run at 20 C./min. in the penetration mode with a 40 g. weight. Tg is 297 C.

The system is likewise tested for room temperature tensile properties (ASTM D-638) and flexural properties (ASTM D-790) with the following results.

Tensile strength (ksi): 9.0

Tensile Modulus (ksi): 574

Tensile elongation (%): 1.8

Flex strength (ksi): 17.4

Flex modulus (ksi): 561

These data thus substantiate the improved characteristics of the composition of this invention.

EXAMPLE 4

The procedure of Example 1 is repeated with the exception that 37.8 grams of bis(p-aminophenyl)methane is added thereto. The resulting prepolymer is a clear, viscous liquid at 75-130 C.

EXAMPLE 5

The procedure of Example 4 is repeated with the exception that diaminophenylindane is used in place of the bis(p-aminophenyl)methane. The resulting prepolymer is a clear, viscous liquid at 75-130 C.

EXAMPLE 6

The gel time indicative of degree of reactivity is determined on the systems of this invention as well as on a 1:1 molar combination of 4,4'-bismaleimidodiphenyl-methane and o,o'-diallyl bisphenol A (Ex. A). Thus, each system is placed in an open container and heated on a hot plate at 177 C. The time to observation at gel formation is noted. Faster times are indicative of the potential for reduced processing, the lack of need for curing catalysts and the reduced likelihood of bleeding and other adverse characteristics.

______________________________________     Gel Time (minutes)______________________________________Ex. 1       14.5Ex. 4        3.0Ex. 5        4.0 Ex. A      20.0______________________________________
EXAMPLE 7

Differential scanning calorimetry utilizing a DuPont calorimeter is conducted on a number of samples to obtain an indication of reactivity and melt stability. The testing is conducted under a nitrogen atmosphere at a temperature increase rate of 10/minute. The samples utilized are:

Ex. B--Adduct of 4,4'-bismaleimidodiphenylmethane and bis(p-aminophenyl)methane (KERIMID 601) plus stoichiometric amount of bis(p-aminophenyl)methane curing agent

Ex. C--Blend of bismaleimides (KERIMID 353) plus stoichiometric amount of bis(p-aminophenyl)methane curing agent

Ex. 7--Prepolymer of 1:1 molar ratio of diaminophenylindane-bis-maleimide and bis(p-aminophenyl)methane

The following results are obtained:

______________________________________Ex.       Maximum Peak Temp. (C.)______________________________________B         206C         1937         115______________________________________

The lower temperature for the system of this invention is indicative of desired quicker curing, easier processing and greater stability.

Furthermore, a review of the endotherm-exotherm curves for the respective systems reveals that the system of this invention (Ex. 7) exhibits a rapid, steep incline from the point of maximum endotherm to the point of maximum exotherm. This pattern is indicative of excellent melt stability since the melt form is short lived and thus not available to the degradative effects. In contrast, the prior materials B and C exhibit plateaus between the endotherm and exotherm making them more available to degradative effects.

Summarizing, it is seen that this invention provides improved maleimide systems, said improvements stemming from the introduction of diaminophenylindane-bis-maleimide. Variations may be made in procedures, proportions and materials without departing from the scope of the invention as defined by the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4100140 *Jun 18, 1976Jul 11, 1978Ciba-Geigy CorporationProcess for the manufacture of crosslinked polymers which contain imide groups
US4288583 *Dec 17, 1979Sep 8, 1981Ciba-Geigy CorporationCurable mixtures based on maleimides and 1-propenyl-substituted phenols
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4749767 *Jun 8, 1987Jun 7, 1988Ciba-Geigy CorporationStable imide-containing composition from diaminophenylindane-bis-imide, amine and alkenyl phenol or ether
US4812511 *Dec 14, 1987Mar 14, 1989Amoco CorporationEthylenically-unsaturated ethers of alkenyl phenols as reactive diluents for bismaleimides
US4853449 *Jan 7, 1988Aug 1, 1989Amoco CorporationBismaleimide formulations containing olefinic ether modifiers
US4962161 *Aug 17, 1987Oct 9, 1990Hercules IncorporatedThermosettable resin compositions
US4968762 *Nov 22, 1989Nov 6, 1990Mitsui Toatsu Chemicals, Inc.Thermosetting-resin-forming composition from bis-maleimide and diallyl bis phenol
US4988785 *Jun 30, 1989Jan 29, 1991Allied-SignalBismaleimide resin based on indane bisphenol
US5053474 *Oct 26, 1989Oct 1, 1991Rhone-Poulenc ChimieNovel imido polymers
US5095074 *Apr 2, 1990Mar 10, 1992Hercules IncorporatedThermosettable resin compositions
US5120823 *Apr 3, 1991Jun 9, 1992Basf AktiengesellschaftToughened thermosetting structural materials
US5138000 *Feb 20, 1990Aug 11, 1992Ciba-Geigy CorporationCurable compositions based on aromatic bismaleimides
US5165977 *Aug 2, 1990Nov 24, 1992Northrop CorporationLong shelf life bismaleimide structural adhesive
US5359020 *May 16, 1991Oct 25, 1994Ciba-Geigy CorporationHardenable compositions comprising bismaleimides, alkenylphenols and phenol diallyl ethers
US5367043 *Nov 6, 1991Nov 22, 1994Enzymol International, Inc.Durable formaldehyde-free phenolic resins, and method of preparing such resins
US5955566 *Nov 13, 1996Sep 21, 1999Cytec Technology CorporationThermosettable resin compositions with improved storage stability and oxidative stability
US6313248Nov 13, 1996Nov 6, 2001Cytec Technology Corp.Thermosetting polymers with improved thermal and oxidative stability for composite and adhesive applications
Classifications
U.S. Classification526/259, 526/262, 528/321, 428/500, 428/473.5, 528/322
International ClassificationC08G73/12, C08G65/40, C07D207/448, C08G69/02, C07D207/44
Cooperative ClassificationC08J5/24, Y10T428/31855, C07D207/448, Y10T428/31721, C08J2379/08, C08G73/12
European ClassificationC08J5/24, C08G73/12, C07D207/448
Legal Events
DateCodeEventDescription
Jun 5, 1987ASAssignment
Owner name: CIBA-GEIGY CORPORATION, 444 SAW MILL RIVER ROAD, A
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CHAUDHARI, MOHAMMAD A.;KING, JOHN J.;REEL/FRAME:004720/0079
Effective date: 19851209
Jan 17, 1991FPAYFee payment
Year of fee payment: 4
Jan 31, 1995FPAYFee payment
Year of fee payment: 8
Mar 17, 1997ASAssignment
Owner name: CIBA SPECIALTY CHEMICALS CORPORATION, NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CIBA-GEIGY CORPORATION;REEL/FRAME:008454/0563
Effective date: 19961227
Jan 25, 1999FPAYFee payment
Year of fee payment: 12
Aug 3, 2000ASAssignment
Owner name: VANTICO INC., NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CIBA SPECIALTY CHEMICALS CORPORATION;REEL/FRAME:011164/0038
Effective date: 20000728
Oct 18, 2000ASAssignment
Owner name: CREDIT SUISSE FIRST BOSTON AS SECURITY TRUSTEE, UN
Free format text: SECURITY INTEREST;ASSIGNOR:VANTICO, INC., A.K.A. AVANTI USA;REEL/FRAME:011666/0001
Effective date: 20000321
Aug 15, 2003ASAssignment
Owner name: VANTICO A&T US INC., MICHIGAN
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:013887/0429
Effective date: 20030630
Owner name: VANTICO INC. (FORMERLY KNOWN AS AVANTI USA (SPECIA
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:013887/0429
Effective date: 20030630
Aug 19, 2003ASAssignment
Owner name: DEUTSCHE BANK AG, NEW YORK BRANCH, AS AGENT, NEW Y
Free format text: SECURITY INTEREST;ASSIGNORS:VANTICO INC.;VANTICO A&T US INC.;REEL/FRAME:013897/0080
Effective date: 20030630
Apr 8, 2004ASAssignment
Owner name: HUNTSMAN ADVANCED MATERIALS AMERICAS INC., NEW YOR
Free format text: CHANGE OF NAME;ASSIGNOR:VANTICO INC;REEL/FRAME:014499/0554
Effective date: 20031231
Owner name: VANTICO INC., NEW YORK
Free format text: MERGER;ASSIGNOR:VANTICO A&T US INC;REEL/FRAME:014499/0056
Effective date: 20031231
Jan 19, 2006ASAssignment
Owner name: VANTICO INC. AND VANTICO A&T U S INC. (NOW KNOWN A
Free format text: TERMINATION OF SECURITY INTEREST;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS AGENT;REEL/FRAME:017996/0648
Effective date: 20051220
Owner name: VANTICO INC. AND VANTICO A&T U S INC. (NOW KNOWN A
Free format text: TERMINATION OF SECURITY INTEREST;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS AGENT;REEL/FRAME:018047/0836
Effective date: 20051220