Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS4689748 A
Publication typeGrant
Application numberUS 06/842,066
Publication dateAug 25, 1987
Filing dateMar 20, 1986
Priority dateOct 9, 1979
Fee statusPaid
Also published asDE2940871A1, DE2940871C2, EP0027168A1, EP0027168B1
Publication number06842066, 842066, US 4689748 A, US 4689748A, US-A-4689748, US4689748 A, US4689748A
InventorsOtto Hofmann
Original AssigneeMesserschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Device for aircraft and spacecraft for producing a digital terrain representation
US 4689748 A
A device for use on aircraft or spacecraft provides data corresponding to the course and orientation of the craft, and a digital display of the terrain over which the craft is travelling. The device includes at least first, second and third sensor lines consisting of parallel rows of photosensitive semiconductor elements arranged transversely of the flight path of the craft. The sensor lines provide line images corresponding to terrain images directed onto the lines, and the lines are spaced apart from each other so that a first terrain image sensed by the lines during a first scanning period partially overlaps a second terrain image sensed by the lines during a second, successive scanning period. The device also includes a lens system for continuously directing the terrain images onto the lines, and systems for reading out and storing the line images from the sensor lines during each scanning period and for correlating certain picture reference points in the second terrain image with the same picture reference points in the first terrain image. A computer then operates to determine the orientation of the second terrain image in accordance with intersections, at each of the picture reference points on the terrain, of homologous image rays produced during the first and second scanning periods.
Previous page
Next page
What is claimed is:
1. Method for providing data corresponding to the course and orientation of an aircraft or spacecraft which travels along any arbitrary flight path, and for providing data corresponding to a digital three-dimensional representation of the terrain over which the craft travels by utilizing a device including first, second and third parallel sensor lines each consisting of a row of photosensitive semiconductor elements arranged transversely of the flight path and spaced apart from each other by distances corresponding to a certain image base, and at least one lens system for continuously directing terrain images onto said sensor lines, said sensor lines and said at least one lens system being arranged so that a first sensor line A looks forwardly and a third sensor line C looks rearwardly with respect to the direction of flight and to a second sensor line B looking downwardly, the method comprising the steps of: simultaneously generating by means of said sensor lines at least three sequences of line images, these line image sequences corresponding to a forwardly, a downwardly and a rearwardly looking perspective, and the successive line images of each said line sequence are generated during successive scanning periods and during a scanning period generating one forwardly, one downwardly and one rearwardly looking line image; selecting at least five orientation points on the rearwardly and downwardly looking line images newly generated during the same scanning period; determining by way of correlation the corresponding image points on the downwardly and forwardly looking line images, respectively, which are backwardly offset; computing the orientation and position parameters of the newly generated line images relative to the backwardly offset line images by intersection of homologous rays passing through said orientation points and said corresponding image points on the one hand and through their related projection centers given by said lens system on the other hand; and computing the corrdinates of each terrain point by spatial intersection.

This is a continuation of application Ser. No. 755,535, filed July 15, 1985, which was a continuation of application Ser. No. 615,668 filed May 31, 1984, both now abandoned, which, in turn, was a continuation of now abandoned application Ser. No. 194,430 filed Oct. 6, 1980.


The present invention relates to a photogrammetric device for use in aircraft or spacecraft. The device generates orientation data, the course or flight path of the aircraft or spacecraft, and produces a digital terrain representation by the use of photo sensitive semiconductors arranged in lines or rows.

In the science of earth observation from the air or from space, it is customary to survey the surface of the earth being passed over by an aircraft or space vehicle by the use of linear arrays of charge-coupled elements ("CCD's") which operate as sensors. These arrays include normally ca 1700 or more elements arranged in rows. An entire row is arranged at right angles to the aircraft trajectory, and the individual elements are successively and electronically read out to provide sensed image lines. See "Interavia," December 1978, at 1160. This method provides the decided advantage of allowing a direct optoelectronic conversion of the signals generated in the sensor into digital data, and permits storage of this data on magnetic tape or the like. Also, further processing of the data in computers is then possible. With the aid of high speed computers, evaluation in real time is also possible without intermediate storage.

With this image scanning device, the coordinates of discrete image points, as well as the light intensity, can be measured in a digital manner. On the whole, the descripted technology mentioned above offers the possibility of direct transmission of the found data to the ground stations by means of telemetry and fully automated computer processing. Therefore, this technology is now used in the fields of topographic mapping, photogrammetry, navigation, distant exploration, military reconnaissance, and the like.

However, a disadvantage lies in the fact that an exact geometric evaluation of the sensed image lines is not yet possible. This is a defect inherent with the technology of line sensing generally. While a conventional photograph, which has a central perspective, yields an exact geometrical allocation across its entire area, this central perspective is not present with line sensing, i.e., the perspective is reduced to the central perspective geometry of each individual scanning line.

Each line of an image, within one image strip, is attributed with any inherent external orientation, since the sensor carrier is in motion in relation to its position as well as its inclination, and such motions are either approximately known, or not known at all. This fact constitutes a principal hurdle prohibiting a geometric evaluation. Until now, in order to solve this problem, it has been suggested to use a continuous measuring technique for the external orientation by way of external means, e.g., gyroscopic platforms, inertial methods and the like. Also, it is known to employ distortion correction methods using ground reference points.

Finally, attempts are made to predict position during flight on the basis of statistical forecasts. All of these methods have the decided disadvantage of being cumbersome and relatively expensive, because of the necessity of additional instrumentation, manual intermediate processes, or the determination of a large number of reference points.


An object of the present invention is to provide a device of the type described above, wherein information in digital form and with unequivocal coordinate determination, such as a distortion-free representation or read-out of the terrain, can be generated from scanning data which is subjected to fully automated processing.

The problems mentioned above are solved by providing a sensor device which includes at least first, second and third sensor lines arranged transversely of the flight path, parallel with one another and spaced apart by a certain image base distance, and a lens system cooperatively associated with the three sensor lines. The optical system enables three overlapping image strips to be generated by the three sensor lines as the optical system continuously scans the terrain passed over by the device. The optical system may include either a common lens, or a different lens associated with each sensor line for directing images of the terrain onto the sensor elements of each line, wherein the orientation ofthe lenses and the sensor lines relative to one another is known.

By way of correlation, image points of a newly-to-be tied in right-hand line image on the second and third sensor lines, and the corresponding image points on the first and second sensor lines forming parts of the left-hand line images can be found. The left-hand images are backwardly offset by about one base distance or base length. By intersection of homologous rays, the orientation of the newly-to-be-tied in right-hand line image can be computed.

A special advantage resides in the fact that a fully automated, digital, three dimensional representation of the terrain, and the assignment of radiation and reflection values is possible without additional components. Because of the large number of tied in images, there results a considerably enhanced degree of accuracy as compared to conventional picture triangulation methods.

These and other features of the invention are pointed out in the claims. Other objects, advantages and embodiments of the invention will become evident from the following detailed description when read in the light of the accompanying drawings.


In the drawing:

FIG. 1a is a schematic representation of a sensor device according to the invention, including three lines or rows of sensor elements and an optical system;

FIG. 1b is a representation of the sensor device as viewed from the top of FIG. 1a;

FIG. 2a is a schematic representation of the sensor device at two sequences of positions along a trajectory or flight path;

FIG. 2b is a representation of the sensor device as viewed from the top of FIG. 2a;

FIG. 3 shows intersections of homologous rays emanating from fixed orientation points on the terrain; and

FIG. 4 illustrates the determination of an initial orientation of the sensor device during flight.


The present invention makes use of the principle of aerial triangulation by tying in sequential images. Sequential image tying in is based on the generation of central perspective aerial pictures with approximately 60% overlap, and the tying in of each individual picture with the preceding picture by means of relative orientation. This orientation is effected in such a way that the picture coordinates of at least five identical points in adjacent pictures are measured in both pictures. Through the computation of ray intersection points, picture inclinations and the position of the sequential picture with relation to the preceding picture can be computed. In this manner, a strip of many pictures in sequence can be created, and its absolute orientation within a primary system of coordinates, e.g., Gauss-Kruger or UTM, can be determined if the absolute position of at least one picture--usually one at the beginning of the picture strip--is known in the system.

Until now, the above method could not be implemented on a picture strip generated by lines because the central perspective relationship was lacking.

This problem has been eliminated by the device 10 of FIGS. 1a and 1b. In an image plane, three sensor lines or rows A, B, and C of photosensitive elements are provided parallel with one another, transversely of the flight path of the aircraft or spacecraft on which the device is carried, and spaced apart by distances corresponding to the image base (see FIGS. 1a and 2a). An exact central perspective geometric relationship is therefore reproduced in the three sensor lines A, B, and C. If reference or orientation points are selected along the sensor lines A, B, and C, the principle of sequential picture tying in can also be applied.

Accordingly, it is now possible, in principle, to compute the relative orientation of this device 10 or "stereo line scanner" for each individual line scan period by causing the rays defined by a certain number of points, e.g., six, of one scanning period or "line image", to intersect or correlate with corresponding image point rays of line images which are backwardly offset by approximately one base length.

FIGS. 2a and 2b demonstrate the principle of operation which basically does not depart from the method of central perspective sequential image tying in. The orientation points 1 through 6 in the line image to be tied in, b (sequential position b) have been distributed in such a way that three points 1b, 3b, and 5b are arranged on the center line B, and three points 2b,4b,6b are arranged on the rearwardly looking line C. The corresponding points 1a through 6a on the picture or pictures rearwardly offset by approximately one base length are arranged there on the central line sequence B and the forwardly looking line sequence A.

FIG. 3 shows the intersection of homologous rays of a forward or right-hand line image as viewed in FIG. 3, to be tied in with left-hand line images which have been rearwardly offset, wherein the left-hand line image has been selected as a reference line image. Vectorially, the intersecting condition can be represented mathematically as follows:

(b-Δbn)·[(λLn Ln ζLn)×(λRRn)]=0   (1)


b is the base vector between the new, right-hand line image and the left-hand reference line image.

Δb is the differential vector between the left-hand reference line image and the other left-hand line images.

λLn scalar enlargement factors of the left-hand line images.

Ln rotation matrices of the left-hand line images.

ζLn image coordinate vector of the orientation points of the left-hand line images with respect to the coordinate system of the image.

λR scalar enlargement factor of the right-hand line image.

R rotation matrix of the right-hand line image.

ζRn image coordinate vector of the orientation points in the right-hand line image with respect to the system of coordinates of the image.

With this intersecting condition (1), and spatial resections with other, already known points of the terrain, the unknown orientation parameters of the right-hand line image, namely the rotation matrix R with its parameters ω, φ, κ, and the base vector b with its components bx, by, bz are determined.

If the scanning is done by an arrangement wherein each of the sensor lines has a different lens system assigned to it, and if the orientation between these lens systems and the sensor lines is known, nothing will basically change as far as this computational method is concerned.

The method requires that at the start of each strip, the orientation, i.e., the exact position coordinates and the inclination of the sensor 10, be known, at least over one base length for each line image. If these initial conditions are met, any number of lines can theoretically be additionally oriented, and an image strip of any length which is self-orienting can be generated. In addition, and depending on the degree of accuracy required, the image strips can be supported and, in any chosen manner, extended by means of a few reference points or fields of reference points.

Once the orientation data, position and inclination have been computed for each individual line, the lines can be reduced to normal positions and an accurate, distortion-corrected image strip can be produced. In the chosen arrangement of the device 10 having three lines, A, B, C, three overlapping strips are produced. By spatial intersection, the terrain coordinates X, Y, Z of each terrain point can be computed. The search required in this method for image coordinates of corresponding points in the various line images is effected by means of correlation in accordance with known methods. Since the line image points are available to the computer without any intermediate manual steps, a fully automated evaluation becomes possible. Besides a scanning unit and a computer, all that is required for a graphic reproduction of a distortion-corrected picture strip (Orthoprojection) is an appropriate plotter.

The correlation of coordinated image points on the various lines A, B, C cannot be achieved with one single image point, but must cover a more or less extensive area around the orientation point, otherwise any correlation which represents a similarity criterion will not be possible. This means that adjacent lines have to be used for the image points lying within the zone or area. Therefore, the adjacent lines must be transformed to the central perspective geometry of the reference line. This is possible only in such cases where their orientation is known. As far as the backwardly offset adjacent lines are concerned, that orientation is known. As far as the forwardly offset, yet unoriented lines are concerned, it is possible to extrapolate relatively accurately because of their immediate proximity, and to increase the precision of the entire process by iteration.

Since the line sequence, in relation to the changes in external orientation, is relatively high, relatively accurate initial values can be obtained for each line orientation and also for the correlation, so that, only a few iterations are to be expected. However, it is not necessary to orient each line image according to this method, since this can also be done at certain orientation intervals.

The line orientation parameters located in between are determined solely by interpolation. There are accurate grounds for the correlation in that, in the orientation points, the terrain relief is already known, or can be approximately extrapolated with relative ease because of the immediate proximity of the previously determined terrain sector. By taking into consideration the terrain relief and the image line orientation, the image zones around the orientation points can be reduced to normal positions and correlated without any difficulty.

The orientation points of each sensor position to be newly determined are located exactly on the center line B and the line C looking rearwardly, wherein preferably an excess number of points can be selected in order to be able to increase the degree of accuracy by adjustment and the location of the points can also be determined by, e.g., correlation criteria.

Because of the differences in heights of the terrain relief and departures of the sensor device 10 from its normal position, the corresponding image points on the line images which are rearwardly offset by one base length are not located on the center line B and on the line A looking forwardly of only one line image, but are located in the line images of various, more or less adjacent positions (FIGS. 2a, 2b and 3). The orientation parameters of the line images, however, are already known and can be inserted directly into equation (1).

As mentioned before, a distance of at least one base length is initially presupposed within which the absolute orientation of the sensor device 10 is known, or must be determined for each line image. This could be achieved with external aids like gyros, bearing-taking or navigational systems. Instead, a purely computational approach is provided for determining the orientation data by way of a digital terrain model which is assumed to be known. This approach is compatible with the overall process since, to a large degree, identical methods of computation and formulae are used which are also utilized for the sequential line tying in operation. This digital "title strip" terrain model is structured exactly like the terrain model to be obtained by scanning, as far as its data structure is concerned. It include an accumulation of points describing the terrain relief, wherein the accumulation of points can be arranged regularly or irregularly, and its digital components form the terrain coordinates X, Y (position) and Z (height), as well as the brightness of the point. This terrain model is available for evaluation in the form of data stored on magnetic tape.

The scanning of the initial portion of the terrain by the three line sensor device 10, by correlation of at least three image points with three corresponding points of the stored digital terrain model and spatial resection, permits the determination of the position and location of the sensor device 10, or its carrier, during any time interval. In such case, the arrangement of orientation points can be selected in regular groups of six, or nine points each, and the accuracy and reliability of the process can be enhanced by redundancy and adjustment (see FIG. 4). Suitable means are available for the acquisition of digital terrain data.

Each line is processed relative to a line or line sequence which is backwardly offset by the base interval. This means that the problem of error propagation is no greater than would be the case with conventional aerotriangulation using central perspective pictures wherein each tied in picture represents a forward movement of one base interval length. In contrast, according to the invention, many lines located between a base interval are processed independently from one another relative to lines which are backwardly offset by a full base interval.

Image strip triangulation is therefore achieved with a high degree of redundancy (see FIGS. 2a and 2b). This condition can be used to provide a stabilizing effect by equalization, so that a favorable error transmitting factor for one image strip can be expected.

By using reference points or fields of points in the middle or at the end of the strip, the degree of accuracy can be enhanced in a known manner. The use of reference points of this kind can also be achieved in fully automated manner, thereby keeping the entire system homogenous. As mentioned above, areas of any size can be scanned by way of parallel image strips which are subsequently combined. Using another embodiment of the sensor device 10 and the process described herein, the course of aircraft can be determined since the determination of the orientation of the sequential line images is identical with the determination of the inclination and position of the aircraft which carries the sensor device 10. This may be done subsequently, after all data have been stored. The evaluation of the image data, that is, the orientation as well as the course computation of the digital terrain data, can also be handled in real time by a computer or, if appropriate, a multi-processor. This method has the decided advantage of allowing the desired and required data to be available immediately, since all image data need not be stored prior to evaluation (course of the vehicle, terrain data). It will suffice to intermittently store the data obtained by scanning with the three sensor lines A, B, and C, for approximately one base length. Storage of this relatively limited amount of data can be suitably effected with a semiconductor memory having direct access to a real time processor. Subsequent to processing by the real time processor, the original line sensor data is no longer required. The data will continuously pass through the operational semiconductor memory or storage. Only the evaluated data (orientation parameters, course, terrain data) are displayed as required, or stored in a suitable manner.

The real time evaluation process, on board the aircraft or space vehicle, has the further advantage of allowing huge numbers of original image data not to be stored on special magnetic tape of high storage density (so-called High Density Digital Tape "HDDT"), transferred to computer compatible magnetic disks and/or tapes, and finally evaluated. According to the invention, all data and the final results are immediately available, without the aforementioned expensive and time-consuming intermediate storage period.

While specific embodiments of the invention have been shown and described in detail to illustrate the application of the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2989890 *Nov 13, 1956Jun 27, 1961Paramount Pictures CorpImage matching apparatus
US3191170 *Jan 7, 1963Jun 22, 1965Gen Instrument CorpContour mapping system
US3648039 *Jul 11, 1969Mar 7, 1972Bendix CorpOptical correlator for automatic stereoplotting apparatus
US3725915 *Dec 27, 1960Apr 3, 1973Hughes Aircraft CoHigh resolution mapping system
US3864513 *Sep 11, 1972Feb 4, 1975Grumman Aerospace CorpComputerized polarimetric terrain mapping system
US3866229 *Sep 12, 1972Feb 11, 1975Hammack Calvin MMethod and apparatus for automatically determining position-motion state of a moving object
US4144571 *Mar 15, 1977Mar 13, 1979E-Systems, Inc.Vehicle guidance system
US4164728 *Dec 9, 1977Aug 14, 1979Emi LimitedCorrelation techniques
US4168524 *Sep 29, 1977Sep 18, 1979The Charles Stark Draper Laboratory, Inc.Airborne surveying apparatus and method
US4313678 *Sep 24, 1979Feb 2, 1982The United States Of America As Represented By The Secretary Of The InteriorAutomated satellite mapping system (MAPSAT)
Non-Patent Citations
1"Principles of Analytical Photogrammetry"; American Society of Photogrammy: Manual of Photogrammetry third edition, vol. 1, pp. 465-471, 1966.
2 *Principles of Analytical Photogrammetry ; American Society of Photogrammetry: Manual of Photogrammetry third edition, vol. 1, pp. 465 471, 1966.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4814607 *Apr 24, 1987Mar 21, 1989Messerschmitt-Bolkow-Blohm GmbhMethod and apparatus for image recording of an object
US4866626 *Sep 18, 1987Sep 12, 1989Egli Werner HNavigation by a video-camera sensed ground array
US4951136 *Jan 25, 1989Aug 21, 1990Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V.Method and apparatus for remote reconnaissance of the earth
US4994971 *Jan 6, 1989Feb 19, 1991Poelstra Theo JSystem for setting up and keeping up-to-date datafiles for road traffic
US5060175 *Feb 13, 1989Oct 22, 1991Hughes Aircraft CompanyMeasurement and control system for scanning sensors
US5134473 *Apr 11, 1991Jul 28, 1992Nec CorporationImage pickup system comprising a memory of a small capacity
US5138444 *Sep 5, 1991Aug 11, 1992Nec CorporationImage pickup system capable of producing correct image signals of an object zone
US5166878 *Apr 5, 1990Nov 24, 1992Poelstra Theo JMethod and apparatus of computer aided surveying for obtaining digital, 3d topographic information
US5257209 *Aug 10, 1992Oct 26, 1993Texas Instruments IncorporatedOptical flow computation for moving sensors
US5296926 *Nov 19, 1992Mar 22, 1994Nec CorporationImage data transmission system capable of obtaining a high resolution stereo image with reduced transmission data
US5631970 *May 21, 1993May 20, 1997Hsu; Shin-YiProcess for identifying simple and complex objects from fused images and map data
US6148250 *Feb 9, 1999Nov 14, 2000Fuji Jukogyo Kabushiki KaishaAltitude detection by use of planar approximation of a region of ground surface
US6285395 *Jul 31, 1996Sep 4, 2001Hughes Electonics CorporationEarth sensor for satellite
US6320611Aug 19, 1997Nov 20, 2001Thomson-CsfMethod and device for air-ground recognition for optoelectronic equipment
US7009638 *May 6, 2002Mar 7, 2006Vexcel Imaging GmbhSelf-calibrating, digital, large format camera with single or multiple detector arrays and single or multiple optical systems
US7127348 *Sep 18, 2003Oct 24, 2006M7 Visual Intelligence, LpVehicle based data collection and processing system
US7339614 *Mar 7, 2006Mar 4, 2008Microsoft CorporationLarge format camera system with multiple coplanar focusing systems
US7725258Oct 11, 2006May 25, 2010M7 Visual Intelligence, L.P.Vehicle based data collection and processing system and imaging sensor system and methods thereof
US7787659Aug 31, 2010Pictometry International Corp.Method and apparatus for capturing, geolocating and measuring oblique images
US7873238Aug 29, 2007Jan 18, 2011Pictometry International CorporationMosaic oblique images and methods of making and using same
US7893957Aug 28, 2002Feb 22, 2011Visual Intelligence, LPRetinal array compound camera system
US7991226Oct 12, 2007Aug 2, 2011Pictometry International CorporationSystem and process for color-balancing a series of oblique images
US7995799Aug 9, 2011Pictometry International CorporationMethod and apparatus for capturing geolocating and measuring oblique images
US8334903May 22, 2007Dec 18, 2012Visual Intelligence, L.P.Retinal array compound camera system having at least three imaging sensors
US8385672Apr 30, 2008Feb 26, 2013Pictometry International Corp.System for detecting image abnormalities
US8401222May 22, 2009Mar 19, 2013Pictometry International Corp.System and process for roof measurement using aerial imagery
US8471907Aug 26, 2009Jun 25, 2013Visual Intelligence, LPMethod of producing a remote imaging array
US8477190Jul 7, 2010Jul 2, 2013Pictometry International Corp.Real-time moving platform management system
US8483960Apr 13, 2010Jul 9, 2013Visual Intelligence, LPSelf-calibrated, remote imaging and data processing system
US8497905Sep 23, 2009Jul 30, 2013nearmap australia pty ltd.Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US8520079Feb 14, 2008Aug 27, 2013Pictometry International Corp.Event multiplexer for managing the capture of images
US8531472Dec 3, 2007Sep 10, 2013Pictometry International Corp.Systems and methods for rapid three-dimensional modeling with real façade texture
US8588547Aug 5, 2008Nov 19, 2013Pictometry International Corp.Cut-line steering methods for forming a mosaic image of a geographical area
US8593518Jan 31, 2008Nov 26, 2013Pictometry International Corp.Computer system for continuous oblique panning
US8675068Apr 11, 2008Mar 18, 2014Nearmap Australia Pty LtdSystems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US8823732Dec 17, 2010Sep 2, 2014Pictometry International Corp.Systems and methods for processing images with edge detection and snap-to feature
US8854422 *Dec 8, 2011Oct 7, 2014Eads Deutschland GmbhApparatus for rendering surroundings and vehicle having such an apparatus for rendering surroundings and method for depicting panoramic image
US8896695Aug 5, 2009Nov 25, 2014Visual Intelligence LpRetinal concave array compound camera system
US8994822Aug 21, 2012Mar 31, 2015Visual Intelligence LpInfrastructure mapping system and method
US9183538Mar 19, 2012Nov 10, 2015Pictometry International Corp.Method and system for quick square roof reporting
US9262818Jan 17, 2013Feb 16, 2016Pictometry International Corp.System for detecting image abnormalities
US9275080Mar 15, 2013Mar 1, 2016Pictometry International Corp.System and method for early access to captured images
US9275496Feb 27, 2015Mar 1, 2016Pictometry International Corp.Systems and methods for rapid three-dimensional modeling with real facade texture
US9292913Jan 31, 2014Mar 22, 2016Pictometry International Corp.Augmented three dimensional point collection of vertical structures
US20020163582 *May 6, 2002Nov 7, 2002Gruber Michael A.Self-calibrating, digital, large format camera with single or mulitiple detector arrays and single or multiple optical systems
US20040041914 *Aug 28, 2002Mar 4, 2004Peters Leo J.Retinal array compound camera system
US20040167709 *Sep 18, 2003Aug 26, 2004M7 Visual Intelligence, LpVehicle based data collection and processing system
US20060215038 *Mar 7, 2006Sep 28, 2006Gruber Michael ALarge format camera systems
US20070046448 *Oct 11, 2006Mar 1, 2007M7 Visual IntelligenceVehicle based data collection and processing system and imaging sensor system and methods thereof
US20080123994 *Aug 29, 2007May 29, 2008Stephen SchultzMosaic Oblique Images and Methods of Making and Using Same
US20080204570 *Feb 14, 2008Aug 28, 2008Stephen SchultzEvent Multiplexer For Managing The Capture of Images
US20080231700 *Jan 31, 2008Sep 25, 2008Stephen SchultzComputer System for Continuous Oblique Panning
US20090096884 *Aug 6, 2008Apr 16, 2009Schultz Stephen LMethod and Apparatus for Capturing, Geolocating and Measuring Oblique Images
US20090097744 *Oct 12, 2007Apr 16, 2009Stephen SchultzSystem and Process for Color-Balancing a Series of Oblique Images
US20090141020 *Dec 3, 2007Jun 4, 2009Freund Joseph GSystems and methods for rapid three-dimensional modeling with real facade texture
US20090154793 *May 5, 2008Jun 18, 2009Electronics And Telecommunications Research InstituteDigital photogrammetric method and apparatus using intergrated modeling of different types of sensors
US20090256909 *Apr 11, 2008Oct 15, 2009Nixon StuartSystems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
US20090295924 *Aug 5, 2009Dec 3, 2009M7 Visual Intelligence, L.P.Retinal concave array compound camera system
US20090322883 *Dec 31, 2009Visual Intelligence Systems, Inc.Method of producing a remote imaging array
US20100013927 *Sep 23, 2009Jan 21, 2010Nearmap Pty Ltd.Systems and Methods of Capturing Large Area Images in Detail Including Cascaded Cameras and/or Calibration Features
US20100235095 *Sep 16, 2010M7 Visual Intelligence, L.P.Self-calibrated, remote imaging and data processing system
US20100302243 *Dec 2, 2010Schultz Stephen LMethod and apparatus for capturing geolocating and measuring oblique images
US20110096083 *Apr 28, 2011Stephen SchultzMethod for the automatic material classification and texture simulation for 3d models
US20120147133 *Dec 8, 2011Jun 14, 2012Eads Deutschland GmbhApparatus for Rendering Surroundings and Vehicle Having Such an Apparatus for Rendering Surroundings and Method for Depicting Panoramic Image
USH1409 *Oct 30, 1991Jan 3, 1995The United States Of America As Represented By The Secretary Of The NavyOptical correlation velocity log
CN103038761A *Mar 31, 2011Apr 10, 2013视觉智能有限合伙公司Self-calibrated, remote imaging and data processing system
WO1998008193A1 *Aug 19, 1997Feb 26, 1998Thomson-CsfMethod and device for air-ground recognition for optoelectronic equipment
WO2004028134A2 *Sep 18, 2003Apr 1, 2004M7 Visual Intelligence, LpVehicule based data collection and porcessing system
WO2004028134A3 *Sep 18, 2003Mar 31, 2005M7 Visual Intelligence LpVehicule based data collection and porcessing system
WO2012134419A1 *Mar 31, 2011Oct 4, 2012Visual Intelligence, LPSelf-calibrated, remote imaging and data processing system
U.S. Classification701/514, 348/116, 348/117, 701/3
International ClassificationG01C11/02
Cooperative ClassificationG01C11/025
European ClassificationG01C11/02A
Legal Events
Jan 25, 1991FPAYFee payment
Year of fee payment: 4
Feb 10, 1995FPAYFee payment
Year of fee payment: 8
Jan 25, 1999ASAssignment
Effective date: 19981020
Jan 28, 1999FPAYFee payment
Year of fee payment: 12