Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS4713032 A
Publication typeGrant
Application numberUS 06/723,959
PCT numberPCT/EP1984/000240
Publication dateDec 15, 1987
Filing dateAug 9, 1984
Priority dateAug 12, 1983
Fee statusPaid
Also published asCA1252341A, CA1252341A1, DE3329230A1, DE3329230C2, DE3468983D1, EP0152440A1, EP0152440B1, US4806302, WO1985000755A1
Publication number06723959, 723959, PCT/1984/240, PCT/EP/1984/000240, PCT/EP/1984/00240, PCT/EP/84/000240, PCT/EP/84/00240, PCT/EP1984/000240, PCT/EP1984/00240, PCT/EP1984000240, PCT/EP198400240, PCT/EP84/000240, PCT/EP84/00240, PCT/EP84000240, PCT/EP8400240, US 4713032 A, US 4713032A, US-A-4713032, US4713032 A, US4713032A
InventorsWolfgang Frank
Original AssigneeTaa Technique And Administration Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sailboards and surfboards as well as manufacturing process thereof
US 4713032 A
A method of making a sailboard or surfboard, in which a prefabricated foam core has fibrous material wound about it and a polyurethane resin especially set with a reaction retarder is poured onto the fibrous material, whereupon the thus treated foam core is inserted in a molding tool and the mold is closed for curing the polyurethane resin. Desirably, the mold is lined with a surface layer, particularly a deep drawn thermoplastic film, before the treated foam core is inserted. In this way one can make low-weight boards of high strength with relatively low production and material costs.
Previous page
Next page
I claim:
1. A sailboard or surfboard comprising a foam core and a shell of fiber-reinforced synthetic resin and a surface layer, characterized in that polyurethane resin is provided as synthetic resin and said surface layer is an intimately adhering deep drawn thermoplastic film with a thickness of 0.1 to 0.5 mm applied during the preparation of said sailboard or surfboard.
2. A board according to claim 1, characterized in that the polyurethane resin is slightly foamed.
3. A board according to claim 1 or 2 wherein said thermoplastic film has a thickness of 0.2 mm.
4. A board according to claim 1, characterized in that the foam core consists of Styropor or polyurethane foam.
5. A board according to claim 1, characterized in that the fibrous material consists of fibers of glass, aramide, polyamide, polyester or carbon.

The invention relates to a method of making sailboards or surfboards as well as to a sailboard or surfboard.

In a known method of this kind, a prefabricated EPS foam core has a glass fibre mat wound around it, is inserted in the mold and has epoxy resin painted or poured on it. Thereafter, the mold is closed so that the epoxy resin cures and, with the glass fiber mat, forms an impact resistant laminate. After removing the laminate from the mold, it is provided with a fine or gel layer which may, however, also be introduced in the mold already before the wound EPS foam core is inserted. This so-called epoxy technology permits laminates of high strength, low weight and good appearance to be produced.

Disadvantages with this known method are the high costs of the epoxy foam, the health hazard when processing same, and the relatively long cycle necessitated by the curing period for the epoxy foam and amounting to about 30 minutes.

The invention is based on the problem of improving a method according to the classifying portion of claim 1 so that laminates can be produced at lower costs and less health hazard with at least the same weight and strength as laminates made by the epoxy technique. It is also a problem of the invention to improve a sailboard or surfboard portion of claim 18 so that it has a low weight, high strength and low cost to produce.

To solve this problem, a method and a sailboard or surfboard of the aforementioned kind are suggested with the features of the invention mentioned in the characterising portion of the claims.

Surprisingly, it has been found that polyurethane resin that had hitherto been exclusively used as polyurethane foam for the cores of sailboards will, in conjunction with fibrous material and a suitable surface layer, result in a laminate which is very impact resistant and gives the board a high strength at a low weight. Polyurethane resin is much cheaper than epoxy resin and cures much more rapidly so that the lower cost of material and the shorter cycle periods give an overall cheaper production. In addition, its processing has fewer health hazards.

The polyurethane resin is preferably set by a reaction retarder so that there is a delay of several minutes, particularly about 10 minutes, in the chemical reaction of its components. There is then sufficient time to pour the resin onto the fiber-reinforced foam core and then insert the core in the mold and close the mold. If, in accordance with a development of the invention, the mold is then held at a temperature of about 80 C. during curing of the shell laminate, one obtains a curing time of about 5 minutes. When compared with a curing time of about 30 minutes required for epoxy resin, it will become evident that the production capacity per set of tools when using the method of the invention is considerably higher. One can expect 5 times the production capacity.

Preferably, the polyurethane resin is given a low foamability so that, despite the inevitable production tolerances for the prefabricated foam core, sufficient pressure is built up in the entire shell laminate zone and any isolated departures of the foam core surface from the desired measurements will be balanced out by thickness fluctuations in the shell laminate.

The surface layer may be a gel coating with which the mold is lined before insertion of the foam core covered with saturated fibrous material, as is known per se in epoxy technology.

According to a special embodiment of the invention, the surface layer is a film of thermoplastic material with which the mold is lined before insertion of the foam core reinforced with saturated fibrous material. With a thermoplastic film as surface layer, especially the impact strength of the shell increases. In addition, introduction of a thermoplastic film in the mould is easier from a production point of view than lining the mold with a gel coating because one can dispense with treating the mold wall with a parting compound and polishing it before introducing the surface layer.

Preferably, the film is introduced in the mold in a deep drawing process. It facilitates an optically attractive surface for the laminate, prevents any absorption of water by the laminate and also protects the laminate from ultra-violet radiation. Prior to the deep drawing process, the film may be printed with the desired design so that subsequent adhesion of decorative strips to the board surface is unnecessary. Nor is it necessary to pretreat the film for the subsequent application of a preservative lacquer.

Advantageous embodiments of the invention are the subject of additional subsidiary claims.

The invention will now be described in more detail with the aid of the description of examples with reference to the drawing, wherein:

FIG. 1 is a diagrammatic representation of a mold tool, and

FIG. 2 is a part section of a laminate made and constructed according to the invention.

The mold tool 1 shown in FIG. 1 consists of two mold segments 2 accommodated in a press 3.

Two webs of film 4 are withdrawn from two superposed film reels and moved by means of clamping frames 5 at a certain spacing between the mould segments 2, where they assume the position shown in FIG. 2.

The film is of thermoplastic material intended to form the surface layer 6 of the FIG. 2 laminated. Suitable film materials are appropriate thermoplastic materials such as ABS (acrylonitrile-butadiene-styrene-copolymer), ASA (acrylic-rubber-styrene-acrylonitrile-copolymer), PC (polycarbonate) and PMMA (polymethylmethacrylate). The film thickness is between 0.1 and 0.5 mm, preferably 0.2 mm. The outer faces of the webs of film may already have the desired design printed on them.

As shown in FIG. 1, a heat radiator 7 is moved between the webs of film 4 to heat the film material to the converting temperature. When this has been reached, the two webs of film 4 are moved up or down to the associated mold segment by means of the clamping frames 5 and deep drawn by applying a vacuum. The heat radiator 7 is also withdrawn from the space between the mold segments 2.

On the other hand, a foam core 8 of EPS (Styropor) or PU (polyurethane) is first prefabricated and has fibrous mats or fibrous fabric 9 wound around it. Such mats are conventional and employ fibers such as glass, aramide, polyamide or carbon fibres. When the prefabricated foam core 8 has had one or more fibrous layers wound completely around it, fluid synthetic resin 10 is poured onto the fibrous mats at both sides of the core. Directly thereafter, the thus treated foam core 8 is inserted in the lower mold segment 2 in which the deep drawn web of film 4 is still held by vacuum, and the press is closed. The pressure of the press and a low foaming capacity of the synthetic resin causes the latter to be completely distributed in the space between the foam core 8 and the film 4 and cures to form a closed fiber-reinforced shell which comes into intimate connection with the film 4 and the foam core 8. The curing step takes place at a molding tool temperature of about 80 C. within about 5 minutes. Heating elements 11 for heating the molding tool are indicated in FIG. 1. If the mold is not heated, i.e. curing is at room temperature, the curing time is about 9 minutes.

After curing, the finished laminate 12 is removed from the molding tool 1. It is then only necessary to trim the projecting film edges 13 shown in FIG. 2. Thereafter, the cut faces are possibly sealed but they can be kept very narrow. This permits a cycle time of 20 minutes to be achieved, enabling about 24 boards to be made during an 8 hour shift.

The synthetic resin used to saturate the fibrous material 9 is a specially set polyurethane resin known to have an A component of polyalcohol and a B component of isocyanate. The B component has an additive of a reaction retarder which prmits the chemical reaction of the components to occur only after about 10 minutes. In addition, the polyurethane resin is given a low foaming capacity. In this way there will be adequate time available for applying the polyurethane resin to the foam core 8 having fibrous material wound around it and to insert the resulting structure into the molding tool and close same before the reaction starts. Pressing the film 4 to the foam core 8 together with the fibrous layer 9 saturated with polyurethane resin 10 in the manner described leads to an exceptionally impact resistant laminate having a high longitudinal strength and low weight.

The laminate may also be made without prior deep drawing of a film in the molding tool 1. Instead of the film 4, the mold can be lined with a fine layer or gel coating. For this purpose it is necessary first to clean the inside of the mold carefully, apply a parting compound to the surfaces and polish same. A gel coating is then sprayed on, rolled on or painted on. This layer cures within 5 to 15 minutes, whereupon the foam core with saturated fibrous material is inserted in the mould and pressed.

A third possibility is to make the laminate as described but without surface layer and to apply same later. For this purpose, use can be made of PU lacquer or DD lacquer, gel coating or lacquer on a polyester basis.

A method of making a sailboard or surfboard is described, in which a prefabricated foam core has fibrous material wound about it and a polyurethane resin specially set with a reaction retarder is poured onto the fibrous material, whereupon the thus treated foam core is inserted in a molding tool and the mold is closed for curing the polyurethane resin. Desirably, the mold is lined with a surface layer, particularly a deep drawn thermoplastic film, before the treated foam core is inserted. In this way, one can make low-weight boards of high strength with relatively low production and material costs.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3464935 *Apr 5, 1966Sep 2, 1969Allied ChemRigid,non - elastomeric,non - cellular,fiber reinforced polyether-urethane compositions
US3929549 *Dec 14, 1973Dec 30, 1975Smith Robert LSurfboard construction
US4120632 *Jun 21, 1976Oct 17, 1978Klepper-Werke KommanditgesellschaftMolds for production of plastics material boats
US4383955 *Aug 24, 1981May 17, 1983Marcelino RubioProcess for fabricating a closed, foam-filled, reinforced polyester resin shell article
US4389454 *Apr 8, 1981Jun 21, 1983Basf AktiengesellschaftMolded foamed polyurethane part having a lightweight skin and a process for its manufacture
US4455340 *Jun 24, 1983Jun 19, 1984Inoue Mtp Kabushiki KaishaFlexible molded foam and process for preparation thereof
US4531922 *Dec 16, 1983Jul 30, 1985Schuetz UdoSailboard and process for its production
US4551290 *Nov 21, 1984Nov 5, 1985Mizell James AMethod of fabricating hollow plastic objects and apparatus therefor
US4621002 *Aug 3, 1984Nov 4, 1986Kleeper Beteilingungs Gmbh & Co. Bootsbau KgMonocoque structure for an aquatic sportscraft
DE3117066A1 *Apr 29, 1981Nov 18, 1982Florian BauerProcess for producing floating bodies for watersports craft, and a surfboard produced by the process
EP0069076A1 *Jun 24, 1982Jan 5, 1983Ciba-Geigy AgMethod of producing a composite body with a hard foam core and a skin of hard foam with a higher density
FR2534188A1 * Title not available
JPS58188625A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5032096 *Aug 10, 1989Jul 16, 1991Scott David ALaminar device and method for making same
US5211593 *Jan 23, 1992May 18, 1993KranscoFoam-core structure with graphics-imprinted skin
US5338238 *Aug 14, 1992Aug 16, 1994Connelly Skis, Inc.Compression molded water ski and method of making the same
US5389316 *Apr 2, 1992Feb 14, 1995Woodbridge Foam CorporationProcess for producing an energy absorbing panel
US5569420 *Feb 6, 1995Oct 29, 1996Van Horne; Bret L.Method of forming a foam core comprising a plurality of arcuate rows
US5716562 *Nov 22, 1995Feb 10, 1998Nhs IncorporatedMethod for making injection-molded, foamed, structual plastic, composite-material skateboard
US5752460 *Feb 2, 1996May 19, 1998The United States Of America As Represented By The Secretary Of The NavySubmergible towed body system
US6106345 *Jul 8, 1999Aug 22, 2000Yeh; Tzong InBodyboard
US6227131 *May 19, 1997May 8, 2001Tides Marine, Inc.Sailboat rudder having a monocoque structure
US6271463Jun 8, 1999Aug 7, 2001Vantico Inc.Use of expandable epoxy systems for barrier materials in high voltage liquid-filled transformers
US6352268Feb 7, 1997Mar 5, 2002Stephen PeartSnowboard with transitioning convex/concave curvature
US6623323Jan 14, 2000Sep 23, 2003Kirby J. MeadFlexible male female mold for custom surfboard production
US6790402Jan 22, 1999Sep 14, 2004Richard GrevenMethod of making complex shaped articles
US6908351Jun 24, 2003Jun 21, 2005Wham-O, Inc.Expanded polystyrene core sports board
US7368031Nov 17, 2003May 6, 2008Wham-O, Inc.Laminate inlay process for sports boards
US7846000Dec 7, 2010Hayden Cox Pty LimitedSurfboard and method of construction
US20030121596 *Jan 22, 1999Jul 3, 2003Richard GrevenMethod of making complex shaped articles
US20040028870 *Feb 4, 2003Feb 12, 2004Lehr Gregory S.Laminate inlay process for sports boards
US20040151875 *Nov 17, 2003Aug 5, 2004Lehr Gregory S.Laminate inlay process for sports boards
US20040251577 *Jun 2, 2004Dec 16, 2004Richard GrevenComplex shaped articles and method of manufacture
US20040266289 *Jun 24, 2003Dec 30, 2004Scott BurkeExpanded polystyrene core sports board
US20060270288 *May 31, 2005Nov 30, 2006Louis HaywardSoft and Safe rail wrap technology for Surfboards
US20080287017 *Jan 9, 2008Nov 20, 2008Hayden Charles CoxSurfboard and Method of Construction
US20090011667 *Mar 24, 2008Jan 8, 2009Nova Chemicals Inc.Sportsboard structures
US20090044905 *Mar 11, 2008Feb 19, 2009Scott BurkeMethod of providing graphics to a sports board
US20150004857 *Jun 28, 2014Jan 1, 2015Szymon SuckewerCross-Water Skis
CN1057249C *Sep 1, 1997Oct 11, 2000陈清溪Wholly moulding method of surfboard
WO1999036250A1 *Jan 13, 1999Jul 22, 1999M 1 - Sporttechnik GmbhMethod for producing a tubular support structure
WO2001051350A1Jan 12, 2001Jul 19, 2001Mead Kirby JFlexible male/female mold for custom surfboard production
WO2003101719A2 *May 30, 2003Dec 11, 2003Alive SurftecPolyurethane spread-laminated composites and methods of manufacture
WO2003101719A3 *May 30, 2003Jun 17, 2004Alive SurftecPolyurethane spread-laminated composites and methods of manufacture
U.S. Classification441/74, 264/250, 264/46.4, 264/257
International ClassificationB29C67/00, B29K105/00, B63B35/79, B32B5/24, B29C37/00, B29C70/86, B29C51/10, B29C44/56, A63B35/00
Cooperative ClassificationB29C70/46, B29C51/10, B29C37/0032, B29C44/569, B29K2023/38, B29L2031/5272, B29C70/865, B63B35/7906
European ClassificationB29C51/10, B29C70/86A, B29C37/00C2B, B29C44/56H, B63B35/79C
Legal Events
Sep 17, 1987ASAssignment
Effective date: 19850322
Jul 26, 1990ASAssignment
Effective date: 19900629
May 21, 1991FPAYFee payment
Year of fee payment: 4
May 26, 1995FPAYFee payment
Year of fee payment: 8
Jun 1, 1999FPAYFee payment
Year of fee payment: 12