Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4745081 A
Publication typeGrant
Application numberUS 06/793,518
Publication dateMay 17, 1988
Filing dateOct 31, 1985
Priority dateOct 31, 1985
Fee statusLapsed
Also published asDE3686125D1, DE3686125T2, EP0221394A2, EP0221394A3, EP0221394B1, US4924284
Publication number06793518, 793518, US 4745081 A, US 4745081A, US-A-4745081, US4745081 A, US4745081A
InventorsKlaus D. Beyer, Victor J. Silvestri
Original AssigneeInternational Business Machines Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of trench filling
US 4745081 A
Abstract
A method of simultaneously producing doped silicon filled trenches in areas where a substrate contact is to be produced and trench isolation in other areas. Borosilicate glass lines the sidewalls of those trenches where a contact is desired and undoped epitaxially grown silicon fills all the trenches. Subsequent heat processing causes the boron in the borosilicate to dope the epitaxial silicon in those trenches. In the other trenches, the silicon fill remains undoped except at the bottom where a channel stop exists, thereby forming isolation trenches. The contacts formed over the trenches may be formed by selectively deposition of a highly doped silicon into an opening that overlies a portion of the trench and the adjacent substrate surface.
Images(3)
Previous page
Next page
Claims(28)
We claim:
1. A method of forming an integrated circuit structure having an isolation pattern and a contact pattern comprising the steps of:
providing a semiconductor substrate having a pattern of substantially vertical-walled trenches extending downward from a major surface of said substrate;
forming an insulator layer on the walls of said trenches;
forming a borosilicate glass layer on said insulator layer;
removing by anisotropic etching a portion of said insulator layer and said borosilicate glass layer from the bottom of said trenches;
removing said borosilicate glass layer from all portions of trenches where isolation is to be established and maintaining the remaining borosilicate glass layer in trenches where electrical contact with said substrate is to be made; and
filling all of said trenches with silicon to simultaneously produce a pattern of isolation trenches filled with undoped silicon and a pattern of substrate contacts in those trenches where the silicon is doped by the borosilicate layer.
2. The method of claim 1, further comprising the step of implanting boron into said trenches after the step of anisotropic etching to provide a channel stop layer.
3. The method of claim 1 wherein said anisotropic etching is reactive ion etching.
4. The method of claim 1 further comprising the step of placing contacts above trenches having said pattern of substrate contacts.
5. The method of claim 1 wherein said silicon filling said trenches is undoped epitaxial silicon.
6. The method of claim 1 wherein said step of providing an insulator layer comprises the steps of depositing a layer of thermal SiO2 on said substrate and the major surface walls of said trenches and depositing on said SiO2 layer a layer of Si3 N4.
7. The method of claim 6 wherein said borosilicate layer is deposited on said insulator layer.
8. The method of claim 1 wherein the step of removing said borosilicate layer is by etching.
9. A method of forming an integrated circuit structure having an isolation pattern and a contact pattern comprising the steps of:
providing a semiconductor substrate having a pattern of substantially vertical-walled trenches extending downward from a major surface of said substrate;
forming an insulator layer on the walls of said trenches;
providing a channel stop at the bottom of each of said trenches;
filling said trenches with a photoresist and then selectively etching said photoresist from trenches where electrical contact with said substrate is to be made and also removing from those trenches the insulator layer at the trench bottom;
removing the remaining photoresist and growing epitaxial p-doped silicon in those trenches to be substrate contacts to fill and cover those trenches; and
filling the remaining trenches with undoped polysilicon; and
planarizing the major surface of said substrate to simultaneously form a pattern of substrate contact trenches and a pattern of isolation trenches.
10. The method of claim 9 wherein said step of providing a channel stop comprises the step of implanting boron into said trenches.
11. The method of claim 9 wherein the step of forming an insulator layer comprises the steps of depositing a layer of thermal SiO2 on said substrate major surface and the walls of said trenches.
12. The method of claim 9 wherein the step of selectively etching said photoresist comprises a timed reactive ion etching to remove photoresist from the trench interior and insulator material from the trench bottom.
13. The method of claim 9 wherein said step of planarization comprises chemical/mechanical polishing of said substrate major surface.
14. The method of claim 13 further comprising the step of placing contacts above trenches having said pattern of substrate contacts.
15. The method of claim 14 wherein said contacts overlap said trenches and the major surface of said substrate.
16. The method of claim 1 wherein said contacts overlap said trenches and the major surface of said substrate.
17. A method of forming contacts for an integrated circuit structure comprising the steps of:
providing a semiconductor substrate having a pattern of substantially vertical-walled trenches extending downward from a major surface of said substrate and filled with silicon,
forming an insulation layer on said major surface;
opening said insulative layer to define a contact zone that overlaps a sidewall of said filled trench and an adjacent portion of said substrate major surface;
selectively depositing a silicon material into said contact zone; and
overgrowing said trench fill and said substrate with said silicon material into said contact zone to create a contact that overlaps said filled trench and said substrate major surface.
18. The method of claim 17 wherein said silicon material is highly doped polysilicon.
19. The method of claim 17 wherein said silicon material is highly doped epitaxial silicon.
20. The method of claim 17 wherein said silicon material is a combination of highly doped polysilicon and epitaxial silicon.
21. The method of claim 17 wherein said silicon filling said trench is polysilicon.
22. The method of claim 17 wherein said silicon filling said trench is epitaxial silicon.
23. A method of forming contacts for an integrated circuit structure comprising the steps of:
providing a semiconductor substrate having a pattern of substantially vertical-walled trenches extending downward from a major surface of said substrate and filled with silicon;
providing an insulative structure to define a contact zone that overlaps a sidewall of said filled trench and an adjacent portion of said substrate major surface;
selectively providing a silicon material in said contact zone to overgrow said trench fill and said substrate into said contact zone to create a contact that overlaps said filled trench and said substrate major surface.
24. The method of claim 23 wherein said silicon material is highly doped polysilicon.
25. The method of claim 23 wherein said silicon material is highly doped epitaxial silicon.
26. The method of claim 23 wherein said silicon material is a combination of highly doped polysilicon and epitaxial silicon.
27. The method of claim 23 wherein said silicon filling said trench is polysilicon.
28. The method of claim 23 wherein said silicon filling said trench is epitaxial silicon.
Description
BACKGROUND OF THE INVENTION

This invention relates to the fabrication of semiconductor integrated circuits. In particular, this invention is directed to a method of simultaneously forming electrically isolated areas and conductive contact areas in semiconductor material.

When fabricating integrated circuits, and particularly highly dense dielectrically isolated devices, narrow trenches are formed to provide isolation. Also points where substrate contact is desired must be established in very small zones. It is known that undoped polysilicon and epitaxial silicon each have very high electrical resistance. Thus, a defect in a trench sidewall or at the passivation layer on the top of a silicon trench fill will not impact the characteristics of electrical circuits if a second defect is positioned a few μm away from the first defect. Consequently, the use of undoped polysilicon trench isolation as used typically in known RAM chips is considered a very low risk isolation scheme. That is, so long as defects are disposed far enough away, the presence of an electrical short giving rise to a particular trench sidewall defect will not be detrimental to operation of that device.

The use of undoped polysilicon trench isolation also does not require the step of passivation layer removal at the trench bottom. Consequently, the trench sidewall is not exposed to etching operations such as reactive ion etching (RIE) and, therefore, does not need additional protective layers such as Si3 N4 which also cause additional problems in terms of forming dislocations near trenches in subsequent heat processing steps.

While the use of undoped polysilicon trench isolation offers certain advantages, it is considered disadvantageous since there is no easy technique within that methodology for forming a silicon substrate contact. If, for example, doped polysilicon or epitaxially grown silicon is employed, the presence of one defect will cause device and circuit failure. Within the art, there is no known technique for providing a doped silicon trench area, needed to form a substrate contact in device processing, yet within the same process utilize undoped polysilicon for purposes of trench isolation.

The prior art is replete with a number of examples which illustrate the use of polysilicon as a trench filling material. Reference is made to U.S. Pat. Nos. 4,473,598; 4,140,558 and 4,252,579. Various silicon trench filling techniques to achieve isolation are also disclosed U.S. Pat. No. 4,526,631, and in IBM Technical Disclosure Bulletin Nos.: Vol. 25, No. 2, p. 558, July 1982; Vol. 25, No. 6, p. 3105, November 1982; Vol. 27, No. 2, p. 1313 et seq., July 1984; and Vol. 27, No. 3, p. 1481, Aug. 1984. While the prior art, as exemplified by these references, provides a number of solutions of providing a silicon trench fill scheme, none provide for the simultaneous formation of doped and undoped epitaxial silicon fill. Some prior art devices employ undoped silicon fill for device trench isolation but are encumbered with the problems of providing substrate contact in other areas where a doped silicon material is required. In those techniques where doped silicon material is used throughout, the problem of complete device failure given proximity of defects is unsolved. Moreover, in some devices there exists no simple process for forming the necessary silicon substrate contact. In some known devices, the wafer back cannot be employed as a silicon substrate contact given the presence of ancillary structure. Such is found in thermal conduction modules wherein the back side of the wafer is used for purposes of heat dissipation and the like.

SUMMARY OF THE INVENTION

Given the deficiencies of the prior art, this invention defines a process which employs undoped polysilicon trench isolation and doped epitaxially grown silicon simultaneously for purposes of substrate contact. In accordance with the invention, typically a borosilicate glass lining is formed on the sidewalls of the trenches in the non-device areas and epitaxially grown silicon is then grown in the trenches. Subsequent heating causes the doping of the epitaxially grown silicon with the boron dopant of the borosilicate glass. The fill temperature may also provide for dopant movement.

Moreover, in accordance with another embodiment of this invention, an undoped epitaxial fill is provided followed by doping of a polysilicon fill material and subsequent planarization by known techniques in chemical/mechanical polishing. Thus, the initial epitaxial fill may be used for substrate contact while the subsequent polysilicon (undoped) is used to provide device isolation.

Thus, in a first preferred embodiment of this invention, a monocrystalline semiconductor substrate is provided having a pattern of substantially vertical wall trenches extending from a major surface of the substrate into the substrate material. An insulator layer is formed on the walls of the trenches. A boron ion implantation is then performed to establish the channel stop layer at the bottom of the trench. A borosilicate glass layer is then formed on the walls of the isolation layer. A portion of the insulator layer is removed together with a portion of the borosilicate glass layer from the bottom by etching techniques. One technique is anisotropic etching. Then, by lithography and etching techniques, borosilicate glass layer is removed from all portions of the trenches except where electrical contact is desired. The trenches are then filled with silicon to produce a pattern of isolation trenches with undoped silicon in the trenches except where the borosilicate layer is present such that the silicon is doped to provide an electrical contact to the substrate.

In accordance with another preferred embodiment of this invention, a monocrystalline semiconductor substrate is provided having a pattern of substantially vertical wall trenches extending from a major surface of the substrate and into the substrate structure. The substrate and the trenches are lined with SiO2 and boron ions are implanted into the trench bottoms for the formation of a p-doped channel stop. Then, by the application of a photoresist and a subsequent RIE step, the oxide is removed at the bottom of the trenches in those locations where silicon substrate contacts are to be formed. In those trenches where there is to be no contact, the photoresist fills and remains in the trench, thereby protecting the SiO2 lining at the bottom of that trench from the RIE etching. Following the removal of the photoresist and using known techniques, epitaxial p-doped silicon is then grown in the trenches designated to be substrate contact areas to slightly overfill these trenches. An example of epitaxial growth is described in U.S. Pat. No. 4,526,631. Undoped polysilicon is then deposited in all trenches and on the substrate surface. This is followed by planarization of both the p-doped selective epitaxial filled silicon substrate contact trench and the undoped polysilicon isolation trench using known chemical/mechanical polishing techniques.

This invention will be discussed in greater detail by referring to the attached drawings and the description of the preferred embodiment that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are cross-sectional views of a portion of a semiconductor wafer during various stages in the fabrication of an integrated circuit in accordance with one preferred embodiment of this invention;

FIGS. 3-6 are cross-sectional views of a portion of a semiconductor wafer during various stages in the fabrication of an integrated circuit in accordance with a second preferred embodiment of this invention; and

FIGS. 7A and 7B are cross-sectional views of a portion of a semiconductor and for illustrating overlapping contacts.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring first to FIGS. 1 and 2, a first preferred embodiment of this invention is disclosed. It is understood that in this description and in the drawings, those portions of the semiconductor structure not needed to explain this invention, or those steps which are superfluous to this invention have been eliminated. Such are well known in the art. In the first preferred embodiment of this invention, chemical vapor deposition (CVD) of borosilicate is employed to line the inside of the trench sidewall layer structure. Such is illustrated in FIG. 1.

FIG. 1 illustrates an intermediate starting point of this invention wherein the substrate 10 typically comprises a three-tier structure. A P-type substrate material 12 has an N+ region 14 which typically serves as a low-resistance contact or collector region beneath an epitaxial layer. The third tier is an N-type epitaxial layer formed over the N+ region. This layer serves as the active region for the device. It is in this three-tiered structure that the problem of electrical isolation of portions of those layers occur. This specific problem is solved by this invention.

A lining of thermal SiO2 22 covers the substrate surface in the interior walls of the trenches. On top of the thermal SiO2 layer, a layer 24 of Si3 N4 is deposited followed by deposition by CVD of a SiO2 layer 26. In accordance with known techniques, trenches 18 and 20 are opened into the substrate.

In accordance with this invention, by CVD a borosilicate layer is formed as the inside lining of the trench sidewalls. This layer 28 is deposited in both trenches 18 and 20. By the use of techniques such as RIE, the trench bottom 30 is opened, that is, removal of layers 22, 24 and 28 at the bottom of the trench, and a channel stop layer 32 is provided.

The channel stop may be formed by a variety of known techniques. For example, it may be formed by ion implantation of the bottom surface 30, by lining the inside walls with borosilicate with a subsequent heat treatment for boron out-diffusion or by a combination of the two.

Referring now to FIG. 2, subsequent device processing steps are illustrated. As illustrated in FIG. 2, trench 20 will ultimately become a substrate contact while trench 18 will become the isolation trench. While two trenches are illustrated, it is to be understood that on the substrate 10 an array of such trenches will be present. It is also understood that trench size will vary and may be different between contact and non-contact techniques. Thus, a preferential etch step is performed to remove the borosilicate trench sidewall everywhere except for the substrate contact areas. As illustrated in FIG. 2, the borosilicate 28 remains in the trench 20 while it is removed from the sidewalls of trench 18. This is accomplished by a photoalignment step with a preferential etch to remove the borosilicate trench lining material. Such etch techniques are known in the art. Then, trenches 18 and 20 are filled completely with selectively deposited epitaxial silicon. This undoped fill material completely fills the trenches 18 and 20.

During the fill step, the boron, outdiffusing from the previously deposited borosilicate trench lining into the undoped epitaxial silicon in the substrate contact area 32 dopes the epi. However, in the trench where the borosilicate was removed prior to filling with the undoped polysilicon or epitaxial silicon fill, doping occurs only by outdiffusion of the trench channel stop boron diffusion 32 into the epitaxial silicon near the trench bottom. Consequently, as illustrated in FIG. 2, a substrate contact area 36 is created in the trench 20 since the epi is doped. In the isolation trench 18 the outdiffusion of the channel stop boron is only into the epitaxial silicon near the trench bottom. Such is shown by shallow zone 38 in FIG. 2. Consequently, by this technique a series of isolation trenches and a series of substrate contact trenches may be simultaneously formed. The structure is completed by SiO2 insulation 19 above trench 18 and metal contact 23 above the contact trench 20.

In accordance with the embodiment just described, thermal SiO2 /Si3 N4 /CVD borosilicate is used as a trench sidewall for doping an undoped epitaxial fill. These materials form a permanent sidewall structure that reduces the probability of dislocations which are caused by subsequent heat treatment of a conventional sidewall structure. For example, this structure can be: thermal SiO2 approximately 500 Å Si3 N4 approximately 500 Å and CVD borosilicate approximately 4000 Å in thickness. Other relative thicknesses are within the scope of this invention. Also, other insulation layers may be used in place of this structure.

Referring now to FIGS. 3-6, a second preferred embodiment of this invention will be described. To the extent that this embodiment utilizes the same structure, it will be identified with the same numerals. Thus, the same tiered substrate structure comprising the P-layer 12, N+ layer 14 and N layer 16 are provided together with trenches 18 and 20. The thermal SiO2 layer 22 and Si3 N4 layer 24 with the CVD SiO2 layer 26 form a common starting point as in the first preferred embodiment. Other insulation layers may be used. Also, boron ions are implanted into the trench bottoms for the formation of a p-doped channel stop 32.

This embodiment differs from the first embodiment in that the next step is the application of a photoresist 40 completely covering the substrate surface and filling each of the trenches. Using known techniques the resist 40 is opened over trenches where contact is desired. FIG. 4 illustrates the structure after an RIE step has opened the trench bottom and removed some of the top oxide layer. Typically RIE, in a timed etch step to remove oxide from the trench 20 to form the "future" silicon substrate contact. That is, FIG. 4 illustrates a structure having trench 20 with oxide removed such that the trench is opened for contact while trench 18 remains filled with photoresist material. This timed etching also opens the area above trench 20 by selective removal of the CVD oxide 26. The photoresist 40 is then removed.

Referring now to FIG. 5, subsequent steps and the next intermediate stage of the device are illustrated. In FIG. 5, a selective epitaxial p-doped silicon zone 44 has been deposited and grown in the substrate contact trench 20. This epitaxial silicon refill can be made to slightly overfill trench 20 as illustrated. The epitaxial silicon is allowed to grow upward and outward, to completely encapsulate and seal the trench 20. Such is illustrated in FIG. 5 (structure 46). This selective growth occurs only in trenches where a substrate contact opening has been provided at the trench bottom. Application of a blanket growth of undoped polysilicon follows the selective epitaxial refill. This layer 48 completely fills the trench 18 and covers the CVD oxide layer 26. It also covers and encapsulates the dome 46 and the epitaxially grown p-doped silicon layer.

FIG. 5 illustrates that when the undoped polysilicon 48 is deposited discontinuities in planarity occur in those areas where trench filling occurs. Ridges are also formed in the vicinity of the cap 46. In order to planarize the device, both the p-doped epitaxial dome 46 and the polysilicon undoped material 48 filling the trench 18 are planarized. Thus, by chemical/mechanical polishing techniques, the CVD oxide layer is removed and the domed structure 46 is polished such that planarization of the top surface 50 of the substrate occurs. Such is illustrated in FIG. 6. The structure is completed by an SiO2 layer 19 over trench 18 and a metal contact 23 over trench 20.

As can be appreciated, by this technique an isolation trench 18 is formed filled with undoped polysilicon while, as a function of simultaneous processing, a substrate contact trench 20 is formed having a p-doped epitaxial silicon deposited and grown therein.

Turning now to FIGS. 7A and 7B, examples of overlapping contacts are illustrated. In the previous embodiments the SiO2 cover 18 on the insulative trench 18 was centered over that trench. Likewise, the contact 23 over the substrate contact trench 20 was aligned with that trench. In accordance with this invention, the contacts may overlap the trench fill and the trench sidewall.

FIG. 7A illustrates an isolation trench having a polysilicon refilled trench 48. The insulative structure 22 is opened such that an opening 25 encompasses a portion of trench 18, its sidewall and the substrate surface. Into that opening polysilicon, epitaxial silicon or a combination is selectively deposited. By overgrowth of the trench fill and the substrate material, a contact is formed in the opening. Such structures may be used for forming contacts to trench capacitor cells as in C-MOS dynamic RAM technology.

FIG. 7B illustrates a substrate contact trench having a selectively epitaxially refilled trench 20. As in the case of the embodiment of FIG. 7A, the insulative structure is opened to partially overlie the trench 20 and a portion of the substrate. The opening 25 overlaps the doped epitaxially refilled trench 20, the insulative trench sidewall and the epi surface of the substrate. This zone is selectively filled with epitaxial silicon, polysilicon or a combination thereof. By overgrowth of the silicon filled trench and substrate material a contact is formed in the opening.

This contact structure is advantageous in that it saves space on the substrate surface and reduces the space between adjacent devices. This technique saves processing steps and allows the contacts to be precisely positioned. That is, the deposition of the highly doped material occurs precisely where the contact is desired. This technique also results in a more planar surface since the overgrowth is nearly co-planar with the overlying oxide.

This contact formation technique is not limited to the insulator structure (SiO2, Si3 N4) of FIGS. 1-6. The insulator may be oxide, nitride or a combination thereof. Moreover, while the contact is illustrated extending across the top of trench, it may be buried along the sidewall.

It is apparent that this invention may modified without departing from the essential scope thereof.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4375124 *Nov 12, 1981Mar 1, 1983Gte Laboratories IncorporatedPower static induction transistor fabrication
US4446476 *Jun 30, 1981May 1, 1984International Business Machines CorporationRefractory metal silicide layer beneath field isolation region and in contact with doped electroconductivity layer
US4462040 *Mar 30, 1980Jul 24, 1984International Business Machines CorporationSingle electrode U-MOSFET random access memory
US4470062 *Sep 30, 1982Sep 4, 1984Hitachi, Ltd.Semiconductor device having isolation regions
US4520552 *Jan 16, 1984Jun 4, 1985Thomson-CsfSemiconductor device with deep grip accessible via the surface and process for manufacturing same
US4522662 *Aug 12, 1983Jun 11, 1985Hewlett-Packard CompanyAdding hydrogen chloride gas to suppress nucleation
US4554728 *Jun 27, 1984Nov 26, 1985International Business Machines CorporationSimplified planarization process for polysilicon filled trenches
US4611386 *Dec 23, 1983Sep 16, 1986Fujitsu LimitedMethod of producing a semiconductor device
US4661202 *Feb 13, 1985Apr 28, 1987Kabushiki Kaisha ToshibaReduction of chip area
EP0108390A1 *Nov 2, 1983May 16, 1984Hitachi, Ltd.Semiconductor memory
EP0116789A1 *Dec 23, 1983Aug 29, 1984Fujitsu LimitedMethod of producing a semiconductor device having isolation regions between elements
JPS5850752A * Title not available
JPS56137647A * Title not available
JPS58168233A * Title not available
JPS58220445A * Title not available
JPS59208750A * Title not available
Non-Patent Citations
Reference
1"Dynamic Ram Cell with Merged Drain and Storage", IBM TDB, vol. 27, No. 11, Apr. 1985, pp. 6694-6697.
2 *Dynamic Ram Cell with Merged Drain and Storage , IBM TDB, vol. 27, No. 11, Apr. 1985, pp. 6694 6697.
3Endo, `Novel Device Isolation Technology with Selective Epitaxial Growth`, IEDM, 1982, pp. 241-244.
4 *Endo, Novel Device Isolation Technology with Selective Epitaxial Growth , IEDM, 1982, pp. 241 244.
5 *Rathman et al., J. Electrochem. Soc., V. 129, No. 10, (Oct., 1982), pp. 2303 2306.
6Rathman et al., J. Electrochem. Soc., V. 129, No. 10, (Oct., 1982), pp. 2303-2306.
7 *Wada, A Folded Capacitor Cell for Future Megabit Drams, IEDM, 1984, pp. 244 247.
8Wada, A Folded Capacitor Cell for Future Megabit Drams, IEDM, 1984, pp. 244-247.
9 *Zingg et al., J. Electrochem., Soc., V. 133, p. 1274.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4835115 *Dec 7, 1987May 30, 1989Texas Instruments IncorporatedMethod for forming oxide-capped trench isolation
US4845051 *Oct 29, 1987Jul 4, 1989Siliconix IncorporatedBuried gate JFET
US4849854 *Nov 12, 1987Jul 18, 1989Mitsubihsi Denki Kabushiki KaishaSemiconductor device and method of manufacturing the same
US4873205 *Sep 1, 1988Oct 10, 1989International Business Machines CorporationMethod for providing silicide bridge contact between silicon regions separated by a thin dielectric
US5077228 *Dec 1, 1989Dec 31, 1991Texas Instruments IncorporatedProcess for simultaneous formation of trench contact and vertical transistor gate and structure
US5096848 *Feb 11, 1991Mar 17, 1992Sharp Kabushiki KaishaMethod for forming semiconductor device isolating regions
US5108946 *Jul 27, 1990Apr 28, 1992Motorola, Inc.Method of forming planar isolation regions
US5159429 *May 11, 1992Oct 27, 1992International Business Machines CorporationSemiconductor device structure employing a multi-level epitaxial structure and method of manufacturing same
US5185294 *Nov 22, 1991Feb 9, 1993International Business Machines CorporationBoron out-diffused surface strap process
US5217920 *Jun 18, 1992Jun 8, 1993Motorola, Inc.Method of forming substrate contact trenches and isolation trenches using anodization for isolation
US5236863 *Jun 1, 1992Aug 17, 1993National Semiconductor CorporationForming trenches in the surface of a silicon semiconductor wafer
US5250461 *Apr 20, 1992Oct 5, 1993Delco Electronics CorporationMethod for dielectrically isolating integrated circuits using doped oxide sidewalls
US5296392 *Feb 24, 1992Mar 22, 1994Digital Equipment CorporationMethod of forming trench isolated regions with sidewall doping
US5346584 *Jul 28, 1993Sep 13, 1994Digital Equipment CorporationPlanarization process for IC trench isolation using oxidized polysilicon filler
US5384280 *Jun 30, 1992Jan 24, 1995Kabushiki Kaisha ToshibaMethod of manufacturing a semiconductor device isolated by a trench
US5453400 *Jan 19, 1993Sep 26, 1995International Business Machines CorporationMethod and structure for interconnecting different polysilicon zones on semiconductor substrates for integrated circuits
US5492858 *Apr 20, 1994Feb 20, 1996Digital Equipment CorporationShallow trench isolation process for high aspect ratio trenches
US5494857 *Jul 28, 1993Feb 27, 1996Digital Equipment CorporationChemical mechanical planarization of shallow trenches in semiconductor substrates
US5510298 *Sep 12, 1994Apr 23, 1996Texas Instruments IncorporatedMethod of interconnect in an integrated circuit
US5672901 *Aug 26, 1996Sep 30, 1997International Business Machines CorporationStructure for interconnecting different polysilicon zones on semiconductor substrates for integrated circuits
US5731221 *Jan 10, 1997Mar 24, 1998Hyundai Electronics Industries Co., Ltd.Isolation method in a semiconductor device
US5817560 *Sep 12, 1996Oct 6, 1998Advanced Micro Devices, Inc.Ultra short trench transistors and process for making same
US5851900 *Apr 28, 1997Dec 22, 1998Mosel Vitelic Inc.Method of manufacturing a shallow trench isolation for a semiconductor device
US5905285 *Feb 26, 1998May 18, 1999Advanced Micro Devices, Inc.Ultra short trench transistors and process for making same
US6251734Jul 1, 1998Jun 26, 2001Motorola, Inc.Method for fabricating trench isolation and trench substrate contact
US6251769 *Jul 2, 1999Jun 26, 2001United Microelectronics CorpMethod of manufacturing contact pad
US6472254 *Dec 21, 2000Oct 29, 2002International Rectifier CorporationIntegrated photovoltaic switch with integrated power device including etching backside of substrate
US6610578Jul 13, 1998Aug 26, 2003Telefonaktiebolaget Lm Ericsson (Publ)Methods of manufacturing bipolar transistors for use at radio frequencies
US6621136Sep 28, 2001Sep 16, 2003Semiconductor Components Industries LlcSemiconductor device having regions of low substrate capacitance
US6646320 *Nov 21, 2002Nov 11, 2003National Semiconductor CorporationMethod of forming contact to poly-filled trench isolation region
US6680238 *Dec 17, 2002Jan 20, 2004Hynix Semiconductor Inc.Method for manufacturing a semiconductor device
US6696349 *Nov 13, 2001Feb 24, 2004Infineon Technologies Richmond LpSTI leakage reduction
US6724798Dec 31, 2001Apr 20, 2004Honeywell International Inc.Optoelectronic devices and method of production
US6994903 *Jan 3, 2002Feb 7, 2006International Business Machines Corp.Hybrid substrate and method for fabricating the same
US7151785Sep 24, 2003Dec 19, 2006Finisar CorporationOptoelectronic devices and methods of production
US7176107Aug 12, 2005Feb 13, 2007International Business Machines CorporationHybrid substrate and method for fabricating the same
US7468307Jun 28, 2006Dec 23, 2008Infineon Technologies AgSemiconductor structure and method
US7547610 *Apr 12, 2007Jun 16, 2009Advanced Micro Devices, Inc.Method of making a semiconductor device comprising isolation trenches inducing different types of strain
US7982284Jun 28, 2006Jul 19, 2011Infineon Technologies AgSemiconductor component including an isolation structure and a contact to the substrate
US8138571Apr 7, 2009Mar 20, 2012Globalfoundries Inc.Semiconductor device comprising isolation trenches inducing different types of strain
US8476734Jun 9, 2011Jul 2, 2013Infineon Technologies AgSemiconductor component and methods for producing a semiconductor component
US8637378Jun 9, 2011Jan 28, 2014Infineon Technologies AgSemiconductor component and methods for producing a semiconductor component
DE10110974A1 *Mar 7, 2001Sep 26, 2002Infineon Technologies AgVerfahren zum Verbreitern aktiver Halbleitergebiete
DE10110974C2 *Mar 7, 2001Jul 24, 2003Infineon Technologies AgVerfahren zum Verbreitern eines aktiven Halbleitergebiets auf einem Halbleitersubstrat
DE102004028679A1 *Jun 14, 2004Jan 5, 2006Infineon Technologies AgIsolationsgrabenanordnung
DE102006029701A1 *Jun 28, 2006Jan 3, 2008Infineon Technologies AgSemiconductor component has substrate of conducting type and buried semiconductor layer of other conducting type is arranged on substrate and insulation structure has trench and electrically conducting contact to substrate
EP0438959A2 *Dec 12, 1990Jul 31, 1991International Business Machines CorporationSemiconductor device structure employing a multi-level epitaxial structure and a method of manufacturing same
Classifications
U.S. Classification438/429, 257/E21.572, 438/430, 257/E21.149, 438/489, 438/481, 438/434, 257/E21.538, 438/433
International ClassificationH01L21/74, H01L21/76, H01L21/225, H01L21/763, H01L29/41
Cooperative ClassificationH01L21/2255, H01L21/763, H01L21/743
European ClassificationH01L21/74B, H01L21/763, H01L21/225A4D
Legal Events
DateCodeEventDescription
Jul 25, 2000FPExpired due to failure to pay maintenance fee
Effective date: 20000517
May 14, 2000LAPSLapse for failure to pay maintenance fees
Dec 7, 1999REMIMaintenance fee reminder mailed
Sep 21, 1995FPAYFee payment
Year of fee payment: 8
Aug 1, 1991FPAYFee payment
Year of fee payment: 4
Oct 31, 1985ASAssignment
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BEYER, KLAUS D.;SILVESTRI, VICTOR J.;REEL/FRAME:004478/0096
Effective date: 19851030