Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4759369 A
Publication typeGrant
Application numberUS 06/882,726
Publication dateJul 26, 1988
Filing dateJul 7, 1986
Priority dateJul 7, 1986
Fee statusPaid
Publication number06882726, 882726, US 4759369 A, US 4759369A, US-A-4759369, US4759369 A, US4759369A
InventorsAndrew C. Taylor
Original AssigneeNovametrix Medical Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
For measuring oxygen saturation in the blood
US 4759369 A
Abstract
A pulse oximeter includes a capacitive d.c. blocking element to separate the time varying red and infra-red components of a light source transmitted through or reflected form the blood from the composite light signals. The magnitudes of the signal amplitudes are then digitized and converted for use as independent variables applied to a ROM based look-up table to determine blood oxygen saturation.
Images(3)
Previous page
Next page
Claims(3)
What is claimed is:
1. In a pulse oximeter for measuring oxygen saturation in the blood of a person comprising means for directing light having a first wave length toward a tissue surface and the blood carried thereunder; means for directing light having a second wave length toward said tissue surface and said blood; and means for sensing said light of first and second wave lengths after its intensity has been affected by the color of the blood and for producing an electrical signal with a magnitude that is a function of the color of the blood and the pulse of said person, said signal being separable into a constant component and a time varying component; and means responsive to said electrical signal for determining a numerical measurement of oxygen saturation, the improvement comprising:
charge storage means for blocking said electrical signal constant component and having an input terminal to which said electrical signal is applied and an output terminal at which there is produced an output signal having a wave form corresponding substantially to that of only said time varying component and substantially independent of said constant component;
first calculating means operatively connected to said charge storage means and to said sensing means for calculating a ratio as a function of said time varying component and constant component,
said determining means including memory means having stored therein at assigned addresses ratios corresponding to predetermined oxygen saturation levels, and second calculating means operatively connected to said first calculating means for calculating oxygen saturation as a function of the address in said memory means having a stored ratio with a predetermined relationship to said calculated ratio.
2. A pulse oximeter according to claim 1 wherein said read only memory is erasable and programmable.
3. A pulse oximeter according to claim 1 wherein said charge storage means comprises a capacitor.
Description
BACKGROUND OF THE INVENTION

Pulse oximetry is a well known technique for non-invasive measurement of oxygen saturation in the blood of a living person. Generally pulse oximeters measure changes in the color of the arterial blood caused by changed in the ratio of hemoglobin and oxyhemoglobin present. The arterial blood is distinguished from venous blood and other tissue by its pulsatility.

Conventional pulse oximeters measure light transmittance through or reflectance from the blood at two wave lengths, e.g. red and infra-red. Measurements of the pulsatile and nonpulsatile components of the red and infra-red output signals are then processed using a relationship derived form the Lambert-Beers, law to compute oxygen saturation.

Some oximeters scale the magnitudes of the resultant signals making the non-pulsatile components equal so that the ratio of the pulsatile components relates directly to oxygen saturation. U.S. Pat. No. 4,407,290 to Wilbur for Blood Constituent Measuring Device and Method discloses an oximeter which scales the analog red and infra-red output signals so that their constant components are equal and then subtracts a d.c. voltage having a magnitude equal to that of the d.c. component. This enables the signals to be compared using the Lambert-Beers relationship with a simplified computation. However, the analog scaling and subtraction can provide a source of error because of limitations of the circuit and the Lambert-Beers computation, although simplified, is still complex to calculate.

Another approach, as exemplified by the pulse oximeter disclosed in European Patent Application No. 83304949.8, computes the ratios required for the Lambert-Beers relationship. A look-up table is used to apply the relationship without actually performing the mathematical manipulations required by Lambert-Beers. Although this method reduces computation time it is still prone to error resulting from deviations between empirical and theoretical factors.

SUMMARY OF THE INVENTION

In order to overcome the aforementioned shortcomings of prior art oximeters, the present invention teaches the use of a simplified oximeter design with improved accuracy and reduced calculation time. More specifically, the invention includes a pulse oximeter for measuring oxygen saturation in the blood of a person with means for directing light having a first wave length toward a tissue surface and the blood carried thereunder, means for directing light having a second wave length toward the tissue surface and the blood, and means for sensing the light of first and second wave lengths after its intensity has been affected by the color of the blood and for producing an electrical signal with a magnitude that is a function of the color of the blood and the pulse of the person, the signal being separable into a constant component and a pulsatile, i.e., time varying component, and means responsive to the electrical signals for determining a numerical measurement of oxygen saturation including charge storage means having an input terminal to which the electrical signal is applied and an output terminal at which there is produced an output signal having a waveform corresponding substantially to that of only the time varying component and substantially independent of the constant component, the determining means including memory means for storing representations of empirical numbers corresponding to predetermined oxygen saturation levels for comparison with Lambert-Beers ratios calculated from the pulsatile and composite electrical output signals and for calculating oxygen saturation levels as a function of the addresses of the empirical numbers in memory.

It is therefore an object of the invention to determine saturation by comparing the measured red and infra-red signal levels resulting from transmission of light through or reflection of light from blood with empirically derived data.

Another object of the invention is to make comparisons between the measured signal levels and empirical data more rapidly than computation of the Lambert-Beers formula.

Still another object of the invention is to provide a measure of oxygen saturation corrected for factors which cause deviations from the theoretical Lambert-Beers predictions, irrespective of whether the factors are identifiable.

A further object of the invention is to increase the accuracy of oxygen saturation measurements by updating the empirical relationship between blood measurements and oxygen saturation as it becomes better defined.

Other and further objects of the invention will be apparent from the following drawings and description of a preferred embodiment of the invention in which like reference numerals are used to indicate like parts in the various views.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view of a part of the preferred embodiment of the invention in use in its intended environment.

FIG. 2 is a schematic block diagram of the preferred embodiment of the invention.

FIG. 3 is a timing diagram of some of the switching signals employed in the preferred embodiment of the invention.

FIG. 4 is a graphic view of signals developed in the preferred embodiment of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 1 of the drawings there is shown a sensor 2 (conventionally mounted in a housing not shown) which is adapted to be placed over the vascularized tissue of a patient, e.g., on a finger or ear lobe, whose hemoglobin oxygen saturation is to be measured. Mounted within the housing are two light emitting diodes (LEDs) 2 and 4 respectively. LED 2 emits light at a frequency of 660 nanometers and LED 4 emits light at a frequency of 940 nanometers. The light emitting surfaces of the LEDs 2 and 4 are directed at an opening in the housing in which the patient's vascularized tissue is received. A photodiode 10 is mounted on the opposite side of the housing with it slight sensitive surface orthogonal to the axis of maximum light emission from the LEDs, such that it receives light that has been transmitted through the tissue.

Pulses are alternately applied to the LEDs 2 and 4 under the control of a microprocessor 16 of a digital computer 12 shown in FIG. 2. The computer 12 includes, in addition to the microprocessor 16, a random access memory (RAM) 13 and a read only memory (ROM) 15. In the ROM 15 there is stored a program for calculating the Lambert-Beers ratio from the respective amplitudes of the pulsatile and constant components of the measured light transmissions through the blood, as known in the art, but which does not perform the logarithmic computation required by the Lambert-Beers law. There is also stored, a table with addresses corresponding to predetermined oxygen saturation values and, for each, a corresponding number equal to he ratio that would be calculated from the red and infra-red signal outputs developed in the course of monitoring a patient whose oxygen saturation level was equal to the respective saturation value. Unlike oximeters which compute saturation from logarithmic formulas based on the classical Lambert-Beers relationship or their Taylor series approximations, in accordance with the invention saturation is determined by comparing the Lambert-Beers ratio calculated for the measured red and infra-red signal levels with empirically derived data.

An area of the ROM 15 contains values of the empirically derived ratios with which the Lambert-Beers ratios derived from the pulsatile and constant component amplitudes are compared, in the form of the aforementioned table. In the preferred embodiment of the invention, the table contains only those empirically derived ratios which correspond to equally spaced discrete saturation levels. Saturation is calculated by comparing the value of the measured Lambert-Beers ratio with the values in the table until it is found to lie between two consecutive table values. Then the address of the match in the table gives the saturation value from the following formula which is simply calculated.

Saturation %=100-Addressmin 

where Addressmin is the lower of the two addresses of the ratios between which the measured ratio lies.

For example, the table may appear as follows:

______________________________________Address     Lambert-Beers Ratio______________________________________1           R12           R23           R34           R45           R5.           ..           ..           .______________________________________

where R1 is the ratio corresponding to a saturation level of 99.5%, R2 correspond to 98.5%, R3 corresponds to 97.5%, etc. If the measured ratio lies between R3 and R4, saturation is computed as 100-3=97%.

The integer result is sufficiently precise for most medical applications. Further precision can be obtained by using ratios corresponding to more closely spaced saturation levels in the table.

The foregoing approach provides the following benefits. Comparisons between the measured signal levels can be made more rapidly than the computations required by use of the Lambert-Beers relationship can be done. Hence an improvement in system computation time is achieved. Additionally, correction is made for factors which cause deviations from the theoretical Lambert-Beers predictions, even when the factors are not individually identifiable. Furthermore, as more is learned concerning the expected relationship between red and infra-red signal values and oxygen saturation and as more empirical data is analyzed, the saturation table can be updated by the mere expedient of replacing the ROM 15 with one containing the updated table. It is also possible to employ electrically erasable programmable read-only memories (E2 PROMS) to enable updating without ROM replacement.

A timing generator 14 is connected to an interrupt input of the microprocessor 16 and periodically applies interrupt signals to the microprocessor 16 to indicate that new data has been digitized and is available for input. The timing generator 14 is driven by a 4 MHz signal derived from the crystal clock oscillator output of the microprocessor 16. The timing signals for sequentially pulsing the LEDs 2 and 4 are derived by frequency dividers in the timing generator 14.

Constant current drive circuits 42 and 44 respectively connected to the cathodes of the respective LEDs 2 and 4, are turned on and off in response to application of the timing signals from the timing generator 14. When actuated by the timing signals from the timing generator 14, the constant current drive circuits 42 and 44 provide constant currents, the magnitudes of which depend on the amplitudes of the LED intensity signals generated by respective LED intensity signal generators 46 and 48.

The LED intensity signal generators 46 and 48 have respective digital inputs connected to the bus 40. In the event that the red and infra-red signal inputs to the analog to digital converter 36 are beyond the useful range of the A/D converter 36, e.g., due to skin thickness and pigment variations among subjects, the microprocessor responds by changing the level of the digital input signals to the LED intensity signal generators 46 and 48 thereby effecting the appropriate change in the level of the analog signals applied to the drive circuits 42 and 44.

Energizing signals are continuously applied to the LEDs 2 and 4 which are switched on and off under control of the microprocessor 16. In the preferred embodiment of the invention, enabling signals are sequentially applied to each of the LEDs every 640 microseconds, i.e. at 1.56 kHz as shown in FIG. 3 with the phase of the enabling pulses in the 940 nanometer channel being shifted with respect to the phase of the pulses in the 660 nanometer channel.

As seen in FIG. 3, after each occurrence of a pulsing of the 940 nM channel followed by a pulsing of the 660 nM channel, storage of values is done by the microprocessor 16 as will be explained hereinafter.

The single photodiode 10 is employed to sense the light output of each of the LEDs 2 and 4 which is transmitted through the blood stream in the vascularized tissue. The current output of the photodiode 10 is applied to a current to voltage convert 18 which includes an operational amplifier having a high slewing rate characteristic and an output which is connected to a demultiplexer and sample and hold circuit 20. The current to voltage converter 18 and the circuitry to which it is connected, other than the LEDs 2 and 4, and photodiode 10, is housed in a monitor 22 so that the sensor 1 may be small, light in weight, and economically manufactured. The demultiplexer 20 separates and distributes the voltage output of the current to voltage converter 18, which consists of a pulse train having two sets of peaks, between two channels, 24 and 26, corresponding to the 660 nM and 940 nM signals, respectively.

Each of the two channel outputs of the demultiplexer 20 is connected through a d.c. blocking capacitor 25, 27, to a respective amplifier 28, 30, the output of which is connected to a respective low pass filter 32, 34. The output signal from the demultiplexer 20 is shown in FIG. 4(a) without the effects of pulsing the LEDs 2 and 4. The waveform of the signals applied to the low pass filters 32, 34 is stepped and includes transients due to the switching of the demultiplexer 20. It is smoothed in the low pass filters 32, 34 wherein the high frequency transients are removed. The output of each of the amplifiers 28, 30 has a waveform as shown in FIG. 4(b) (ignoring the pulsing effects of the LEDs 2 and 4) which consists of an a.c. component superimposed on a zero d.c. level due to the blocking action of the capacitors 25 and 27. The magnitude of the D.C. level is a function of the intensity of the corresponding LED 2, 4, the sensitivity of the photodiode 10, the optical density of the tissue, and the mean volume of arterial blood, through which the light emitted by the LEDs must pass. The a.c. component has a frequency which varies with pulse rate and an amplitude which is a function of the change in volume of the arterial blood throughout the cardiac cycle, and the ratio of oxygenated to total blood hemoglobin, i.e. oxygen saturation.

An offset voltage generator 35 generates an analog offset voltage in response to a digital input from the computer 12 in order to allow the analog to digital converter 36 to operate with ground as the center point of the analog input voltages, i.e., the full waveform (negative and positive) of the variable component signal can be applied to the A/D converter 36 for deriving digital representations of the changes in light absorption of the blood at red and infra-red wave lengths. The value of the offset signal required to enable the analog to digital converter 36 to operate with ground as a center point is computed via the microprocessor 16 and a digital representation is applied to a corresponding digital input of the offset voltage generator 35. An analog offset signal having an amplitude corresponding to the digital offset signal is then applied to the analog to digital converter 36.

Respective 8 bit digital gain inputs in the amplifiers 28 and 30 periodically receive digital byte output from the microprocessor 16 which indicates the degree of correction needed to adjust the amplitude of the a.c. components at the outputs of the amplifiers 28, 30 to make optimum use of the dynamic range of the analog to digital converter 36 which is connected to a data input of the microprocessor 16. The gains of the amplifiers 28 and 30 are adjusted to a value approximately equal to two thirds (2/3) of the full dynamic range of the A/D converter 36. The amplified waveform at the output of the low pass filters 32 and 34 is of the form illustrated in FIG. 4(c). These waveforms are applied via bus 40 to the A/D converter 36 and the digital output thereof is applied to a data input of the microprocessor 16. The A/D converter 36 is operated to bipolar mode thereby enabling the full pulse waveform at the output of low pass filters 32 and 34 to be tracked.

For each output pulse appearing at the output of low pass filters 32 and 34 and digitized in the A/D converter 36, the voltage sample is tested to determine if it is a maximum or peak voltage. Detection of the peaks and troughs of the red and infra-red variable signal components is also done by the microprocessor. Various peak and trough detection algorithms known to those skilled in the art may be employed to derive the maxima and minima of each cycle of the pulsatile variable components, and their difference which is digitized to represent the measurement of the variable components.

In addition to testing each voltage pulse at the output of low pass filters 32 and 34 to determine whether or not it is a peak, a similar test is made to determine whether a trough in the signal waveform has been reached. The peak to trough value of each cycle of the a.c. output signals from the low pass filters 32 and 34 are also utilized in the derivation of oxygen saturation.

After each pulse is applied to the A/D converter 36, it is tested for validity so that spurious signals due to artifact can be suppressed. Two tests are made. First the elapsed time between each pulse and the preceding one is compared to a predetermined minimum time corresponding to a maximum anticipated pulse rate. In the preferred embodiment of the invention, a maximum pulse rate of 250 beats per minute is used to derive a predetermined minimum time of 240 milliseconds between pulses. The second test involves a comparison of the pulse period with the previous pulse period to determine if excessive variability exists, in which case the pulse is rejected.

The analog to digital converter 36 receives the output signal from the low pass filters 32 and 34 which represent the amplitudes of the variable components of the red and infra-red signals, respectively (see FIG. 4(c)), and the output signals from the demultiplexer 20 which represent the amplitudes of the constant components of the red and infra-red signals, respectively (see FIG. 4(a)). The amplitudes are digitized in the analog to digital converter 36 and applied via bus 40 to the microprocessor 16 of the computer 12.

The amplitudes of the digitized signals are converted to suitable form for use with the look-up table stored in the ROM 15. The corresponding oxygen saturation measurement is then displayed on a conventional liquid crystal seven-segment numerical display 60.

It is to be understood and appreciated that alterations, modifications and variations of and to the preferred embodiment described herein may be made without departing from the spirit and scope of the invention which is defined in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4586513 *Feb 17, 1983May 6, 1986Minolta Camera Kabushiki KaishaNoninvasive device for photoelectrically measuring the property of arterial blood
EP0102816A2 *Aug 25, 1983Mar 14, 1984Nellcor IncorporatedPulse oximeter
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4819646 *Aug 18, 1986Apr 11, 1989Physio-Control CorporationFeedback-controlled method and apparatus for processing signals used in oximetry
US4859057 *Oct 13, 1987Aug 22, 1989Lawrence Medical Systems, Inc.Oximeter apparatus
US4869254 *Mar 30, 1988Sep 26, 1989Nellcor IncorporatedMethod and apparatus for calculating arterial oxygen saturation
US4892101 *Feb 24, 1989Jan 9, 1990Physio-Control CorporationMethod and apparatus for offsetting baseline portion of oximeter signal
US5040539 *May 12, 1989Aug 20, 1991The United States Of AmericaPulse oximeter for diagnosis of dental pulp pathology
US5069214 *Dec 14, 1988Dec 3, 1991Gms Engineering CorporationFlash reflectance oximeter
US5078136 *Aug 4, 1989Jan 7, 1992Nellcor IncorporatedMethod and apparatus for calculating arterial oxygen saturation based plethysmographs including transients
US5099123 *May 23, 1990Mar 24, 1992Biosensors Technology, Inc.Method for determining by absorption of radiations the concentration of substances in absorbing and turbid matrices
US5111817 *Dec 29, 1988May 12, 1992Medical Physics, Inc.Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
US5112124 *Apr 19, 1990May 12, 1992Worcester Polytechnic InstituteMethod and apparatus for measuring the concentration of absorbing substances
US5137023 *Apr 19, 1990Aug 11, 1992Worcester Polytechnic InstituteMethod and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US5178142 *Jul 3, 1991Jan 12, 1993Vivascan CorporationElectromagnetic method and apparatus to measure constituents of human or animal tissue
US5183042 *Jul 3, 1991Feb 2, 1993Vivascan CorporationElectromagnetic method and apparatus to measure constituents of human or animal tissue
US5190038 *Nov 1, 1989Mar 2, 1993Novametrix Medical Systems, Inc.Pulse oximeter with improved accuracy and response time
US5215523 *Nov 12, 1991Jun 1, 1993Eli WilliamsBalloon catheter inflation syringe with remote display
US5259761 *Sep 10, 1990Nov 9, 1993Jenifer M. SchnettlerTooth vitality probe and process
US5267152 *Oct 26, 1990Nov 30, 1993Yang Won SNon-invasive method and apparatus for measuring blood glucose concentration
US5277181 *Dec 12, 1991Jan 11, 1994Vivascan CorporationNoninvasive measurement of hematocrit and hemoglobin content by differential optical analysis
US5348004 *Mar 31, 1993Sep 20, 1994Nellcor IncorporatedElectronic processor for pulse oximeter
US5372135 *Mar 21, 1994Dec 13, 1994Vivascan CorporationBlood constituent determination based on differential spectral analysis
US5398680 *Jul 8, 1992Mar 21, 1995Polson; Michael J. R.Pulse oximeter with improved accuracy and response time
US5423322 *Apr 14, 1994Jun 13, 1995Medical Physics, Inc.Total compliance method and apparatus for noninvasive arterial blood pressure measurement
US5431159 *Jun 17, 1991Jul 11, 1995Sentinel Monitoring, Inc.For causing radiation absorbed by tissue to produce signals
US5448991 *Jun 1, 1992Sep 12, 1995Polson; Michael J. R.Method of measuring the oxygen saturation in pulsating blood flow
US5458128 *Jun 17, 1994Oct 17, 1995Polanyi; MichaelMethod and apparatus for noninvasively measuring concentration of a dye in arterial blood
US5560355 *Dec 17, 1993Oct 1, 1996Nellcor Puritan Bennett IncorporatedMedical sensor with amplitude independent output
US5575285 *Dec 14, 1994Nov 19, 1996Kowa Company LimitedApparatus for measuring oxygen saturation
US5676141 *Mar 31, 1997Oct 14, 1997Nellcor Puritan Bennett IncorporatedFor calculating arterial oxygen concentration
US5779630 *May 26, 1995Jul 14, 1998Nellcor Puritan Bennett IncorporatedMedical sensor with modulated encoding scheme
US5817008 *Oct 31, 1996Oct 6, 1998Spacelabs Medical, Inc.Conformal pulse oximetry sensor and monitor
US5820550 *Mar 16, 1995Oct 13, 1998Novametrix Medical Systems Inc.To measure/display oxygen saturation levels present in pulsating blood flow
US5961450 *Sep 9, 1996Oct 5, 1999Nellcor Puritan Bennett IncorporatedFor detecting a blood characteristic
US6144444 *Nov 6, 1998Nov 7, 2000Medtronic Avecor Cardiovascular, Inc.Apparatus and method to determine blood parameters
US6216021Jun 4, 1999Apr 10, 2001The Board Of Trustees Of The University Of IllinoisMethod for measuring absolute saturation of time-varying and other hemoglobin compartments
US6327376Dec 3, 1998Dec 4, 2001U.S. Philips CorporationElectronic apparatus comprising fingerprint sensing devices
US6370408 *Jul 26, 1999Apr 9, 2002Mallinckrodt, Inc.Medical sensor with amplitude independent output
US6397092Dec 17, 1999May 28, 2002Datex-Ohmeda, Inc.Oversampling pulse oximeter
US6529752 *Jan 17, 2001Mar 4, 2003David T. KrausmanSleep disorder breathing event counter
US6542764 *Dec 1, 2000Apr 1, 2003Masimo CorporationPulse oximeter monitor for expressing the urgency of the patient's condition
US6694157Feb 9, 1999Feb 17, 2004Daedalus I , L.L.C.Method and apparatus for determination of pH pCO2, hemoglobin, and hemoglobin oxygen saturation
US6748253May 24, 2002Jun 8, 2004Datex-Ohmeda, Inc.Oversampling pulse oximeter
US7003337Apr 26, 2002Feb 21, 2006Vivascan CorporationNon-invasive substance concentration measurement using and optical bridge
US7034692May 13, 2003Apr 25, 2006Scott Laboratories, Inc.System and method for transparent early detection, warning, and intervention during a medical procedure
US7313426 *Mar 28, 2005Dec 25, 2007Nihon Kohden CorporationApparatus for determining concentrations of light absorbing substances in blood
US7477924May 2, 2006Jan 13, 2009Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7483731Sep 30, 2005Jan 27, 2009Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7486979Sep 30, 2005Feb 3, 2009Nellcor Puritan Bennett LlcOptically aligned pulse oximetry sensor and technique for using the same
US7499740Jan 8, 2007Mar 3, 2009Nellcor Puritan Bennett LlcTechniques for detecting heart pulses and reducing power consumption in sensors
US7522948May 2, 2006Apr 21, 2009Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7555327Sep 30, 2005Jun 30, 2009Nellcor Puritan Bennett LlcFolding medical sensor and technique for using the same
US7574244Jul 28, 2006Aug 11, 2009Nellcor Puritan Bennett LlcCompliant diaphragm medical sensor and technique for using the same
US7574245Sep 27, 2006Aug 11, 2009Nellcor Puritan Bennett LlcFlexible medical sensor enclosure
US7590439Aug 8, 2005Sep 15, 2009Nellcor Puritan Bennett LlcBi-stable medical sensor and technique for using the same
US7647084Jul 28, 2006Jan 12, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7650177Aug 1, 2006Jan 19, 2010Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US7657294Aug 8, 2005Feb 2, 2010Nellcor Puritan Bennett LlcCompliant diaphragm medical sensor and technique for using the same
US7657295Aug 8, 2005Feb 2, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7657296Jul 28, 2006Feb 2, 2010Nellcor Puritan Bennett LlcUnitary medical sensor assembly and technique for using the same
US7658652Jan 28, 2009Feb 9, 2010Nellcor Puritan Bennett LlcDevice and method for reducing crosstalk
US7676253Aug 30, 2006Mar 9, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7680522Sep 29, 2006Mar 16, 2010Nellcor Puritan Bennett LlcMethod and apparatus for detecting misapplied sensors
US7684842Sep 29, 2006Mar 23, 2010Nellcor Puritan Bennett LlcSystem and method for preventing sensor misuse
US7684843Jul 28, 2006Mar 23, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7689259Mar 10, 2004Mar 30, 2010Nellcor Puritan Bennett LlcPulse oximeter sensor with piece-wise function
US7693559Jul 28, 2006Apr 6, 2010Nellcor Puritan Bennett LlcMedical sensor having a deformable region and technique for using the same
US7729736Aug 30, 2006Jun 1, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7738937Jul 28, 2006Jun 15, 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7794266Sep 13, 2007Sep 14, 2010Nellcor Puritan Bennett LlcDevice and method for reducing crosstalk
US7796403Sep 28, 2006Sep 14, 2010Nellcor Puritan Bennett LlcMeans for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7869849Sep 26, 2006Jan 11, 2011Nellcor Puritan Bennett LlcOpaque, electrically nonconductive region on a medical sensor
US7869850Sep 29, 2005Jan 11, 2011Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US7880884Jun 30, 2008Feb 1, 2011Nellcor Puritan Bennett LlcSystem and method for coating and shielding electronic sensor components
US7881762Sep 30, 2005Feb 1, 2011Nellcor Puritan Bennett LlcClip-style medical sensor and technique for using the same
US7881790Nov 30, 2007Feb 1, 2011Pacesetter, Inc.Reducing data acquisition, power and processing for photoplethysmography and other applications
US7887345Jun 30, 2008Feb 15, 2011Nellcor Puritan Bennett LlcSingle use connector for pulse oximetry sensors
US7890153Sep 28, 2006Feb 15, 2011Nellcor Puritan Bennett LlcSystem and method for mitigating interference in pulse oximetry
US7894869Mar 9, 2007Feb 22, 2011Nellcor Puritan Bennett LlcMultiple configuration medical sensor and technique for using the same
US7899510Sep 29, 2005Mar 1, 2011Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7904130Sep 29, 2005Mar 8, 2011Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US7909768Jul 19, 2004Mar 22, 2011Pacesetter, Inc.Reducing data acquisition, power and processing for hemodynamic signal sampling
US7920913Jun 29, 2007Apr 5, 2011Pacesetter, Inc.Systems and methods for increasing implantable sensor accuracy
US8060171Aug 1, 2006Nov 15, 2011Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US8062221Sep 30, 2005Nov 22, 2011Nellcor Puritan Bennett LlcSensor for tissue gas detection and technique for using the same
US8068891Sep 29, 2006Nov 29, 2011Nellcor Puritan Bennett LlcSymmetric LED array for pulse oximetry
US8070508Dec 24, 2008Dec 6, 2011Nellcor Puritan Bennett LlcMethod and apparatus for aligning and securing a cable strain relief
US8071935Jun 30, 2008Dec 6, 2011Nellcor Puritan Bennett LlcOptical detector with an overmolded faraday shield
US8073518May 2, 2006Dec 6, 2011Nellcor Puritan Bennett LlcClip-style medical sensor and technique for using the same
US8078246Sep 30, 2005Dec 13, 2011Nellcor Puritan Bennett LlcPulse oximeter sensor with piece-wise function
US8092379Sep 29, 2005Jan 10, 2012Nellcor Puritan Bennett LlcMethod and system for determining when to reposition a physiological sensor
US8092993Dec 18, 2008Jan 10, 2012Nellcor Puritan Bennett LlcHydrogel thin film for use as a biosensor
US8109882Mar 9, 2007Feb 7, 2012Nellcor Puritan Bennett LlcSystem and method for venous pulsation detection using near infrared wavelengths
US8112375Mar 27, 2009Feb 7, 2012Nellcor Puritan Bennett LlcWavelength selection and outlier detection in reduced rank linear models
US8123695Sep 27, 2006Feb 28, 2012Nellcor Puritan Bennett LlcMethod and apparatus for detection of venous pulsation
US8133176Sep 30, 2005Mar 13, 2012Tyco Healthcare Group LpMethod and circuit for indicating quality and accuracy of physiological measurements
US8145288Aug 22, 2006Mar 27, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8175666Sep 25, 2006May 8, 2012Grove Instruments, Inc.Three diode optical bridge system
US8175667Sep 29, 2006May 8, 2012Nellcor Puritan Bennett LlcSymmetric LED array for pulse oximetry
US8175671Sep 22, 2006May 8, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8190224Sep 22, 2006May 29, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8190225Sep 22, 2006May 29, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8195264Sep 22, 2006Jun 5, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US8199007Dec 29, 2008Jun 12, 2012Nellcor Puritan Bennett LlcFlex circuit snap track for a biometric sensor
US8219170Sep 20, 2006Jul 10, 2012Nellcor Puritan Bennett LlcSystem and method for practicing spectrophotometry using light emitting nanostructure devices
US8221319Mar 25, 2009Jul 17, 2012Nellcor Puritan Bennett LlcMedical device for assessing intravascular blood volume and technique for using the same
US8221326Mar 9, 2007Jul 17, 2012Nellcor Puritan Bennett LlcDetection of oximetry sensor sites based on waveform characteristics
US8224412Jan 12, 2010Jul 17, 2012Nellcor Puritan Bennett LlcPulse oximeter sensor with piece-wise function
US8229530Mar 9, 2007Jul 24, 2012Nellcor Puritan Bennett LlcSystem and method for detection of venous pulsation
US8233954Sep 30, 2005Jul 31, 2012Nellcor Puritan Bennett LlcMucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US8260391Jul 14, 2010Sep 4, 2012Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US8265724Mar 9, 2007Sep 11, 2012Nellcor Puritan Bennett LlcCancellation of light shunting
US8280469Mar 9, 2007Oct 2, 2012Nellcor Puritan Bennett LlcMethod for detection of aberrant tissue spectra
US8311601Jun 30, 2009Nov 13, 2012Nellcor Puritan Bennett LlcReflectance and/or transmissive pulse oximeter
US8315685Jun 25, 2009Nov 20, 2012Nellcor Puritan Bennett LlcFlexible medical sensor enclosure
US8320985 *Apr 2, 2009Nov 27, 2012Empire Technology Development LlcTouch screen interfaces with pulse oximetry
US8346328Dec 21, 2007Jan 1, 2013Covidien LpMedical sensor and technique for using the same
US8352004Dec 21, 2007Jan 8, 2013Covidien LpMedical sensor and technique for using the same
US8352009Jan 5, 2009Jan 8, 2013Covidien LpMedical sensor and technique for using the same
US8352010May 26, 2009Jan 8, 2013Covidien LpFolding medical sensor and technique for using the same
US8364220Sep 25, 2008Jan 29, 2013Covidien LpMedical sensor and technique for using the same
US8366613Dec 24, 2008Feb 5, 2013Covidien LpLED drive circuit for pulse oximetry and method for using same
US8386002Jan 9, 2009Feb 26, 2013Covidien LpOptically aligned pulse oximetry sensor and technique for using the same
US8391941Jul 17, 2009Mar 5, 2013Covidien LpSystem and method for memory switching for multiple configuration medical sensor
US8396527Sep 22, 2006Mar 12, 2013Covidien LpMedical sensor for reducing signal artifacts and technique for using the same
US8417309Sep 30, 2008Apr 9, 2013Covidien LpMedical sensor
US8417310Aug 10, 2009Apr 9, 2013Covidien LpDigital switching in multi-site sensor
US8423112Sep 30, 2008Apr 16, 2013Covidien LpMedical sensor and technique for using the same
US8428675Aug 19, 2009Apr 23, 2013Covidien LpNanofiber adhesives used in medical devices
US8433383Jul 7, 2006Apr 30, 2013Covidien LpStacked adhesive optical sensor
US8437822Mar 27, 2009May 7, 2013Covidien LpSystem and method for estimating blood analyte concentration
US8437826Nov 7, 2011May 7, 2013Covidien LpClip-style medical sensor and technique for using the same
US8442608Dec 24, 2008May 14, 2013Covidien LpSystem and method for estimating physiological parameters by deconvolving artifacts
US8452364Dec 24, 2008May 28, 2013Covidien LLPSystem and method for attaching a sensor to a patient's skin
US8452366Mar 16, 2009May 28, 2013Covidien LpMedical monitoring device with flexible circuitry
US8483790Mar 7, 2007Jul 9, 2013Covidien LpNon-adhesive oximeter sensor for sensitive skin
US8505821Jun 30, 2009Aug 13, 2013Covidien LpSystem and method for providing sensor quality assurance
US8509869May 15, 2009Aug 13, 2013Covidien LpMethod and apparatus for detecting and analyzing variations in a physiologic parameter
US8528185Aug 21, 2009Sep 10, 2013Covidien LpBi-stable medical sensor and technique for using the same
US8577434Dec 24, 2008Nov 5, 2013Covidien LpCoaxial LED light sources
US8577436Mar 5, 2012Nov 5, 2013Covidien LpMedical sensor for reducing signal artifacts and technique for using the same
US8600469Feb 7, 2011Dec 3, 2013Covidien LpMedical sensor and technique for using the same
US8617080Feb 15, 2011Dec 31, 2013Pacesetter, Inc.Reducing data acquisition, power and processing for hemodynamic signal sampling
US8634891May 20, 2009Jan 21, 2014Covidien LpMethod and system for self regulation of sensor component contact pressure
US8636667Jul 6, 2009Jan 28, 2014Nellcor Puritan Bennett IrelandSystems and methods for processing physiological signals in wavelet space
US8649839Jun 24, 2010Feb 11, 2014Covidien LpMotion compatible sensor for non-invasive optical blood analysis
US8655426 *Apr 23, 2009Feb 18, 2014Denso CorporationDevice for measuring concentration of constituent in blood and measuring method
US8660626Feb 4, 2011Feb 25, 2014Covidien LpSystem and method for mitigating interference in pulse oximetry
US20090270701 *Apr 23, 2009Oct 29, 2009Denso CorporationDevice for measuring concentration of constituent in blood and measuring method
US20100256470 *Apr 2, 2009Oct 7, 2010Seth Adrian MillerTouch screen interfaces with pulse oximetry
US20100298677 *May 22, 2009Nov 25, 2010Astek Technology Ltd.Wireless ring-type physical detector
EP0316073A2 *Oct 13, 1988May 17, 1989Lawrence Medical SystemsOximeter apparatus
WO1991011137A1 *Jan 30, 1990Aug 8, 1991Medical PhysicsEnhanced arterial oxygen saturation determination and arterial blood pressure monitoring
WO2008050070A2Oct 25, 2007May 2, 2008Sagem SecuriteMethod for validating a biometrical acquisition, mainly a body imprint
WO2012099538A1 *Jan 5, 2012Jul 26, 2012Nitto Denko CorporationA device and method for removal of ambient noise signal from a photoplethysmograph
Classifications
U.S. Classification600/323
International ClassificationA61B5/00
Cooperative ClassificationA61B5/14551, A61B5/7225
European ClassificationA61B5/1455N, A61B5/72F
Legal Events
DateCodeEventDescription
Oct 18, 2005ASAssignment
Owner name: RIC INVESTMENTS, INC., DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESPIRONICS, INC.;REEL/FRAME:016649/0763
Effective date: 20020627
Owner name: RIC INVESTMENTS, LLC., DELAWARE
Free format text: CHANGE OF NAME;ASSIGNOR:RIC INVESTMENTS, INC.;REEL/FRAME:016653/0709
Effective date: 20040317
Owner name: RIC INVESTMENTS, LLC.,DELAWARE
Owner name: RIC INVESTMENTS, INC.,DELAWARE
Oct 13, 2005ASAssignment
Owner name: RESPIRONICS, INC., PENNSYLVANIA
Free format text: DIVIDEND FROM SUBSIDIARY TO PARENT;ASSIGNOR:RESPIRONICS NOVAMETRIX, LLC.;REEL/FRAME:016637/0931
Effective date: 20030101
Owner name: RESPIRONICS, INC.,PENNSYLVANIA
Jul 26, 2005ASAssignment
Owner name: RESPIRONICS NOVAMETRIX, LLC., CONNECTICUT
Free format text: MERGER;ASSIGNOR:RESPIRONICS NOVAMETRIX, INC.;REEL/FRAME:016301/0886
Effective date: 20021216
Owner name: RESPIRONICS NOVAMETRIX, LLC.,CONNECTICUT
Apr 30, 2004ASAssignment
Owner name: RESPIRONICS NOVAMETRIX, INC., CONNECTICUT
Free format text: CHANGE OF NAME;ASSIGNOR:NOVAMETRIX MEDICAL SYSTEMS, INC.;REEL/FRAME:015271/0590
Effective date: 20020412
Owner name: RESPIRONICS NOVAMETRIX, INC. 5 TECHNOLOGY DRIVEWAL
Free format text: CHANGE OF NAME;ASSIGNOR:NOVAMETRIX MEDICAL SYSTEMS, INC. /AR;REEL/FRAME:015271/0590
Jun 8, 2000FPAYFee payment
Year of fee payment: 12
Jun 8, 2000SULPSurcharge for late payment
Feb 15, 2000REMIMaintenance fee reminder mailed
Feb 17, 1998ASAssignment
Owner name: NOVAMETRIX MEDICAL SYSTEMS, INC., CONNECTICUT
Free format text: SECURITY INTEREST;ASSIGNOR:UNION TRUST COMPANY;REEL/FRAME:008967/0519
Effective date: 19950726
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:SIEMENS MEDICAL SYSTEMS, INC.;REEL/FRAME:008995/0754
Effective date: 19951107
Jan 26, 1996FPAYFee payment
Year of fee payment: 8
Jul 7, 1994ASAssignment
Owner name: UNION TRUST COMPANY, CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVAMETRIX MEDICAL SYSTEMS INC.;REEL/FRAME:007067/0363
Effective date: 19940616
Jan 18, 1994ASAssignment
Owner name: UNION TRUST COMPANY, CONNECTICUT
Free format text: AMENDMENT TO PATENT COLLATERAL ASSIGNMENT;ASSIGNOR:NOVAMETRIX MEDICAL SYSTEMS INC.;REEL/FRAME:006823/0651
Effective date: 19900315
Jul 13, 1992FPAYFee payment
Year of fee payment: 4
Jul 13, 1992SULPSurcharge for late payment
Feb 25, 1992REMIMaintenance fee reminder mailed
Oct 12, 1990ASAssignment
Owner name: UNION TRUST COMPANY A CONNECTICUT BANKING CORPORA
Free format text: RE-RECORD OF A COLLATERAL ASSIGNMENT RECORDED MAY 24, 1989 AT REEL 5133, FRAMES 324-336 TO CORRECTTHE STATE OF INCORPORATION OF ASSIGNOR.;ASSIGNOR:NOVAMETRIX MEDICAL SYSTEMS INC. A DELAWARE CORP.;REEL/FRAME:006807/0847
Effective date: 19890526
Mar 30, 1990ASAssignment
Owner name: SIEMENS MEDICAL ELECTRONICS, INC., 16 ELECTRONICS
Free format text: MORTGAGE;ASSIGNORS:NTC TECHNOLOGY INC.;NOVAMETRIX MEDICAL SYSTEMS, INC.;REEL/FRAME:005262/0506
Effective date: 19900317
Owner name: SIEMENS MEDICAL ELECTRONICS, INC., A CORP. OF DE,M
Aug 24, 1989ASAssignment
Owner name: UNION TRUST COMPANY, CONNECTICUT
Free format text: SECURITY INTEREST;ASSIGNOR:NOVAMETRIX MEDICAL SYSTEMS INC.;REEL/FRAME:005133/0324
Effective date: 19890526
Dec 6, 1988CCCertificate of correction
Jun 7, 1986ASAssignment
Owner name: NOVAMETRIX MEDICAL SYSTEMS, INC., 1 BARNES INDUSTR
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TAYLOR, ANDREW C.;REEL/FRAME:004585/0823
Effective date: 19860630
Owner name: NOVAMETRIX MEDICAL SYSTEMS, INC.,CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAYLOR, ANDREW C.;REEL/FRAME:004585/0823