Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4763287 A
Publication typeGrant
Application numberUS 07/052,061
Publication dateAug 9, 1988
Filing dateMay 21, 1987
Priority dateMay 24, 1986
Fee statusPaid
Also published asDE3617591A1, DE3617591C2, EP0253984A1
Publication number052061, 07052061, US 4763287 A, US 4763287A, US-A-4763287, US4763287 A, US4763287A
InventorsHeinz Gerhaeuser, Gerhard Pirner, Thomas Rueckert
Original AssigneePuma Ag Rudolf Dassler Sport
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Measuring performance information in running disciplines and shoe systems
US 4763287 A
Abstract
A process and system for measuring information concerning movement factors, and to values, which can be calculated therefrom, particularly stride length, stride number, stride time and running time, via a pair of shoes (1, 2), each of which is provided with a transmitter (S1 or S2), a receiver (E1 or E2), and a signal time measuring device (counter Z1 or Z2). A direct signal (tdir.) emitted by the front shoe (1) in response to ground contact is received by the rearward shoe (2), is transferred in conformance to time parameters to the first shoe 1 as a reflected signal (refl.). The direct and reflected signals as well as the readouts of both counters (Z1 and Z2) are transmitted to a computer unit, particularly, a high-frequency computer unit for use in determination of the movement information.
Images(3)
Previous page
Next page
Claims(20)
What is claimed is:
1. In a process, for determining information pertaining to movement factors in running disciplines and values derived therefrom, particularly information concerning stride length, stride rate, stride time and running time, with a pair of running shoes, each shoe of which contains a transmitter and a receiver, of the type wherein a first one of said shoes, upon contacting the ground, emits a first output signal to a second one of said shoes, said first signal being triggered by a ground contact sensor, and wherein the receiver contained in said second shoe receives said first signal and emits a reflected output signal via the transmitter of the second shoe to the receiver of the first shoe, whereafter the first shoe emits a second output signal to a remote receiver that is linked with a computer unit, and wherein a determination of desired information is computed and displayed by the computer unit data based on the relative timing of the first and second signals, the improvement comprising the additional steps of activating a first counter when said first shoe contacts the ground and deactivating said first counter in response to receipt of the reflected output signal by the receiver of the first shoe; activating a second counter when said second shoe lifts off at the ground by a sensor built into said second shoe and deactivating said second counter in response to receipt of the first output signal from the first shoe by the receiver of the second shoe; emitting a value determined by the second counter to the receiver of the first shoe; and utilizing readouts from said counters in said determination.
2. Process according to claim 1, wherein at least a portion of said signals is encoded.
3. Process according to claim 1, wherein said transmitting and receiving of said signals by the shoes are performed by a transmitter-receiver unit of each shoe which has a single transmitter-receiver-converter which is operable in both transmitting and receiving operating modes.
4. Process according to claim 3, wherein the first counter is activated after a delay time which corresponds to a switch time for switching the transmitter-receiver unit from the transmitting mode to the receiving mode, and wherein the reflected output signal is emitted after a delay time which approximates said switch time.
5. Process according to claim 4, wherein said delay time for emission of the reflected output signal equals the switch time minus the transient time of the receivers of the first and second shoe.
6. Process according to claim 5, wherein at least a portion of said signals is encoded.
7. Process according to claim 6, wherein the signals are transmitted between the first and second shoes in the form of ultrasonic impulses and wherein ultrasonic converters are used as converters.
8. Process according to claim 7, wherein the signals emitted to the remote computer unit by the first shoe are transmitted as high-frequency electromagnetic waves.
9. Process according to claim 6, wherein the time during which both shoes are out of contact with the ground is computed and displayed by the computer unit based upon the relative travel times of the signals, counter actuation delay times, and said interval.
10. Process according to claim 6, wherein the signals emitted to the remote computer unit by the first shoe are transmitted as high-frequency electromagnetic waves.
11. Process according to claim 3, wherein the signals are transmitted between the first and second shoes in the form of ultrasonic impulses and wherein ultrasonic converters are used as converters for the transmitter-receiver units.
12. Process according to claim 11, wherein the signals emitted to the remote computer unit by the first shoe are transmitted as high-frequency electromagnetic waves.
13. Process according to claim 1, wherein, after an interval subsequent to deactivation of a first counting period of the first counter, the value determined by the first counter is stored and, then, the first counter is reactivated for a second counting period; and wherein the transmitter of the second shoe emits a deactivation signal to the first shoe, after a time corresponding to the value determined by the second counter plus said interval, for deactivating the first counter.
14. Process according to claim 13, wherein the time which corresponds to the value determined by the second counter is lower than said value by a factor K, and a counter frequency rate of the first counter is increased for said second counter period, relative to the counting frequency of the first counter during the first counting period, by this factor K.
15. System for the determination of movement characteristics in running disciplines, such as stride length, running speed or the like with shoes, especially athletic shoes, comprising:
(a) first and second shoes;
(b) first sensor means, in said first shoe, for responding to contacting of the first shoe with the ground;
(c) second sensor means, in said second shoe, for responding to lifting-off of the second shoe with the ground;
(d) first transmitter means, in said first shoe, linked to said first sensor means and being activatable for radiating a first signal by a response from the first sensor means;
(e) second transmitter means, in said second shoe, for radiating second and third signals;
(f) receiver means in said second shoe for receiving the first signal, said receiver means in said second shoe processing said first signal and triggering issuance of said second signal;
(g) receiver means in said first shoe for receiving the second and third signals;
(h) first counter means in said first shoe, said first counter being linked to said first sensor means for being activatable by a response from said first sensor means and being linked to the receiver means of the first shoe for being deactivatable by receipt of said second signal by said receiver means of the first shoe;
(i) second counter means, in said second shoe, said second counter being linked to the second sensor means for being activatable by a response from said second sensor means, being linked to said receiver means of the second shoe for being deactivatable by receipt of said first signal by the receiver means of the second shoe means, and being linked to said second transmitter means for emitting a value determined by said second counter as said third signal; and
(j) means for performing said determination of movement characteristics utilizing value determined by said counters.
16. System according to claim 15, wherein the transmitting means and receiving means of each shoe are comprised of a single transmitter-receiver-converter unit that is operable in both transmitting and receiving operating modes.
17. System according to claim 16, wherein the transmitter-receiver-converter units transmit, receive, and convert ultrasonic pulses serving as said first, second and third signals.
18. System according to claim 17, further comprising a high frequency electromagnetic wave transmitter in said first shoe and linked to said first counter for transmitting values determined by said counter to said means for performing, said means for performing comprising a remote receiver and computer means linked thereto.
19. System according to claim 18, further comprising storage means linked to said first counter means and said electromagnetic wave transmitter for storing a first value determined by said first counter means and for releasing it to said electromagnetic wave transmitter.
20. System according to claim 15, comprising an additional transmitter and a storage means in said first shoe, said additional transmitter and said storage means being linked with each other and the first counter means for transmitting signals corresponding to values determined by the counters to said means for performing and wherein said means for performing comprises a remote receiver and computer means linked thereto.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a process and shoe system for measuring information concerning moving sequences in running disciplines, and to value which can be calculated based thereon, particularly information concerning stride length, stride rate, stride time, and running time determined with the aid of a pair of running shoes having a transmitter and receiver in each shoe as well as a sensor which triggers emission of a signal when one of the shoes makes contact with the ground.

A process and system of this kind is disclosed in German Offenlegungsschrift No. 34 05 081 (which corresponds to the present assignee's allowed U.S. Pat. No. 4,703,445), wherein the forward shoe emits a first signal to the rearward shoe, each time there is ground impact with the shoe, while simultaneously transmitting an activation signal to a remote computer unit. The rearward shoe subsequently sends a second signal to the forward shoe, and from there, to the computer unit. Based on the time delay between receipt of these two signals, information concerning the leg or running speed, and/or stride length of the runner can be detected and emitted. In commonly assigned U.S. Pat. No. 4,736,312, a further development of this system is disclosed wherein the jump or flight time of the wearer's stride (occurring during a leap phase wherein both feet are off the ground) can be considered as well. To this end, a second sensor is provided in the other shoe to detect when the trailing foot is lifted off from the ground and, based upon the time and origin of signals from both shoes, movement characteristics of the user are determined.

SUMMARY OF THE INVENTION

It is the primary objective of the present invention to improve the accuracy of such a measuring process and system, and further, to provide that the process and system simultaneously provide information concerning leap time and concerning values which can be derived therefrom in a simple and accurate manner.

This objective is achieved in accordance with the features of the preferred embodiments described herein. In accordance with particular features, a first counter is provided in a first shoe that is activated upon ground impact of the first shoe and deactivated upon receipt of a reflected signal from the second shoe, while a second counter is provided in the second shoe which is activated during lift-off of the second shoe and deactivated based upon receipt of the ground contact signal of the first shoe.

The use of two counters in combination with the transmitting-receiving devices permits measurement of the leap time and the signal travel time easily and accurately, and with a minimum of components.

Another means for simplifying the process and system is the use of a basic transmitter-receiver converter, which can be effectively switched from the transmitting to the receiving mode.

These and further objects, features and advantages of the present invention will become more obvious from the following description when taken in connection with the accompanying drawings which show, for purposes of illustration only, several embodiments in accordance with the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically depicts the start of the runner's leap phase at the time of rearward foot lift-off and initiation of the process of the invention;

FIG. 2 schematically depicts the end of the leap phase when the forward foot is put down on the ground;

FIG. 3 illustrates a basic switch diagram of the transmitter and receiver devices of the shoe system of the invention; and

FIG. 4 is a flow chart depicting performance of the inventive process with the system of the preferred embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 shows the position of a first shoe 1 (which happens to be forwardly directed) relative to a second shoe 2 (which happens to be rearwardly directed) at a point in time to which, for describing the invention, will be considered the commencement of the process and is occurring at initiation of the leap phase.

FIG. 2 shows the relative positions assumed by shoes 1, 2 at a subsequent time t1, at which the jump phase initiated in FIG. 1 is completed.

In FIG. 4 the signals transmitted and received at the first shoe 1 are depicted above time axis t, and those emitted by the second shoe 2 are shown below axis t, during various time segments.

Each shoe 1 and 2, respectively, is provided with a transmitter unit and a receiver unit S1, E1, S2, E2 (FIG. 3), particularly units which function on an ultrasonic basis. Advantageously, only one converter 3 or 4, respectively, is provided in this case, the converter being capable of operating in both transmitting and receiving modes. The changeover from one mode to the other occurs in the respective transmitter-receiver units S1, E1 or S2, E2. It is also preferable if both transmitter-receiver units S1, E1 or S2, E2 are constructed in the same manner.

A pressure sensor D1, D2 is provided in each shoe. Upon ground impact of first shoe 1, pressure sensor D1 of the first shoe 1 causes emission of an output signal dir. (direct ray) from transmitter S1 and which is delivered to receiver E2 from converter 4. After emission of the output signal dir., the receiver E1 is coupled to converter 3 and upon receipt of the output signal dir., in shoe 2, converter 4 is switched from its receiving to its transmitting mode, whereafter a reflected output signal refl. is emitted from shoe 2 to first shoe 1, where it is subsequently received by converter 3 and receiver E1.

Moreover, each shoe 1, 2 contains a time-measuring device (counter Z1, Z2 and first shoe 1, additionally, is provided with storage means SP for storing at least one value transferred from the counter. Additionally, another transmitter S3 is provided in first shoe 1, which is capable of transmitting data obtained from the counters Z1, Z2 of the first shoe 1 and the second shoe 2, which may have been stored temporarily in storage means SP, to a remote computer.

The operating mode of such arrangement is described by way of the flow sheet, depicted in FIG. 4 as follows:

Second counter Z2 is activated via pressure sensor D2 at time point to of the running period (FIG. 1) at which a leap phase, when neither shoe 1, 2 touches ground B, commences by second shoe 2 lifting off ground B.

After leap time ts, shoe 1 hits ground B at time point t1 (FIG. 2), which causes pressure sensor D1 to address transmitter S1 and to emit direct ray dir. as an output signal to rearward shoe 2 via converter 3. After transmittal of output signal dir., converter 3 is connected to receiver E1 during switch-over period tum, effecting a change to the receiving mode, with first counter Z1 being started at time point t2.

After time tdir. of output signal dir. has elapsed, this signal is received by converter 4 at time point t3 and is processed in receiver E2, whereby the signal to be processed is available after a detection period, for example, after the transient process of the receiving circuit, at time point t3. This signal is utilized for stopping the second counter Z2. Accordingly, the value at counter Z2 represents leap time ts plus travel time of direct ray tdir. from first shoe 1 to second shoe 2, plus detection time tdet. (between points t3, t'3).

After a delay time tv in second transmitter-receiver S2, E2, a reflected output signal refl. is emitted from shoe 2 to shoe 1 at time point t4 by transmitter S2 via converter 4. Signal refl. is received at shoe 1 after a travel time trefl. at time point t6. The corresponding signal is available at time point t'6, again, only after a detection time tdet. has elapsed. This signal is utilized to stop first counter Z1.

By selecting the delay time tv to equal the switch-over time tum, the value at counter Z1 corresponds exactly to the sum comprised of the travel time of output signals dir. and refl., i.e., tdir. +trefl..

In accordance with the features of the invention, the value at second counter Z2 is emitted to shoe 1 after release of the reflected output signal refl., after time point t4. This occurs here by the emission of a sequential burst FB (or time multiplex signal) at time point t5 subsequent to a corresponding time lag from t4 to t5, representing leap time ts plus the travel time of direct output signal tdir. plus, if appropriate, an interval time tp.

In this case, interval time tp is equal to the time interval from time point t'6 at which the first counter Z1 was stopped to time point t7, at which time first counter Z1 is restarted.

After travel time tFB has elapsed, sequential burst FB is received by receiver E1 at time point t8, whereby the processing signal is available at time point t'8 after detection time tdet.. At this point, the first counter Z1 is stopped by sequential burst FB.

During time interval tp, the first value determined by counter Z1 is stored in a storage unit of storage means SP.

Starting with time point t'6, additional transmitter S3 of shoe 1 is activated and the value which is stored in storage SP, and, subsequently, also the second computed value corresponding to time tFB, are emitted to a remote receiver R, from which they are fed to a remote computer unit C. Advantageously, the transmitter S3 is a transmitter of high-frequency electromagnetic wavelength, while the radiating means 5 consists of an appropriate antenna.

Accordingly, information concerning the double travel time of direct output signal dir. and the leap time ts, which is increased by the amount of the single travel time tdir., are already available in the computer, and prior to that time, are available in first shoe 1. Information as to the actual leap time ts can be obtained from this data, whereby it is advantageous if such information is obtained in the microprocessor of the remote computer unit after the emission of the values to the remote computer unit since the arithmetic necessary therefor can be carried out by it without any difficulty.

In order to ensure transmittal of the values recorded at the second counter Z2 in the short time available, such transmittal occurs during a time frame which is reduced by a factor K. At the same time, first counter Z1 is addressed at a frequency f2 during its second counting period which is increased by factor K relative to the frequency f1 utilized in its first counting period. Accordingly, the transmittal time between time points t4 and t5 is: 1/K(ts +tdir.)+tp.

If the user of the inventive process and system changes his motion from running to walking, the leap phase, and inherently, the leap time ts, are eliminated. Time point to in every case then is after time point t1. Second counter Z2 having been started is not stopped by direct output signal dir. in this instance and, accordingly, is permitted to run down (assuming use of a countdown type timer). In correspondence therewith, there is no recording of leap time, no transmittal of sequential burst FB, and, thus, no signal to stop counter Z1 which has been activated a second time. This causes counter Z1 also to run down, and the only value transmitted to the computer unit is the value tdir. +trefl., which was obtained during the first activation of counter Z1. Unless both shoes are provided with lift-off and contact detecting and signaling arrangements (which is not the case in the illustrated system), the above processing will occur only every other stride, i.e., will not occur in the stride from when shoes 1 and 2 are reversed relative to their positions shown in FIGS. 1, 2. However, by computation, with the frequency rate as a given factor, the sum of travel times tdir. +trefl. provides information concerning the double distance of shoes 1 and 2, and, consequently, the double stride length.

In order to increase the transmittal accuracy, it is advantageous to transmit the signals emitted from the first shoe 1 to the remote computer unit in a suitable code, permitting recognition and correction of transmittal errors. In similar manner, the leap time ts recorded at shoe 2 can be transmitted to shoe 1 in encoded form.

It is noted that, with respect to aspects of this invention that are in common with corresponding aspects of the initially mentioned commonly assigned U.S. patent applications, reference may be made thereto for further details. For example, Ser. No. 701,194 shows manners for mounting sensors, transmitters, etc. in a shoe sole.

While we have shown and described various embodiments in accordance with the present invention, it is understood that the same is not limited thereto, but is susceptible of numerous changes and modifications as known to those skilled in the art, and we, therefore, do not wish to be limited to the details shown and described therein, but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4053755 *Aug 16, 1976Oct 11, 1977Sherrill John CPedometer distance-measuring device
US4144568 *Sep 17, 1976Mar 13, 1979Hiller Alexander JExercise recorder
US4367473 *Jul 11, 1980Jan 4, 1983U.S. Philips CorporationDistance measuring equipment utilizing frequency modulation
US4371945 *Dec 1, 1980Feb 1, 1983Lawrence Joseph KarrElectronic pedometer
US4387437 *Mar 12, 1981Jun 7, 1983John W. LowreyRunners watch
US4571680 *May 18, 1982Feb 18, 1986Chyuan Jong WuElectronic music pace-counting shoe
US4579769 *May 31, 1984Apr 1, 1986Olbo Textilwerke GmbhTire cord fabric
US4651446 *Dec 24, 1984Mar 24, 1987Matsushita Electric Works, Ltd.Electronic pedometer
US4703445 *Feb 13, 1985Oct 27, 1987Puma Ag Rudolf Dassler Sport (Formerly Puma-Sportschuhfabriken Rudolf Dassler Kg)Athletic shoe for running disciplines and a process for providing information and/or for exchanging information concerning moving sequences in running disciplines
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4935887 *Jun 9, 1988Jun 19, 1990Ahmad AbdalahProcess and analysis and simulation of the displacements of a horse
US4956628 *Aug 4, 1988Sep 11, 1990Dennis FurlongElectronic monitoring of ground contact by an athlete's shoes
US5343445 *Jul 6, 1993Aug 30, 1994David SternAthletic shoe with timing device
US5369601 *Jan 11, 1993Nov 29, 1994Tannenbaum; GailMethod and apparatus for equestrian monitoring for instruction and training
US5452269 *Aug 29, 1994Sep 19, 1995David SternAthletic shoe with timing device
US5659395 *Jun 7, 1995Aug 19, 1997Footmark, Inc.Method and apparatus for analyzing feet
US5689099 *Jan 18, 1995Nov 18, 1997Domburg; NicolaasSpeed/distance measuring assembly for runner
US5724265 *Dec 12, 1995Mar 3, 1998Hutchings; Lawrence J.System and method for measuring movement of objects
US5790256 *Feb 3, 1997Aug 4, 1998Footmark, Inc.Method of diagnosing/monitoring medical problems in humans
US5899963 *Jun 17, 1997May 4, 1999Acceleron Technologies, LlcSystem and method for measuring movement of objects
US5925001 *Apr 11, 1994Jul 20, 1999Hoyt; Reed W.To measure energy expended during walking or running
US5945911 *Mar 13, 1998Aug 31, 1999Converse Inc.Footwear with multilevel activity meter
US6018705 *Oct 2, 1997Jan 25, 2000Personal Electronic Devices, Inc.Measuring foot contact time and foot loft time of a person in locomotion
US6122960 *Dec 16, 1998Sep 26, 2000Acceleron Technologies, Llc.System and method for measuring movement of objects
US6175608Oct 28, 1998Jan 16, 2001Knowmo LlcPedometer
US6298314Jul 30, 1999Oct 2, 2001Personal Electronic Devices, Inc.Detecting the starting and stopping of movement of a person on foot
US6305221Jun 14, 1999Oct 23, 2001Aeceleron Technologies, LlcRotational sensor system
US6434212Jan 4, 2001Aug 13, 2002Nathan PylesPedometer
US6473483Jan 19, 2001Oct 29, 2002Nathan PylesPedometer
US6493652Aug 21, 2000Dec 10, 2002Personal Electronic Devices, Inc.Monitoring activity of a user in locomotion on foot
US6498994 *Jun 21, 2001Dec 24, 2002Phatrat Technologies, Inc.Systems and methods for determining energy experienced by a user and associated with activity
US6611789Aug 21, 2000Aug 26, 2003Personal Electric Devices, Inc.Monitoring activity of a user in locomotion on foot
US6856934Sep 4, 2002Feb 15, 2005Phatrat Technology, Inc.Sport monitoring systems and associated methods
US6876947Aug 21, 2000Apr 5, 2005Fitsense Technology, Inc.Monitoring activity of a user in locomotion on foot
US6882955Aug 21, 2000Apr 19, 2005Fitsense Technology, Inc.Monitoring activity of a user in locomotion on foot
US6898550Aug 21, 2000May 24, 2005Fitsense Technology, Inc.Monitoring activity of a user in locomotion on foot
US6963818Nov 6, 2002Nov 8, 2005Phatrat Technology, Inc.Mobile speedometer system and associated methods
US7200517Apr 4, 2005Apr 3, 2007Nike, Inc.Monitoring activity of a user in locomotion on foot
US7299034Jun 21, 2005Nov 20, 2007Lawrence KatesSystem and method for wearable electronics
US7386401Nov 13, 2006Jun 10, 2008Phatrat Technology, LlcHelmet that reports impact information, and associated methods
US7428471Oct 27, 2006Sep 23, 2008Nike, Inc.Monitoring activity of a user in locomotion on foot
US7428472Feb 13, 2007Sep 23, 2008Nike, Inc.Monitoring activity of a user in locomotion on foot
US7433805Nov 14, 2006Oct 7, 2008Nike, Inc.Pressure sensing systems for sports, and associated methods
US7451056May 15, 2006Nov 11, 2008Phatrat Technology, LlcActivity monitoring systems and methods
US7457724Jul 28, 2006Nov 25, 2008Nike, Inc.Shoes and garments employing one or more of accelerometers, wireless transmitters, processors, altimeters, to determine information such as speed to persons wearing the shoes or garments
US7467060Mar 1, 2007Dec 16, 2008Garmin Ltd.Method and apparatus for estimating a motion parameter
US7512515May 10, 2007Mar 31, 2009Apple Inc.Activity monitoring systems and methods
US7552031Dec 28, 2006Jun 23, 2009Apple Inc.Personal items network, and associated methods
US7617071Feb 13, 2007Nov 10, 2009Nike, Inc.Monitoring activity of a user in locomotion on foot
US7623987Sep 9, 2008Nov 24, 2009Nike, Inc.Shoes and garments employing one or more of accelerometers, wireless transmitters, processors, altimeters, to determine information such as speed to persons wearing the shoes or garments
US7627451May 10, 2007Dec 1, 2009Apple Inc.Movement and event systems and associated methods
US7640135Sep 28, 2007Dec 29, 2009Phatrat Technology, LlcSystem and method for determining airtime using free fall
US7643895May 22, 2006Jan 5, 2010Apple Inc.Portable media device with workout support
US7648441 *Nov 10, 2004Jan 19, 2010Silk Jeffrey ESelf-contained real-time gait therapy device
US7693668Jun 9, 2008Apr 6, 2010Phatrat Technology, LlcImpact reporting head gear system and method
US7698101Mar 7, 2007Apr 13, 2010Apple Inc.Smart garment
US7813715Aug 30, 2006Oct 12, 2010Apple Inc.Automated pairing of wireless accessories with host devices
US7813887Nov 17, 2006Oct 12, 2010Nike, Inc.Location determining system
US7860666Apr 2, 2010Dec 28, 2010Phatrat Technology, LlcSystems and methods for determining drop distance and speed of moving sportsmen involved in board sports
US7911339Oct 18, 2006Mar 22, 2011Apple Inc.Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US7913297Aug 30, 2006Mar 22, 2011Apple Inc.Pairing of wireless devices using a wired medium
US7949488Oct 5, 2005May 24, 2011Nike, Inc.Movement monitoring systems and associated methods
US7962312Sep 30, 2009Jun 14, 2011Nike, Inc.Monitoring activity of a user in locomotion on foot
US7966154Sep 15, 2008Jun 21, 2011Nike, Inc.Pressure sensing systems for sports, and associated methods
US7983876Aug 7, 2009Jul 19, 2011Nike, Inc.Shoes and garments employing one or more of accelerometers, wireless transmitters, processors altimeters, to determine information such as speed to persons wearing the shoes or garments
US7991565Nov 9, 2010Aug 2, 2011Phatrat Technology, LlcSystem and method for non-wirelessly determining free-fall of a moving sportsman
US8036850Nov 14, 2008Oct 11, 2011Garmin Switzerland GmbhMethod and apparatus for estimating a motion parameter
US8036851Feb 13, 2009Oct 11, 2011Apple Inc.Activity monitoring systems and methods
US8055469Jan 28, 2008Nov 8, 2011Garmin Switzerland GmbhMethod and apparatus for determining the attachment position of a motion sensing apparatus
US8060229Dec 11, 2009Nov 15, 2011Apple Inc.Portable media device with workout support
US8073984May 22, 2006Dec 6, 2011Apple Inc.Communication protocol for use with portable electronic devices
US8083646 *Mar 5, 2010Dec 27, 2011Nike, Inc.Athleticism rating and performance measuring system
US8099258Feb 25, 2010Jan 17, 2012Apple Inc.Smart garment
US8181233Mar 18, 2011May 15, 2012Apple Inc.Pairing of wireless devices using a wired medium
US8217788Feb 24, 2011Jul 10, 2012Vock Curtis AShoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US8239146Jul 25, 2011Aug 7, 2012PhatRat Technology, LLPBoard sports sensing devices, and associated methods
US8249831Jun 20, 2011Aug 21, 2012Nike, Inc.Pressure sensing systems for sports, and associated methods
US8280681Nov 23, 2009Oct 2, 2012Phatrat Technology, LlcPressure-based weight monitoring system for determining improper walking or running
US8280682Dec 17, 2001Oct 2, 2012Tvipr, LlcDevice for monitoring movement of shipped goods
US8346987Oct 13, 2011Jan 1, 2013Apple Inc.Communication protocol for use with portable electronic devices
US8352211Sep 13, 2011Jan 8, 2013Apple Inc.Activity monitoring systems and methods
US8374825Apr 22, 2009Feb 12, 2013Apple Inc.Personal items network, and associated methods
US8396687Feb 13, 2012Mar 12, 2013Phatrat Technology, LlcMachine logic airtime sensor for board sports
US8460001 *Mar 27, 2012Jun 11, 2013Thomas C. ChuangAthletic performance monitoring with overstride detection
US8463573Mar 31, 2011Jun 11, 2013Nike, Inc.Movement monitoring systems and associated methods
US8600699Jul 13, 2012Dec 3, 2013Nike, Inc.Sensing systems for sports, and associated methods
US8620600Aug 6, 2012Dec 31, 2013Phatrat Technology, LlcSystem for assessing and displaying activity of a sportsman
US8688406Feb 7, 2013Apr 1, 2014Apple Inc.Personal items network, and associated methods
US8712725Jun 13, 2011Apr 29, 2014Nike, Inc.Monitoring activity of a user in locomotion on foot
US8749380Jul 9, 2012Jun 10, 2014Apple Inc.Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US8762092Oct 4, 2010Jun 24, 2014Nike, Inc.Location determining system
EP0916931A1 *Nov 11, 1997May 19, 1999Tien-Tsai HuangInsole pad having step-counting device
WO1995002209A1 *Jul 1, 1994Jan 19, 1995Stern DavidAthletic shoe with timing device
WO1997021983A1 *Dec 12, 1996Jun 19, 1997Lawrence J HutchingsSystem and method for measuring movement of objects
WO1998058236A1 *Jun 15, 1998Dec 23, 1998Acceleron Technologies LlcSystem and method for measuring movement of objects
WO2004089213A1 *Apr 13, 2004Oct 21, 2004Montesinos Jose Luis GonzalezSystem for detecting contact points
Classifications
U.S. Classification702/160, 235/105, 482/901, 340/323.00R, 482/8, 482/14, 482/902
International ClassificationA61B5/103, A63B69/00, G01C22/00, A61B5/11
Cooperative ClassificationY10S482/901, Y10S482/902, A61B5/1038, G01C22/006
European ClassificationA61B5/103P2, G01C22/00P
Legal Events
DateCodeEventDescription
Oct 19, 1999FPAYFee payment
Year of fee payment: 12
Feb 7, 1996FPAYFee payment
Year of fee payment: 8
Jun 22, 1994ASAssignment
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PUMA AG RUDOLF DASSLER SPORT;REEL/FRAME:007027/0657
Effective date: 19940428
Feb 10, 1992FPAYFee payment
Year of fee payment: 4
May 21, 1987ASAssignment
Owner name: PUMA AKTIENGESELLSCHAFT RUDOLF DASSLER SPRORT, WUE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:GERHAEUSER, HEINZ;PIRNER, GERHARD;RUECKERT, THOMAS;REEL/FRAME:004714/0530;SIGNING DATES FROM 19870512 TO 19870513
Owner name: PUMA AKTIENGESELLSCHAFT RUDOLF DASSLER SPRORT, GER
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERHAEUSER, HEINZ;PIRNER, GERHARD;RUECKERT, THOMAS;SIGNING DATES FROM 19870512 TO 19870513;REEL/FRAME:004714/0530