Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4845188 A
Publication typeGrant
Application numberUS 07/233,790
Publication dateJul 4, 1989
Filing dateAug 19, 1988
Priority dateAug 19, 1988
Fee statusPaid
Also published asCN1040599A, EP0356350A1, EP0429540A1, WO1990002147A1
Publication number07233790, 233790, US 4845188 A, US 4845188A, US-A-4845188, US4845188 A, US4845188A
InventorsMax A. Weaver, Wayne P. Pruett, Samuel D. Hilbert, Clarence A. Coates, Jr.
Original AssigneeEastman Kodak Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Condensation polymers containing methine ultraviolet radiation-absorbing residues and shaped articles produced therefrom
US 4845188 A
Abstract
A composition useful for molding into articles such as food containers, soft drink bottles, cured structural plastics and the like, comprising molding grade linear or unsaturated polyester or polycarbonate having reacted or copolymerized therein the residue of one or a mixture of methine reactants of the formula ##STR1## wherein
R1 is an unsubstituted or substituted alkyl, cycloalkyl or aryl radical;
A is an unsubstituted or substituted 1,4-phenylene radical;
R2 is hydrogen or an unsubstituted or substituted alkyl, alkenyl, cycloalkyl or aryl radical;
R3 is cyano, ##STR2## or an unsubstituted or substituted carbamoyl, alkanoyl, aroyl, alkylsulfonyl, arylsulfonyl, aryl or aromatic heterocyclic radicals. The methine residues are present in the polymer as an integral part of the polymer chain and absorb ultraviolet radiation in the range of about 250 to about 390 nm. The residues are non-extractable from the polymer and stable at the conditions at which the polymers are manufactured and processed.
Images(8)
Previous page
Next page
Claims(11)
We claim:
1. A composition comprising molding grade condensation polymer having copolymerized therein the residue of a methine compound or mixture of methine compounds having the formula ##STR20## wherein R1 is an unsubstituted or substituted alkyl, cycloalkyl or aryl radical;
A is an unsubstituted or substituted 1,4-phenylene radical;
R2 is hydrogen or an unsubstituted or substituted alkyl, alkenyl, cycloalkyl or aryl radical; and ##STR21## cyano or an unsubstituted or substituted carbamoyl, alkanoyl, aroyl, alkylsulfonyl, arylsulfonyl, aryl or aromatic heterocyclic radicals.
2. The compositions of claim 1 wherein the polymer is a linear polyester and the methine compound has the formula ##STR22## wherein R1 and R2 are defined in claim 1;
R3 is cyano or ##STR23## and R4 is hydrogen, alkyl, or alkoxy or halogen.
3. A composition of claim 1 wherein the polymer is a linear polyester and the methine compound has the formula ##STR24## wherein R1 and R2 are lower alkyl.
4. The composition of claim 2 wherein the polyester acid moiety is comprised of at least about 50 mol % terephthalic acid residue, and the glycol moiety at least about 50 mol % ethylene glycol or 1,4-cyclohexanedimethanol residue.
5. The composition of claim 3 wherein the polyester is comprised of from about 75 to 100 mol % terephthalic acid residue and from about 75 to 100 mol % ethylene glycol residue.
6. The composition of claim 1 wherein the polymer is unsaturated polyester having an acid moiety comprised of fumaric or maleic acid or mixtures thereof and up to about 60 mol % of one or a mixture of o-phthalic, isophthalic, or terephthalic acids, and having a glycol moiety comprised of one or a mixture of propylene glycol, neopentyl glycol, 2,2,4-trimethyl-1,3-pentanediol, ethylene glycol or diethylene glycol.
7. The composition of claim 6 wherein the acid moiety is comprised of from about 75 to 100 mol % o-phthalic acid and maleic acid in a mole ratio of from about 1/2 to about 2/1, and the glycol moiety is comprised of from about 75 to 100 mol % propylene glycol.
8. A fiber of the composition of claim 2 dyed with from about 0.01 to about 5.0% by weight based on weight of fiber of a disperse dye.
9. A formed article of the composition of claim 2.
10. A formed article of the composition of claim 4.
11. A container formed of the composition of claim 5.
Description
DESCRIPTION

This invention pertains to novel condensation polymers such as polyesters and polycarbonates wherein an ultraviolet light screening amount of one or more methine moieties has been incorporated in the chain or backbone of the polymer. This invention also pertains to containers, such as those suitable for packaging beverages and foods, manufactured from our novel condensation polymers.

Many products such as certain fruit juices, soft drinks, wines, food products, cosmetics and shampoos are deleteriously affected, i.e., degraded, by ultraviolet (UV) light when packaged in plastic containers which pass significant portions of the available light at wavelengths in the range of approximately 250 to 390 nm. It is well known that polymers can be rendered resistant to degradation by UV light by physically blending in such polymers various UV light stabilizers such as benzophenones, benzotriazoles and resorcinol monobenzoates. See, for example, Plastics Additives Handbook, Hanser Publishers, Library of Congress, Catalog No. 83-062289, pp 128-134. Normally, such stabilizers are used in a weight concentration of at least 0.5 percent. Although these stabilizers function well to absorb radiation in the range of about 300 to 350 nm, absorbence in the range of 300 to 350 nm is not adequate to protect comestibles subject to UV light degradation packaged in clear plastic, i.e., essentially colorless, transparent plastic. The stabilizers in the known stabilized polymer compositions can be extracted from the polymer by solvents such as acids, alcohols and the like present in foods or beverages packaged within the stabilized polymers. Furthermore, many compounds used to stabilize polymers are not stable at high temperatures and would decompose under the conditions at which polyesters are manufactured or processed. Decomposition of such stabilizers frequently causes yellow discoloration of the polyester and results in the polyester containing little, if any, of the stabilizer.

U.S. Pat. No. 4,340,718 discloses the copolymerization of certain methine stabilizers with polyesters. The patent further discloses that the concentration of the methine stabilizers in the polyesters should be in the range of 0.3 to 5.0 percent, preferably 0.6 to 2.0 percent, i.e., 6000 to 20,000 ppm, to impart to the basic polyester improved weatherability in outdoor applications. This patent does not mention the use of methine compounds in low concentrations for the purpose of screening UV light.

U.S. Pat. No. 4,617,374 discloses polyesters having certain methine compounds reacted therein to absorb light in the range of 320 to 380 nm. That patent, however, does not disclose the methine compounds used in the polyester compositions and articles molded therefrom provided by our invention.

Our invention concerns a composition comprising molding grade condensation polymer having copolymerized therein the residue of a methine compound or mixture of methine compounds having the formula ##STR3## wherein R1 is an unsubstituted or substituted alkyl, cycloalkyl or aryl radical;

A is an unsubstituted or substituted 1,4-phenylene radical; phenylene radical;

R2 is hydrogen or an unsubstituted or substituted alkyl, alkenyl, cycloalkyl or aryl radical; and

R3 is ##STR4## cyano or an unsubstituted or substituted carbamoyl, alkanoyl, aroyl, alkylsulfonyl, arysulfonyl, aryl or aromatic heterocyclic radicals. R3 preferably is ##STR5## or cyano.

Examples of the unsubstituted alkyl groups include methyl, ethyl, propyl, 2-propyl, butyl, 2-butyl, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, etc. The cycloalkyl groups may be cyclopentyl, cyclohexyl, cycloheptyl anda the like. The aryl groups may be, for example, carbocyclic aryl such as phenyl and naphthyl. Examples of the unsubstituted alkanoyl, alkylsulfonyl and arylsulfonyl include acetyl, propionyl, butyryl, pivaloyl, hexanoyl, 2-ethylhexanoyl, methylsulfonyl, ethylsulfonyl, propylsulfonyl, octylsulfonyl, phenylsulfonyl, etc. Pyrrolyl, pyridyl, pyrimidyl, 2-benzothiazolyl, 2-benzoxazolyl, 2-benzimidazolyl, 2-thienyl, 2-furanyl, 1,3,4-thiadiazol-2-y1, 1,2,4thiadiazol-5-y1 and groups having the structure ##STR6## are examples of the unsubstituted aromatic heterocyclic residues which may constitute a part of the methine compounds. The alkyl radicals represented by R1 and R2 can be substituted with a wide variety of substituents such as alkoxy, alkylthio, halogen, hydroxy, cycloalkyl, cycloalkoxy, alkanoyloxy, cyano, aryl, aryloxy, arylthio, etc. The cycloalkyl, aryl and aromatic heterocyclic groups can be substituted with unsubstituted or substituted alkyl as well as with any of the substituents set forth hereinabove. Normally, those substituents containing alkyl moieties, such as alkyl, hydroxyalkyl, alkoxyalkyl, etc., will not contain more than a total of 12 carbon atoms. The unsubstituted and substituted cycloalkyl groups typically will contain from 5 to 12 carbon atoms whereas the unsubstituted and substituted aryl groups will contain from 6 to 12 carbon atoms. Illustrative of the 1,4-phenylene radical represented by A is the group having the structure ##STR7## wherein R4 is hydrogen, alkyl, alkoxy or halogen.

The methine compounds which are particularly preferred have the formula ##STR8## wherein R1 and R2 are lower alkyl, in which lower designates a carbon content of up to about 4 carbon atoms.

The methine compounds may be prepared using known procedures by reacting an intermediate aldehyde compound II with an active methylene compound III under Knovenagel reaction conditions, e.g., ##STR9##

Lower alcohols such as methanol, ethanol and 2-propanol are usually suitable solvents. With certain reactants, for example when R3 is ##STR10## it is sometimes advantageous to conduct the reaction in a hydrocarbon solvent such as benzene or toluene to permit the water or reaction to be azeotropically removed as it is formed. Bases such as piperidine, piperidine acetate, pyrrolidine, sodium acetate and pyridine are effective in promoting the reaction.

The polyesters which may be used in the preparation of the compositions of our invention include linear, thermoplastic, crystalline or amorphous polyesters produced by conventional polymerization techniques from one or more diols and one or more dicarboxylic acids. The polyesters normally are molding or fiber grade and have an inherent viscosity (IV) of about 0.4 to about 1.2. The preferred polyesters comprise at least about 50 mole percent terephthalic acid residues and at least about 50 mole percent ethylene glycol and/or 1,4-cyclohexanedimethanol residues. Particularly preferred polyesters are those containing from about 75 to 100 mole percent terephthalic acid residues and from about 75 to 100 mole percent ethylene glycol residues.

The unsaturated, curable polyesters which may be used in our novel compositions are the polyesterification products of one or more glycols and one or more unsaturated dicarboxylic acids or their anhydrides. Typical of the unsaturated polyesters is the polyesterification product of (a) 1,4-cyclohexanedimethanol and/or 2,2-dimethyl-1,3-propanediol and optionally an additional dihydric alcohol, such as ethylene glycol, and (b) maleic acid or fumaric acid and an aromatic dicarboxylic acid, which when crosslinked with an ethylenically-unsaturated monomer, e.g., styrene, produces a cured polyester resin which has, for example, high thermal resistance, high heat distortion values, excellent electrical and mechanical properties, and excellent resistance to chemicals.

Solutions of such unsaturated polyester resins in an ethylenically-unsaturated monomer such as styrene commonly are referred to as polyester resins.

The unsaturated polyester resins may be prepared in the presence of gelation inhibitors such as hydroquinone or the like, which are well known in the art of polyesterification. The esterification may be carried out for example under an inert blanket of gas such as nitrogen in a temperature range of 118°-220° C. for a period of about 6-20 hours until an acid number below 100 and preferably below 50 is obtained, based on milliequivalents of KOH necessary to neutralize 1 gram of the unsaturated polyester. The resulting polyester may be subsequently copolymerized, crosslinked, or cured with "curing amounts" of any of the well-known ethylenically unsaturated monomers used as solvents for the polyester. Examples of such monomers include styrene, alpha-methyl styrene, vinyl toluene, divinyl benzene, chlorostyrene, and the like as well as mixtures thereof. Typically, the mole ratio of such unsaturated monomer to the unsaturated moiety (e.g., maleic acid residue) in the polyester is from about 0.5 to about 3.0, although the "curing amounts" of such monomer can be varied from these ratios.

It is preferred that the unsaturated polyester be prepared from one or more dihydric alcohols, fumaric or maleic acid or mixtures thereof, and up to about 60 mole percent of total acid component of o-phthalic, isophthalic or terephthalic acids or mixtures thereof. Preferred for the dihydric alcohol component is one or a mixture of propylene glycol, neopentyl glycol, 2,2,4-trimethyl-1,3-pentanediol, ethlene glycol, or diethylene glycol. A specific preferred unsaturated polyester is prepared from about 75 to 100 mole percent propylene glycol, and as the acid component, from, about 75 to 100 mole percent o-phthalic and maleic acids in a mole ratio of from about 1/2 to about 2/1. Typical of these unsaturated polyesters are those disclosed, for example, in U.S. Pat. No. 4,359,570 incorporated herein by reference.

The diol components of the described linear polyesters may be selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, X,8-bis(hydroxymethyl)tricyclo-[5.2.1.0]-decane wherein X represents 3, 4, or 5; and diols containing one or more oxygen atoms in the chain, e.g., diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol and the like. In general, these diols contain 2 to 18, preferably 2 to 8 carbon atoms. Cycloaliphatic diols can be employed in their cis or trans configuration or as mixtures of both forms.

The acid components (aliphatic, alicyclic, or aromatic dicarboxylic acids) of the linear polyester are selected, for example, from terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, 2,6-naphthalene-dicarboxylic acid and the like. In the polymer preparation, it is often preferable to use a functional acid derivative thereof such as the dimethyl, diethyl, or dipropyl ester of the dicarboxylic acid. The anhydrides or acid halides of these acids also may be employed where practical.

Typical polycarbonates useful herein are disclosed in Kirk-Othmer Encyclopedia of Chemical Technology, third edition, Volume 18, pages 479-494, incorporated herein by reference.

The novel polymer compositions provided by this invention are useful in the manufacture of containers or packages for comestibles such as beverages and food. By the use of known heat-setting techniques, certain of the polyesters are, in terms of color, I.V. and heat distortion, stable at temperatures up to about 100° C. Such stability characteristics are referred to herein as "hot-fill" stability. Articles molded from these polyesters exhibit good thin-wall rigidity, excellent clarity and good barrier properties with respect to moisture and atmospheric gases, particularly carbon dioxide and oxygen.

The linear polyesters most preferred for use in articles having "hot-fill" stability comprise poly(ethylene terephthalate) and poly(ethylene terephthalate) wherein up to 5 mole percent of the ethyene glycol residues have been replaced with residues derived from 1,4-cyclohexanedimethanol, wherein the polyesters have been sufficiently heat set and oriented by methods well known in the art to give a desired degree of crystallinity. By definition, a polymer is "hot-fill" stable at a prescribed temperature when less than 2% change in volume of a container manufactured therefrom occurs upon filling the same with a liquid at the temperature. For the manufacture of blow-molded beverage bottles, the most preferred polyesters have an I.V. of 0.65 to 0.85, and a Tg of >70° C., and film sections cut from the bottle have a Water Vapor Transmission Rate of 1.5 to 2.5 g. mils/100 in.2 --24 hrs., a Carbon Dioxide Permeability of 20-30 cc. mils/100 in.2 --24 hrs.-atm., and an Oxygen Permeability of 4-8 cc. mils/100 in.2 --24 hrs.-atm. The Tg is determined by Differential Scanning Calorimetry at a scan rate of 20 Centigrade Degrees/min., the Oxygen Permeability by the standard operating procedure of a MOCON OXTRAN 100 instrument of Modern Controls, Inc., of Elk River, Minnesota, and the Carbon Dioxide Permeability by the standard operating procedure of a MOCON PERMATRAN C II, also of Modern Controls.

The concentration of the residue of the methine compound in the condensation polymer can be varied substantially depending, for example, on the intended function of the UV-absorbing residue and/or the end use for which the polymer composition is intended. When the polymer composition is to be used in the fabrication of relatively thin-walled containers to screen UV light in the range of about 250 to 390 nm, the concentration of the residue of the methine compound normally will be in the range of about 50 to 1,500 ppm (parts by weight per million parts by weight polymer) with the range of about 200 to 800 ppm being especially preferred.

When the levels of the present ultraviolet light absorbers are increased to higher levels such as 5,000 ppm (0.5 weight percent) or higher, polymers containing these ultraviolet light absorbers show improved resistance to weathering and when these polymers per se or fibers thereof are dyed with disperse dyes, at a concentration, for example, of from about 0.01% to about 5.0% based on weight of polymer or fiber, many dyes exhibit increased lightfastness. Such disperse dyes are shown, for example, U.S. Pat. Nos. 4,305,719; 2,746,952; 2,746,953; 2,757,173; 2,763,668; 2,771,466; 2,773,054; 2,777,863; 2,785,157; 2,790,791; 2,798,081; 2,805,218; 2,822,359; 2,827,450; 2,832,761; 2,852,504; 2,857,371; 2,865,909; 2,871,231; 3,072,683; 3,079,373; 3,079,375; 3,087,773; 3,096,318; 3,096,332; 3,236,843; 3,254,073; 3,349,075; 3,380,990; 3,386,990; 3,394,144; 3,804,823, 3,816,388; 3,816,392; 3,829,410, 3,917,604; 3,928,311; 3,980,626; 3,998,801; 4,039,522; 4,052;379; and 4,140,683, the disclosures of which are incorporated herein by reference.

Polymer compositions containing substantially higher amounts, e.g., from about 2.0 to 10.0 weight percent, of the residue on one or more of the methine compounds described herein may be used as polymer concentrates. Such concentrates may be blended with the same or different polymer according to conventional procedures to obtain polymer compositions which will contain a predetermined amount of the residue or residues in a nonextractable form. In the preparation of these highly loaded, polymer composition concentrates the residue preferably is divalent and thus is derived from a difunctional methine compound such as the compounds wherein R1 is hydroxyalkyl and/or R3 is

The preparation of the methine compounds and their use in preparing the compositions of our invention are further illustrated by the following examples.

EXAMPLE 1

4-(Methylthio)benzaldehyde (1.52 g., .01 mol), methyl cyanoacetate (1.0 g, .01 mol), methanol (15 mL), and piperidine (5 drops) are mixed and heated at reflux for 1 hour. Upon cooling, the pale yellow solid crystallizes and is collected by filtration, washed with methanol and dried in air. The yield is 2.3 g, 98.7% of the theoretical yeild, of methyl 2-cyano-3-[4-(methylthio)phenyl]-2-propenoate. When dissolved in methylene chloride, the compound has an absorption maximum (λmax), at 365 nm in the ultraviolet absorption. The structure of the product is confirmed by mass spectroscopy analysis.

EXAMPLE 2

4-(Methylthio)Benzaldehyde (3.04 g, .02 mol), diethyl malonate (3.20 g. .02 mol), toluene (25 mL), piperidine (4 drops) and acetic acid (2 drops) are mixed and heated at reflux for 2 hours with the water formed being removed azeotropically. The solution is cooled and 25 mL of water added stirring. After separation of the layers, the toluene is evaporated from the organic layer to yield the product, diethyl 2-[[4-(methylthio)phenyl]methylene]propanedioate, in essentially quantitative yield. When dissolved in methylene chloride, the product has an absorption maximum (λmax) at 330 nm in the ultraviolet absorption spectrum. The identity of the product is confirmed by mass spectroscopy analysis.

Additional examples of methine compounds which may be used in the preparation of our novel polymer compositions are set forth in the following table. These compounds may be prepared according to the procedures described above and conform to the formula ##STR12##

                                  TABLE__________________________________________________________________________Ex.   R1    R2         R3        R4__________________________________________________________________________3  CH3   C2 H5 CN             H4  C2 H5         CH3        CN             H5  C6 H5         CH3        CN             H6  C6 H11         CH3        CN             H7  CH2 C6 H5         C2 H5 CN             H8  C6 H44-CH 3         CH(CH3)2                         CN             3-CH39  C6 H44-Cl         (CH2)3 H                         CN             2-CH310 C6 H43-OCH 3         CH3        COOCH3    2,6-di-CH311 CH2 C6 H44-CH 3         C2 H5 COOC2 H5                                        3-CH312 CH2 CH2 C6 H5         CH3        COOCH3    3-OCH313 C6 H104-CH 3         CH3        COOCH32-CH35-OCH 314 CH3   CH.sub. 2 CH2 OH                         CN             H15 CH3   CH2 CH2 OCH3                         CN             H16 CH3   CH2 CH2 CN                         CN             H17 CH3   CH2 CH2 OOCCH3                         CN             H18 CH3   CH2 C6 H5                         CN             H19 (CH2)4 H         CH2 CH2 OC6 H5                         CN             H20 CH2 CH(CH3)2         CH2 C6 H104-CH 2 OH                         CN             H21 CH3   CH2 C6 H11                         CN             H22 CH3   CH2 CH2 Cl                         CN             H23 CH3   CH2 CH2 NHCOCH3                         CN             H24 CH3   (CH2 CH2 O)2 H                         CN             H25 CH3   CH2 CH(OH)CH2 OH                         CN             H26 CH3   C6 H5 CN             H27 CH3                         CN             H28 CH3          ##STR13##      CN             H29 CH3   CH2 CH2 C6 H5                         CN             H30 CH3   (CH2 CH2 O)2 C2 H5                         CN             H31 CH3   CH2 C6 H104-CH 2 OOCCH3                         CN             H32 CH3   CH2CH 2 SCH2 CH2 OH                         CN             H33 CH3   (CH2)4 H                         COO(CH2)4 H                                        H34 C2 H5         H               SO2 CH3                                        H35 C2 H5         CH3        CONH2     H36 (CH2)4 H         CH3        CONHCH2 CH2 OH                                        H37 CH3   CH3        SO2 C6 H5                                        H38 CH3   CH3                          ##STR14##     H39 CH.sub. 3  C2 H5                          ##STR15##     H40 CH3   C2 H5 C6 H44-CN                                        H41 CH3   C2 H5 C6 H44-COOCH 3                                        H42 C2 H5         C2 H5 CONHC6 H5                                        H43 C2 H5         CH3        CON(C2 H5)2                                        H44 C2 H5         CH3        CON(CH3)C6 H5                                        H45 C2 H5         CH3                          ##STR16##     H46 C2 H5         CH3                          ##STR17##     H47 CH3   CH3                          ##STR18##     H48 CH3   CH3                          ##STR19##     H49 CH3   CH3        SO2 C6 H11                                        H50 CH3   H               COOH           H__________________________________________________________________________
EXAMPLE 51

The following materials are placed in a 500-mL, three-necked, round-bottom flask:

97 g (0.5 mol) dimethyl terephthalate

62 g (1.0 mol) ethylene glycol

0.00192 g Ti from a n-butanol solution of acetyl-triisopropyl titanate

0.0053 g Mn from an ethylene glycol solution of manganese acetate

0.0345 g antimony trioxide

0.0072 g Co from an ethylene glycol solution of cobaltous acetate

The flask is equipped with a nitrogen inlet, stirrer, vacuum outlet, and condensing flask. The flask and contents are heated at 200° C. in a Belmont metal bath for 60 minutes and at 210° C. for 75 minutes with a nitrogen sweep over the reaction mixture. Then 1.57 mL of an ethylene glycol slurry of a mixed phosphorus ester composition (Zonyl A) which contains 0.012 g phosphorus is added. The temperature of the bath is increased to 230° C. At 230° C., methyl 2-cyano-3-[4-(methylthio)phenyl]-2-propenoate (0.0384 g) is added to the flask. Five minutes after this addition, a vacuum with a slow stream of nitrogen bleeding in the system is applied over a five-minute period until the pressure is reduced to 200 mm Hg. The flask and contents are heated at 230° C. under a pressure of 200 mm Hg for 25 minutes. The metal bath temperature is increased to 270° C. At 270° C. the pressure is reduced slowly to 100 mm Hg. The flask and contents are heated at 270° C. under a pressure of 100 mm Hg for 30 minutes. The metal bath temperature is increased to 285° C. and the pressure is reduced slowly to 4.5 mm Hg. The flask and contents are heated at 285° C. under pressure of 4.5 mm Hg for 25 minutes. Then the pressure is reduced to 0.25 mm Hg and polycondensation is continued for 40 minutes. The flask is removed from the metal bath and is allowed to cool in a nitrogen atmosphere while the polymer crystallizes. The resulting polymer has an inherent viscosity of 0.58 measured in a 60/40 ratio by weight of phenol/tetrachloroethane at a concentration of 0.5 g per 100 mL. An amorphous film molded from this polymer to simulate the sidewall of a container showed a strong absorption at 380 nm.

EXAMPLE 52

The procedure described in Example 51 is repeated using 0.0384 g diethyl 2-[[4-methylthio)phenyl]methylene]propanedioate obtained in Example 2 instead of the methine compound used in Example 51. The resulting polymer has an inlet inherent viscosity of 0.56 measured in a 60/40 ratio by weight of phenol/tetrachloroethane at a concentration of 0.5 g per 100 mL. An amorphous film molded from this polymer shows a strong absorption peak with a maximum at 342 nm.

The inherent viscosities (I.V. of the copolyesters described herein are determined according to ASTM D2857-70 procedure in a Wagner Viscometer of Lab Glass Inc. of Vineland, N.J. having a 1/2 ml capillary bulb, using polymer concentration of 0.5%, by weight, in 60/40, by weight, phenol/tetrachoroethane solvent. The procedure comprises heating the polymer/solvent system at 120° C. for 15 minutes to enhance dissolution of the polymer, cooling the solution to 25° C. and measuring the time of flow at 25° C. The I.V. is calculated from the equation ##EQU1## where: {η}=Inherent viscosity at 25° C. at a polymer concentration of 0.5 g/100 ml. of solvent;

ln=Natural logarithm;

t2 =Sample flow time;

to =Solvent-blank flow time; and

C=Concentration of polymer in grams per

100 ml. of solvent =0.50.

The nonextractabilities of the methine residues described herein are determined as follows:

All extractions are done in glass containers with distilled solvents under the time and temperature conditions described below. The sample form is 1/2 inch×21/2 inch segments cut from the cylindrical side wall portion of 2-liter bottles. All samples are washed with cold solvent to remove surface contaminants and are exposed using 200 ml solvent/100 in.2 surface area (2ml/in.2).

Solvent blanks are run under the same extraction conditions without polymer. In most cases samples were extracted, spiked, with a known amount of additive as a control, and analyzed in duplicates. The solvents employed and the extraction conditions for each solvent are:

1. Water. The samples at room temperature are added to solvent and heated at 250° F. for two hours. Half of the samples are then analyzed and the remainder are placed in a 120° F. oven for 30 days and then analyzed.

2. 50% Ethanol/Water. The samples at room temperature are added to the solvent at room temperature, placed in an oven at 120° F. and analyzed after 24 hours and again after 30 days.

3. Heptane. The samples at room temperature are added to solvent at room temperature and heated at 150° F. for two hours. Part of the samples are cooled to room temperature and analyzed spectrophotometrically and the remainder are allowed to age at 120° F. for 30 days before analysis.

Any suitable analytical technique and apparatus may be employed to determine the amount of methine residue extracted from the polymer.

The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3634320 *Sep 24, 1969Jan 11, 1972Bayer AgProtection of organic substances against uv radiation
US3706700 *Jul 24, 1970Dec 19, 1972Ciba Geigy CorpUse of bis-methylene malonic acid nitriles in light sensitive materials
US4260732 *Feb 22, 1980Apr 7, 1981General Electric CompanyUV Stabilized polycarbonate resins
US4305719 *Jun 25, 1980Dec 15, 1981Eastman Kodak CompanyStable dyed polyester material
US4340718 *Jun 2, 1980Jul 20, 1982Eastman Kodak CompanyStabilized copolyester material
US4617374 *Jan 28, 1986Oct 14, 1986Eastman Kodak CompanyUV-absorbing condensation polymeric compositions and products therefrom
US4661566 *Feb 6, 1986Apr 28, 1987Eastman Kodak CompanyUV-absorbing condensation polymeric composition
US4749772 *Jul 20, 1987Jun 7, 1988Eastman Kodak CompanyCondensation copolymers containing methine ultraviolet radiation-absorbing residues and shaped articles produced therefrom
US4749773 *Jul 27, 1987Jun 7, 1988Eastman Kodak CompanyCondensation polymers containing methine ultraviolet radiation-absorbing residues and shaped articles produced therefrom
US4749774 *Jul 27, 1987Jun 7, 1988Eastman Kodak CompanyCondensation polymer containing the residue of a poly-methine compound and shaped articles produced therefrom
US4791188 *Dec 21, 1987Dec 13, 1988Eastman Kodak CompanyCondensation polymer containing the residue of a benzodioxylmethine compound and shaped articles produced therefrom
US4803241 *Jul 20, 1987Feb 7, 1989Eastman Kodak CompanyCondensation polymers containing styrylbenzazole ultraviolet radiation-absorbing residues and shaped articles produced therefrom
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5030708 *Dec 17, 1990Jul 9, 1991Eastman Kodak CompanyColored polyester compositions
US5292783 *Nov 21, 1991Mar 8, 1994Eastman Kodak CompanyAliphatic-aromatic copolyesters and cellulose ester/polymer blends
US5446079 *Dec 7, 1993Aug 29, 1995Eastman Chemical CompanyAliphatic-aromatic copolyesters and cellulose ester/polymer blends
US5559171 *Apr 26, 1995Sep 24, 1996Eastman Chemical CompanyAliphatic-aromatic copolyesters and cellulose ester/polymer blends
US5580911 *Apr 26, 1995Dec 3, 1996Eastman Chemical CompanyAliphatic-aromatic copolyesters and cellulose ester/polymer blends
US5594068 *Jun 5, 1995Jan 14, 1997Eastman Chemical CompanyCellulose ester blends
US5599858 *Apr 26, 1995Feb 4, 1997Eastman Chemical CompanyAliphatic-aromatic copolyesters and cellulose ester/polymer blends
US5773517 *Oct 14, 1996Jun 30, 1998Kuraray Co., Ltd.Process for the production of thermoplastic resin composition
US5900322 *Dec 10, 1996May 4, 1999Eastman Chemical CompanyAliphatic-aromatic copolyesters and cellulose ester/polymer blends
US5985951 *Apr 29, 1998Nov 16, 1999Eastman Chemical CompanyUV-curable nail coating formulations containing cellulose esters with ethylenically unsaturated pendant groups
US6001952 *Jun 10, 1998Dec 14, 1999Eastman Chemical CompanyPolyester containing benzylidene having reduced fluorescence
US6207740Jul 27, 1999Mar 27, 2001Milliken & CompanyPolymeric methine ultraviolet absorbers
US6313202May 28, 1993Nov 6, 2001Eastman Chemical CompanyCellulose ester blends
US6342304Jul 23, 1998Jan 29, 2002Eastman Chemical CompanyAliphatic aromatic copolyesters
US6559216Aug 21, 2001May 6, 2003Milliken & CompanyLow-color ultraviolet absorber compounds and compositions thereof
US6596795Aug 21, 2001Jul 22, 2003Milliken & CompanyLow-color vanillin-based ultraviolet absorbers and methods of making thereof
US6602447Aug 21, 2001Aug 5, 2003Milliken & CompanyLow-color ultraviolet absorbers for high UV wavelength protection applications
US6835333May 7, 2002Dec 28, 2004Milliken & CompanyCombinations for use as toners in polyesters
US6875811May 7, 2002Apr 5, 2005Milliken & CompanySingle compound toners for use in polyesters
US6891058Jan 3, 2003May 10, 2005Milliken & CompanyLow-color ultraviolet absorber compounds and compositions thereof
US7094918Apr 28, 2003Aug 22, 2006Milliken & CompanyLow-color ultraviolet absorbers for thermoplastic and thermoset high UV wavelength protection applications
US7097789Oct 23, 2002Aug 29, 2006Milliken & CompanyThermoplastic containers exhibiting excellent protection to various ultraviolet susceptible compounds
US7226985Jul 12, 2005Jun 5, 2007Eastman Chemical CompanyPolyester-polycarbonate compositions
US7230065Jul 12, 2005Jun 12, 2007Eastman Chemical CompanyBlends of polycarbonate and sulfone copolyesters
US7241838Dec 19, 2003Jul 10, 2007Eastman Chemical CompanyBlends of aliphatic-aromatic copolyesters with ethylene-vinyl acetate copolymers
US7297736Oct 28, 2004Nov 20, 2007Eastman Chemical CompanyNeopentyl glycol containing polyesters blended with polycarbonates
US7425590Jul 12, 2005Sep 16, 2008Eastman Chemical CompanyTransparent two phase polyester-polycarbonate compositions
US7510768Mar 28, 2006Mar 31, 2009Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7576171Mar 28, 2006Aug 18, 2009Eastman Chemical CompanyPacifiers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7704605Feb 4, 2009Apr 27, 2010Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7737246Dec 7, 2006Jun 15, 2010Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US7740941Jan 29, 2009Jun 22, 2010Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7781562Mar 28, 2006Aug 24, 2010Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7803439Sep 28, 2010Eastman Chemical CompanyBlood therapy containers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7803440Mar 28, 2006Sep 28, 2010Eastman Chemical CompanyBottles comprising polyester compositions which comprise cyclobutanediol
US7803441Mar 28, 2006Sep 28, 2010Eastman Chemical CompanyIntravenous components comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7807774Mar 28, 2006Oct 5, 2010Eastman Chemical CompanyVending machines comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US7807775Mar 28, 2006Oct 5, 2010Eastman Chemical CompanyPoint of purchase displays comprising polyester compositions formed from 2,2,4,4-tetramethyl-1, 3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US7812111Mar 28, 2006Oct 12, 2010Eastman Chemical CompanyLCD films comprising polyester compositions formed from 2,2,4,4-tetramethy1-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7812112Mar 28, 2006Oct 12, 2010Eastman Chemical CompanyOutdoor signs comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7834129Mar 28, 2006Nov 16, 2010Eastman Chemical CompanyRestaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7838620Nov 23, 2010Eastman Chemical CompanyThermoformed sheet(s) comprising polyester compositions which comprise cyclobutanediol
US7842776Mar 28, 2006Nov 30, 2010Eastman Chemical CompanyAppliance parts comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7855267Mar 28, 2006Dec 21, 2010Eastman Chemical CompanyFilm(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US7868128Jan 11, 2011Eastman Chemical CompanySkylights and windows comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7893187Mar 28, 2006Feb 22, 2011Eastman Chemical CompanyGlass laminates comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7893188Feb 22, 2011Eastman Chemical CompanyBaby bottles comprising polyester compositions which comprise cyclobutanediol
US7902320Mar 8, 2011Eastman Chemical CompanyGraphic art films comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7906211Mar 16, 2010Mar 15, 2011Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7906212Mar 16, 2010Mar 15, 2011Eastman Chemical CompanyThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7906610Mar 28, 2006Mar 15, 2011Eastman Chemical CompanyFood service products comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7915376Mar 29, 2011Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US7951900Mar 28, 2006May 31, 2011Eastman Chemical CompanyDialysis filter housings comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7985827Mar 28, 2006Jul 26, 2011Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol having certain cis/trans ratios
US8063172Nov 22, 2011Eastman Chemical CompanyFilm(s) and/or sheet(s) made using polyester compositions containing low amounts of cyclobutanediol
US8063173Mar 28, 2006Nov 22, 2011Eastman Chemical CompanyPolyester compositions containing low amounts of cyclobutanediol and articles made therefrom
US8067525Mar 28, 2006Nov 29, 2011Eastman Chemical CompanyFilm(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and high glass transition temperature
US8101705Jan 24, 2012Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US8119761Mar 28, 2006Feb 21, 2012Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8119762Nov 10, 2010Feb 21, 2012Eastman Chemical CompanyFilm(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US8133967Oct 7, 2010Mar 13, 2012Eastman Chemical CompanyRestaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US8193302Oct 27, 2006Jun 5, 2012Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US8198371Jun 12, 2012Eastman Chemical CompanyBlends of polyesters and ABS copolymers
US8287970Nov 20, 2008Oct 16, 2012Eastman Chemical CompanyPlastic baby bottles, other blow molded articles, and processes for their manufacture
US8299204Oct 27, 2006Oct 30, 2012Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US8354491Jan 15, 2013Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US8394997Dec 9, 2010Mar 12, 2013Eastman Chemical CompanyProcess for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8415450Jan 12, 2012Apr 9, 2013Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8420868Dec 9, 2010Apr 16, 2013Eastman Chemical CompanyProcess for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869Apr 16, 2013Eastman Chemical CompanyProcess for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8501287Sep 23, 2010Aug 6, 2013Eastman Chemical CompanyPlastic baby bottles, other blow molded articles, and processes for their manufacture
US8501292Aug 28, 2012Aug 6, 2013Eastman Chemical CompanyPlastic baby bottles, other blow molded articles, and processes for their manufacture
US8507638Aug 23, 2011Aug 13, 2013Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US8895654Dec 18, 2008Nov 25, 2014Eastman Chemical CompanyPolyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US9169348Jan 17, 2011Oct 27, 2015Eastman Chemical CompanyBaby bottles comprising polyester compositions which comprise cyclobutanediol
US9169388Aug 28, 2012Oct 27, 2015Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9175134Dec 10, 2012Nov 3, 2015Eastman Chemical CompanyContainers comprising polyester compositions which comprise cyclobutanediol
US9181387Jun 17, 2011Nov 10, 2015Eastman Chemical CompanyPolyester compositions which comprise cyclobutanediol having certain cis/trans ratios
US9181388Feb 25, 2013Nov 10, 2015Eastman Chemical CompanyPolyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US20030078328 *Aug 21, 2001Apr 24, 2003Mason Mary E.Low-color resorcinol-based ultraviolet absorbers and methods of making thereof
US20030151027 *Jan 3, 2003Aug 14, 2003Zhao Xiaodong E.Low-color ultraviolet absorber compounds and compositions thereof
US20030155559 *Oct 23, 2002Aug 21, 2003Connor Daniel M.Thermoplastic containers exhibiting excellent protection to various ultraviolet susceptible compounds
US20030209698 *May 7, 2002Nov 13, 2003Danielson Todd D.Novel combinations for use as toners in polyesters
US20040157517 *Dec 30, 2003Aug 12, 2004Danielson Todd D.Novel combinations for use as toners in polyesters
US20040214934 *Apr 28, 2003Oct 28, 2004Jusong XiaLow-color ultraviolet absorbers for thermoplastic and thermoset high UV wavelength protection applications
US20050137303 *Dec 19, 2003Jun 23, 2005Shelby Marcus D.Blends of aliphatic-aromatic copolyesters with ethylene-vinyl acetate copolymers
US20060094858 *Oct 28, 2004May 4, 2006Turner Sam RNovel copolyester compositions with improved impact strength at low temperatures
US20060100394 *Nov 5, 2004May 11, 2006Hale Wesley RBlends of polyesters with modified polycarbonates
US20060286322 *Mar 28, 2006Dec 21, 2006Crawford Emmett DBlood therapy containers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060286327 *Mar 28, 2006Dec 21, 2006Crawford Emmett DRetort containers comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060286329 *Mar 28, 2006Dec 21, 2006Crawford Emmett DBaby bottles comprising polyester compositions which comprise cyclobutanediol
US20060286331 *Mar 28, 2006Dec 21, 2006Crawford Emmett DDialysis filter housings comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060286332 *Mar 28, 2006Dec 21, 2006Crawford Emmett DContainers comprising polyester compositions which comprise cyclobutanediol
US20060286384 *Mar 28, 2006Dec 21, 2006Crawford Emmett DThermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US20060286394 *Mar 28, 2006Dec 21, 2006Crawford Emmett DGlass laminates comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060287477 *Mar 28, 2006Dec 21, 2006Crawford Emmett DGreenhouses comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4- cyclohexanedimethanol
US20060287479 *Mar 28, 2006Dec 21, 2006Crawford Emmett DPolyester compositions containing cyclobutanediol and articles made therefrom
US20060287480 *Mar 28, 2006Dec 21, 2006Crawford Emmett DOutdoor shelters comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060287484 *Mar 28, 2006Dec 21, 2006Crawford Emmett DOpththalmic devices comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060287487 *Mar 28, 2006Dec 21, 2006Pecorini Thomas JRestaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060287488 *Mar 28, 2006Dec 21, 2006Crawford Emmett DPacifiers comprising polyester compositions formed from 2,2,4,4- tetramethyl-1,3-cyclobutanediol and 1,4- cyclohexanedimethanol
US20060287490 *Mar 28, 2006Dec 21, 2006Crawford Emmett DOutdoor signs comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060287491 *Mar 28, 2006Dec 21, 2006Emmett Dudley CrawfordAppliance parts comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20060287494 *Mar 28, 2006Dec 21, 2006Crawford Emmett DPolyester compositions containing high amounts of cyclobutanediol and articles made therefrom
US20060287496 *Mar 28, 2006Dec 21, 2006Crawford Emmett DPolyester compositions comprising minimal amounts of cyclobutanediol
US20070010649 *Mar 28, 2006Jan 11, 2007Hale Wesley RLCD films comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20070010650 *Mar 28, 2006Jan 11, 2007Crawford Emmett DTough amorphous polyester compositions
US20070015881 *Jul 12, 2005Jan 18, 2007Hale Wesley RTransparent two phase polyester-polycarbonate compositions
US20070015882 *Jul 12, 2005Jan 18, 2007Hale Wesley RBlends of polycarbonate and sulfone copolyesters
US20070015883 *Jul 12, 2005Jan 18, 2007Hale Wesley RPolyester-polycarbonate compositions
US20070100125 *Oct 27, 2006May 3, 2007Crawford Emmett DPolyester compositions comprising minimal amounts of cyclobutanediol
US20070105993 *Oct 27, 2006May 10, 2007Germroth Ted CPolyester compositions which comprise cyclobutanediol and at least one phosphorus compound
US20070129531 *Oct 27, 2006Jun 7, 2007Germroth Ted CPolyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US20070270569 *Mar 28, 2006Nov 22, 2007Crawford Emmett DFilm(s) and/or sheet(s) made from polyester compositions containing cyclobutanediol and articles made therefrom
US20080033088 *Aug 23, 2007Feb 7, 2008Eastman Chemical CompanyBlends of polyesters with modified polycarbonates
EP0356350A1 *Aug 10, 1989Feb 28, 1990EASTMAN KODAK COMPANY (a New Jersey corporation)Condensation polymers containing methine ultraviolet radiation-absorbing residues and shaped articles produced therefrom
WO1990002147A1 *Aug 10, 1989Mar 8, 1990Eastman Kodak CompanyCondensation polymers containing methine ultraviolet radiation-absorbing residues and shaped articles produced therefrom
Classifications
U.S. Classification528/272, 528/302, 525/173, 528/303, 528/290, 528/308.1, 525/174, 525/165, 528/288, 528/306, 524/742, 528/293, 528/304, 528/294, 528/308, 528/291, 528/289, 528/292, 528/308.6, 524/714, 528/295
International ClassificationC08G64/04, C07C323/62, C08G63/688, C08G63/91
Cooperative ClassificationC08G64/045, C08G63/6888
European ClassificationC08G64/04N, C08G63/688D4
Legal Events
DateCodeEventDescription
Aug 19, 1988ASAssignment
Owner name: EASTMAN KODAK COMPANY, ROCHESTER, NEW YORK, A NEW
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:WEAVER, MAX A.;PRUETT, WAYNE P.;HILBERT, SAMUEL D.;AND OTHERS;REEL/FRAME:004931/0467
Effective date: 19880810
Owner name: EASTMAN KODAK COMPANY, NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEAVER, MAX A.;PRUETT, WAYNE P.;HILBERT, SAMUEL D.;AND OTHERS;REEL/FRAME:004931/0467
Effective date: 19880810
Apr 24, 1990CCCertificate of correction
Nov 12, 1992FPAYFee payment
Year of fee payment: 4
Feb 11, 1997REMIMaintenance fee reminder mailed
Jun 30, 1997SULPSurcharge for late payment
Jun 30, 1997FPAYFee payment
Year of fee payment: 8
Dec 20, 2000FPAYFee payment
Year of fee payment: 12