Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4942049 A
Publication typeGrant
Application numberUS 07/295,878
Publication dateJul 17, 1990
Filing dateJan 11, 1989
Priority dateJan 11, 1988
Fee statusLapsed
Also published asDE3800492A1, EP0324340A2, EP0324340A3
Publication number07295878, 295878, US 4942049 A, US 4942049A, US-A-4942049, US4942049 A, US4942049A
InventorsKarl H. Schmid, Alfred Meffert, Gilbert Schenker, Adolf Asbeck
Original AssigneeHenkel Kommanditgesellschaft Auf Aktien
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for controlling foam in food processing and production
US 4942049 A
Abstract
Terminally blocked polyethoxylated fatty alcohols of the formula:
R--O--(CH.sub.2 CH.sub.2 O).sub.n --R.sup.1                (I)
wherein R is a linear or branched alkyl or alkenyl group having from 6 to 28 carbon atoms, R1 is a linear alkyl group having from 1 to 8 carbon atoms, and n is an integer having a value of from 2 to 12 are used as anti-foaming additives in the manufacture and/or processing of food stuffs as well as in fermentation processes.
Images(4)
Previous page
Next page
Claims(3)
What is claimed is:
1. A process for controlling foam in an aqueous food processing or fermentation liquid comprising adding to said aqueous liquid a foam-inhibiting effective amount of a compound of formula I
R--O--(CH.sub.2 CH.sub.2 O).sub.n --R.sup.1                (I)
wherein R is a C20-24 alkyl group, R1 is a C1-4 alkyl group and n is an integer equal to from 2 to about 10.
2. The process of claim 1 wherein in the compound of formula I R is 2-octyldodecyl, R1 is n-butyl and n is 8.
3. The process of claim 1 wherein in the compound of formula I R is 2-hexyldodecyl, R1 is n-butyl and n is 8.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a method of controlling foam in the processing and/or production of foodstuffs and in fermentation processes such as in the production of pharmaceuticals. More specifically, this invention relates to a method of controlling foam in the processing and/or production of foodstuffs and in fermentation processes such as in the production of pharmaceuticals through the use of terminally blocked polyethoxylated fatty alcohols.

2. Description of the Related Art

Foam control is of considerable importance in the sugar and yeast industry, in the potato processing industry, and in industrial fermentation processes such as those carried out on a commercial scale as in the production of antibiotics. In the commercial processing of, for example, sugar-containing saps such as occurs in the processing of sugar beets and sugar cane and in the manufacture of baker's yeast using molasses, or in the production of finished potato products such as french fries or potato chips, the formation of foam must be reduced to an amount that is harmless to the production process by the addition of anti-foam additives. A variety of surface active compounds are present in the saps involved in the production and processing of foodstuffs or in fermentation processes. These include naturally occurring substances such as humic acids, proteins, degradation products of proteins and starch, pectins, and saponins. These surface active materials contribute to the generation of unwanted foam which can occupy a considerable portion of the working volume of process vessels and therefore, effectively reduce the size of these vessels and ultimately lower the overall output of a particular production plant. In addition, a considerable amount of finished product can be lost if it is necessary to physically remove the foam in order to continue operating the process. Foam problems can be particularly acute in sugar refineries due to excessive foam generation in the diffusers, in the clarifiers, in the carbonizing tanks, and in the evaporators. In the fermentation vats involved in the manufacture of yeast a certain amount of foam has to be taken into account due to the ventilation of the fermentation broth, its extent however, must be confined to a certain limit. However, foaming is still a problem in fermentation processes. The foam controlling agents that are usually added to reduce the amount of foam generated in the production and processing of foodstuffs or in fermentation processes must be removed to a large extent from the solutions to which they have been added in order that the finished products are not impaired by the residual amounts of foam controlling agents.

One of the principal disadvantages of the prior art processes for controlling the generation of unwanted foams formed during the production and/or processing of foodstuffs or in fermentation processes lies in the fact that the anti-foaming agents have to be used in large quantities. Therefore, since they cannot be removed from process streams to the desired extent, the finished products are contaminated with the anti-foaming agents thereby causing potential odor and taste problems. In addition, since the anti-foaming agents also persist in the process streams and since these streams are normally disposed of directly to sewers, the anti-foaming agents should be biodegradable by the normal sewage treatment microorganisms. Also, anti-foaming agents used in fermentation processes such as in the manufacture of yeast must not impair the growth of the yeast cells and therefore, affect the yield of yeast from the fermentation process.

It is also important that anti-foaming agents used in food processing and fermentation operations maintain their effectiveness for long time periods. Some anti-foaming agents are effective only for short time periods after they are added requiring that repeated and costly additions be made in order to maintain an anti-foaming effect.

Prior art processes for controlling foam in food processing and fermentation operations include adding to the processing liquids a foam-controlling amount of for example, rape oil, peanut oil, olive oil, wool fat, fatty acid monoglycerides, fatty acid polyglycol esters, polyalkylene glycols, tall oil esters, ethylene oxide adducts of alkyl phosphoric acids, ethylene oxide adducts of branched fatty alcohols, alkylene oxide adducts of oligosaccharides, and free fatty alcohols. These types of compounds have not been effective foam-controlling agents because they must be used in relatively large amounts, or are not sufficiently biodegradable to meet current biodegradability standards. Rapid biological degradation without the formation of metabolites in the clarifying plant of a sugar refinery for example, is one of the most important requirements for foam-controlling agents today.

Some of the compounds employed as anti-foaming agents in the process of the present invention have been disclosed as components in foam-inhibiting compositions for cleaning meta glass, ceramic, or plastic in U.S. Pat. No. 4,548,729 (equivalent to European Patent Application No. EP-A-124815). The patent discloses a foam-inhibiting composition consisting of a terminally blocked polyethoxylated fatty alcohol of the general formula R--O--(CH2 CH2 O)n --R1, wherein R is an alkyl or alkenyl group having from 8 to 18 carbon atoms, R1 is an alkyl group having from 4 to 8 carbon atoms and, n is an integer from 7 to 12. These compounds were not previously known for use in compositions which relate to foam suppression in food production or processing or in fermentation processes. There is no suggestion in U.S. Pat. No. 4,548,729 that a terminally blocked polyethoxylated fatty alcohol would be odorless, tasteless, and harmless to humans and would not impair the growth of microorganisms.

It is therefore, an object of the present invention to overcome the disadvantages of the prior art by providing a process for controlling foam in a food production or processing operation or fermentation operation which employs anti-foaming additives effective at low concentrations for extended periods of time which are also odorless and tasteless and harmless to humans. It is also an object of the present invention to provide a process for controlling foam in a fermentation operation which employs anti-foaming additives which do not impair the growth of microorganisms produced in the fermentation operation. It is a further object of the present invention to provide a process for controlling foam in a food production or processing operation or fermentation operation which employs anti-foaming additives which are biodegrade without the formation of metabolites.

DESCRIPTION OF THE INVENTION

Except for the operating examples, all numbers expressing quantities of ingredients or reaction conditions are understood to be modified by "about". One embodiment of the present invention relates to a process for controlling foam in an aqueous food processing or fermentation liquid comprising adding to said aqueous liquid a foam inhibiting-effective amount of a compound of the formula

R--O--(CH.sub.2 CH.sub.2 O).sub.n --R.sup.1                (I)

wherein R is a linear or branched, alkyl, or alkenyl group having from 6 to 28 carbon atoms, R1 is a linear alkyl group having from 1 to 8 carbon atoms, and n is an integer having a value of from 2 to 12. Another embodiment of the present invention relates to a composition comprising an aqueous food processing or fermentation liquid having therein a foam inhibiting-effective amount of a compound of formula I.

The process of the present invention is carried out by adding a foam inhibiting-effective amount of an terminally blocked polyethoxylated fatty alcohol to an aqueous food processing or fermentation liquid to control the generation of foam during the processing operations. For the purposes of this invention an aqueous food processing or fermentation liquid is defined as any aqueous solution, suspension, dispersion, or combination thereof that is a part of a process for the production and/or processing of foodstuffs or any aqueous solution, suspension, dispersion or combination thereof that is a part of a fermentation process. Examples of such aqueous liquids include sugar-containing saps such as those found in the clarifiers, evaporators, and/or the carbonizers of a sugar refinery; processing liquids from potato peeling and cutting operations; molasses solutions or syrups used in the manufacture of yeast; and fermentation broths involved in the production of antibiotics.

The compounds which can be used in the process of the present invention are terminally blocked polyethoxylated fatty alcohols of formula I which can be produced from polyethoxylated fatty alcohols and C1 to C8 linear alkyl halides under the known conditions of a Williamson ether synthesis. Examples of suitable polyethoxylated saturated alcohols include the ethylene oxide adducts of the following saturated alcohols and their structural and positional isomers: 1- hexanol, 2-hexanol, 3-hexanol, 3-methyl-2-hexanol, 1-octanol, 2-octanol, 3-methyl-2-heptanol 1-decanol, 1-dodecanol, 2-ethyl-1-dodecanol, 2-ethyl-1-hexanol, 1-hexadecanol, 1-octadecanol, 2-hexyl-1-dodecanol, 2-octyl-1-dodecanol, 1-icosanol, 1-docosanol, 1-tetracosanol, 1-octacosanol and the like. Examples of suitable polyethoxylated unsaturated alcohols include the ethylene oxide adducts of the following unsaturated alcohols and all the structural, double-bond positional-and functional group-positional isomers of the following alcohols: hexenol, octenol, decenol, dodecenol, hexadecenol, octadecenol, icosenol, docosenol, tetracosenol, and octacosenol. Specific examples of such unsaturated alcohols include 1-hexenol, 1-hexen-2-ol, cis-2-hexen-1-ol, trans-2-hexen-1-ol, cis-7-dodecen-1-ol, 9-octadecen-1-ol (oleyl alcohol), 9,12-octadecadien-1-ol (linoleyl alcohol), 9,12,15-octadecatrien-1-ol (linolenyl alcohol), and 5,8,11,14 -icosatetraen-1-ol (arachidonyl alcohol) and the like. The above ethylene oxide adducts can be produced by reacting the corresponding alcohol with from 2 to 12 moles of ethylene oxide. Many of polyethoxylated fatty alcohols are known in the art and are available commercially as nonionic surfactants of the ethoxylated alcohol type. Examples of linear alkyl halides which can be reacted with the above mentioned polyethoxylated fatty alcohols under the known conditions of a Williamson ether synthesis to produce compounds of formula I include methyl chloride, ethyl chloride, 1-bromopentane, 1-bromoheptane, and 1-bromooctane and similar alkyl halides having from 1 to 8 carbon atoms.

There are two particularly preferred groups of compounds of formula I useful in the process of the present invention. The first group comprises compounds wherein R is a radical having from 16 to 24 carbon atoms, n is an integer having a value of from 6 to 12, and R1 is an n-butyl group. Particularly preferred are those compounds wherein R is a radical having from 18 to 24 carbon atoms, n is an integer having a value of from 8 to 10 and R1 is an n-butyl group. Examples of such preferred compounds are those formed by polyethoxylation of Guerbet alcohols (alcohols branched at the 2-carbon atom and made by dimerizing fatty alcohols in the Guerbet reaction) followed by reaction with n-butyl chloride or n-butyl bromide under the known conditions of a Williamson ether synthesis.

The second group comprises compounds wherein R is a radical having from 6 to 14 carbon atoms, n is an integer having a value of from 2 to 6, and R1 is a methyl group. Particularly preferred are those compounds wherein R is a radical having from 8 to 13 carbon atoms, n is an integer having a value of from 2 to 4 and R1 is a methyl group. Examples of such preferred compounds are those formed by ethoxylation or polyethoxylation of natural or synthetic shorter chain alcohols particularly those with an odd number of carbon atoms such as those made by the oxo process followed by reaction with methyl chloride or methyl bromide under the known conditions of a Williamson ether synthesis.

Examples of the preferred terminally blocked polyethoxylated fatty alcohols for use in the process of the present invention include:

2-octyldodecyl-(EO)8 -n-butyl ether

2-octyldodecyl-(EO)10 -n-butyl ether

2-hexyldodecyl-(EO)6 -n-butyl ether

2-hexyldodecyl-(EO)8 -n-butyl ether

(C12 -C18) coconut alkyl-(EO)10 -n-butyl ether

octyl-(EO)2 -methyl ether

dodecyl-(EO)2 -methyl ether

(C12 -C18) coconut alkyl-(EO)4 -methyl ether

ethylhexyl-(EO)2 -methyl ether

isononyl-(EO)2 -methyl ether

isotridecyl-(EO)4 -methyl ether

The preferred amount of terminally blocked polyethoxylated fatty alcohol added to the aqueous food processing or fermentation liquid in the process of the present invention is from about 50 ppm to about 500 ppm by volume. The most preferred amount of terminally blocked polyethoxylated fatty alcohol added to the aqueous food processing or fermentation liquid is about 500 ppm by volume. The following examples serve to illustrate but not to limit the invention.

Examples 1 through 14.

The following procedure was used to compare the efficacy of the anti-foaming additives of examples 1 through 14.

To a 2.0 liter graduated cylinder immersed in a 25 C. constant temperature bath was added about 500 ml of a solution comprising about 22% by volume of sugar syrup, potato processing liquid, or fermentation liquor and 78% by volume water having a DIN hardness of 17. A glass tube connected at one end to the suction side of a laboratory pump having an output of 3 liters/minute was inserted into the graduated cylinder containing the solution to be tested so that the other end of the tube touched the bottom of the graduated cylinder. The output side of the pump was connected to another glass tube positioned at the top edge of the graduated cylinder so that it was about 25 to 30 cm above the liquid level. The pump was started and the liquid was recirculated from the graduated cylinder and back through the tube at the top edge of the graduated cylinder. The liquid fell from a height of about 25-30 cm back into the graduated cylinder generating a foam over a period of time. The pumping was continued in this manner until a volume of foam plus liquid totaling about 2000 ml (the blank value in Table 1) was achieved. After this constant volume was reached, about 0.1 ml of anti-foam additive was added from a micropipette to the recirculating liquid in the graduated cylinder and the foam height was recorded at the time intervals given in Table 1.

The materials tested as anti-foaming agents according to the above procedure were:

______________________________________Example   Anti-foaming Agent______________________________________1.        2-octyldodecyl-(EO).sub.8 -n-butyl ether2.        2-octyldodecyl-(EO).sub.10 -n-butyl ether3.        2-hexyldodecyl-(EO).sub.6 -n-butyl ether4.        2-hexyldodecyl-(EO).sub.8 -n-butyl ether5.        octyl-(EO).sub.2 -methyl ether6.        decyl-(EO).sub.2 -methyl ether7.        decyl-(EO).sub.4 -methyl ether8.        By-product of oxoalcohol or oleyl     alcohol synthesis + 15% by weight     ethylene oxide9.        By-product of oxoalcohol or oleyl     alcohol synthesis + 7% by weight     ethylene oxide + 27% by weight     propylene oxide10.       Oleic acid- 1 mole propylene oxide11.       Oleic acid- 3 moles propylene oxide12.       By-produot of oxoalcohol or oleyl     alcohol synthesis + 16% by weight     ethylene oxide + 41% by weight     propylene oxide13.       By-product of oleyl alcohol synthesis     + 15% by weight ethylene oxide + 40% by     weight propylene oxide14.       Polyglycerol + 7 moles ethylene oxide     + 22 moles propylene oxide esterified     with oleic acid.______________________________________

Anti-foaming agents according to the process of the present invention were used in examples 1-7 while compounds used previously as anti-foaming agents were used in examples 8-14. These compounds are also referred to in Table I.

                                  TABLE I__________________________________________________________________________Foam measurements (ml) for the various de-foaming agents        ml of foam after time (minutes) following the addition        of the defoaming agentSubstance.sup.a Blank value        0.5 1   2  3  5  10 20 30__________________________________________________________________________1     2000   480 480 480                   480                      480                         480                            480                               5002     2000   460 460 460                   460                      460                         480                            480                               5003     2000   460 460 460                   460                      460                         460                            460                               4604     2000   460 460 480                   480                      480                         480                            480                               5005     2000   460 460 460                   460                      460                         560                            580                               6406     2000   440 460 460                   460                      460                         460                            460                               5007     2000   500 500 500                   500                      520                         520                            540                               5408     2000   1240            1000                740                   660                      620                         620                            640                               6409     2000   640 580 560                   560                      560                         560                            580                               58010    2000   1540            1120                820                   660                      620                         580                            580                               60011    2000   1280            840 680                   600                      580                         580                            580                               60012    2000   560 560 540                   540                      540                         540                            540                               54013    2000   680 560 560                   560                      560                         560                            580                               60014    2000   900 520 520                   520                      500                         500                            500                               540__________________________________________________________________________ .sup.a substances 1-7 are compounds according to the present invention. Substances 8-14 are compounds used for comparison.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2792308 *Apr 9, 1953May 14, 1957Monsanto ChemicalsAlkylene oxide condensates and use thereof as defoaming agents
US4548729 *Apr 18, 1984Oct 22, 1985Henkel KgaaAqueous foam-inhibiting compositions containing alkyl polyethylene glycol alkyl ethers
US4622303 *Jan 29, 1985Nov 11, 1986Henkel Kommanditgesellschaft Auf AktienDefoamers for yeast fermentation
US4753885 *Jul 23, 1987Jun 28, 1988Basf AktiengesellschaftFoam control in the sugar industry and in the yeast industry
US4792582 *Aug 11, 1986Dec 20, 1988Henkel Kommanditgesellschaft Auf AktienPolyethylene glycol ether foam inhibitors, emulsifiers, and stabilizers for polymers
Non-Patent Citations
Reference
1 *Morreson 1969 Organic Chemistry, 2nd ed., Allynand Bacon Inc., Boston, pp. 103 105.
2Morreson 1969 Organic Chemistry, 2nd ed., Allynand Bacon Inc., Boston, pp. 103-105.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5059342 *Mar 21, 1990Oct 22, 1991Imperical Chemical Industries PlcNovel chemical compounds and their use as low foam surfactants and antifoaming agents
US5707956 *Dec 1, 1994Jan 13, 1998Henkel Kommanditgesellschaft Auf AktienNonionic detergent mixtures based on specific mixed ethers
US5759987 *Nov 26, 1993Jun 2, 1998Haerer; JuergenMixtures of nonionic ethers for use as rinse aids and/or cleaning hard surfaces
US5811594 *Aug 24, 1995Sep 22, 1998Henkel Kommanditgesellschaft Auf AktienMethyl-end-capped alkyl and/or alkenyl polyglycol ethers
US5847229 *Oct 24, 1995Dec 8, 1998Henkel Kommanditgesellschaft Auf AktienProcess for the production of end-capped nonionic surfactants
US6028229 *Dec 27, 1995Feb 22, 2000Henkel Kommanditgesellschaft Auf AktienProcess for producing end-group-locked non-ionic tensides
US7001634 *Nov 7, 2002Feb 21, 2006Bayer Materialscience LlcProcess for suppressing the foaming of an aqueous system
US7883884 *Aug 22, 2001Feb 8, 2011Gfe Patent A/SConcept for slurry separation and biogas production
US8334323Dec 23, 2008Dec 18, 2012Dow Global Technologies LlcAlkylene oxide-capped secondary alcohol alkoxylates useful as surfactants
US8357823Sep 17, 2009Jan 22, 2013Dow Global Technologies LlcAlkylene oxide capped secondary alcohol ethoxylates as fermentation foam control agents
US20040025715 *Aug 22, 2001Feb 12, 2004Torben BondeConcept for slurry separation and biogas production
US20040091592 *Nov 7, 2002May 13, 2004Browne Edward PProcess for suppressing the foaming of an aqueous system
US20100075389 *Sep 17, 2009Mar 25, 2010David Bradley WurmAlkylene oxide capped secondary alcohol ethoxylates as fermentation foam control agents
US20100267844 *Dec 23, 2008Oct 21, 2010Varineau Pierre TAlkylene oxide-capped secondary alcohol alkoxylates useful as surfactants
US20100317824 *Dec 9, 2009Dec 16, 2010Dow Global Technologies Inc.Polyether derivatives of secondary hydroxy fatty acids and derivatives thereof
Classifications
U.S. Classification426/329, 435/812, 435/266, 516/134, 516/904
International ClassificationA23L19/00, A23L19/18, B01D19/04
Cooperative ClassificationB01D19/04, Y10S516/904, Y10S435/812, B01D19/0404
European ClassificationB01D19/04D, B01D19/04
Legal Events
DateCodeEventDescription
Mar 15, 1989ASAssignment
Owner name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN (HENKEL KG
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SCHMID, KARL H.;MEFFERT, ALFRED;SCHENKER, GILBERT;AND OTHERS;REEL/FRAME:005041/0346;SIGNING DATES FROM 19890103 TO 19890116
Feb 22, 1994REMIMaintenance fee reminder mailed
Jul 17, 1994LAPSLapse for failure to pay maintenance fees
Sep 27, 1994FPExpired due to failure to pay maintenance fee
Effective date: 19940720