Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS4992515 A
Publication typeGrant
Application numberUS 07/462,630
Publication dateFeb 12, 1991
Filing dateJan 9, 1990
Priority dateJan 9, 1990
Fee statusLapsed
Publication number07462630, 462630, US 4992515 A, US 4992515A, US-A-4992515, US4992515 A, US4992515A
InventorsLarry Ballard
Original AssigneeShakespeare Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Nylon terpolymer crosslinked with melamine formaldehyde for coating sewing threads
US 4992515 A
Abstract
A cross-linkable nylon composition and is useful for coated sewing threads. The compositions comprises a nylon terpolymer; from about 1 to 20 percent by weight of a low residual formaldehyde cross-linkable resin, based upon the weight of the terpolymer; from about 0.1 to 10 percent by weight of a catalyst for the cross-linkable resin, based upon the weight therof and a suitable solvent for the terpolymer in an amount sufficient to form at least a 5 percent solution by weight of the terpolymer. Coated sewing threads comprise a sewing thread and from about 0.1 to 20 percent by weight of the cross-linked nylon composition, based upon the weight of the thread.
Images(5)
Previous page
Next page
Claims(6)
I claim:
1. A cross-linkable nylon coating solution composition for sewing threads comprising:
a nylon terpolymer;
from about 1 to 20 percent by weight of a melamine formaldehyde resin, based upon the weight of said terpolymer;
said resin containing less than about 0.1 percent by weight of formaldehyde based upon the weight of said resin;
from about 0.1 to 10 percent by weight of a catalyst for said melamine formaldehyde resin, based upon the weight thereof; and
a suitable solvent for said terpolymer in an amount sufficient to form at least a 5 percent solution by weight of said terpolymer.
2. A cross-linkable nylon composition, as set forth in claim 1, wherein said nylon terpolymer comprises nylon 6, nylon 66 and nylon 610.
3. A cross-linkable nylon composition, as set forth in claim 1, wherein said nylon terpolymer comprises nylon 6, nylon 66 and nylon 69.
4. A cross-linkable nylon composition, as set forth in claim 1, wherein said terpolymer comprises nylon 6, nylon 66, and nylon 612.
5. A cross-linkable nylon composition, as set forth in claim 1, wherein said melamine formaldehyde resin is present in an amount of 10 percent by weight, based upon the weight of said terpolymer.
6. A cross-linkable nylon composition, as set forth in claim 1, wherein said catalyst is para-toluene sulfonic acid and is present in an amount of 10 percent by weight, based upon the weight of said melamine folmaldehyde resin.
Description
TECHNICAL FIELD

The present invention is directed toward cross-linkable polymer compositions and continuous multifilament sewing thread coated therewith. Multifilament sewing thread for industrial applications, such as in the furniture and automotive industries, is subjected to considerable abrasion during the sewing operation. Polymeric coatings are used to protect the thread during the sewing and prevent abrasion of the thread itself.

BACKGROUND OF THE INVENTION

Sewing thread has been typically coated with monomeric substances to aid in sewing, and to protect the thread. These coatings, or finishes, include such materials as silicones, fatty acid derivatives and phosphate esters. In the case of heavy industrial sewing, such monomeric coatings do not provide sufficient protection and, accordingly, polymer coatings have been used.

In addition to abrasion resistance, polymeric coatings provide actual bonding of the individual strands of the thread. This bonding provides a smoother thread surface and allows the thread to pass easily through the eye of the sewing needle. In addition, bonding allows thread to be made of filament bundles having lower levels of twist. Lower levels of twist result in lower costs for thread.

A particularly useful class of polymeric coatings which provides abrasion resistance as well as bonding are the nylon terpolymers. These terpolymers are readily soluble in lower alcohols. The coating technique is generally practiced by passing the thread through an alcohol solution of the terpolymer and subsequently removing the solvent by heat. Threads coated with these nylon terpolymers are highly resistant to abrasion, are well bonded and are suitable for many sewing applications.

In more demanding sewing applications, ordinary polymeric coatings may not meet the stringent requirements for a bonded thread. High speed sewing into heavy material, for instance, may result in fibrillation of bonded thread so that individual strands which may make up the bonded bundle of thread can separate when the thread is subject to sewing stresses. This fibrillation results in poor stitches and is generally unacceptable.

In order to improve the bond strength, a cross-linkable bonding agent has been used heretofore for thread coating. Cross-linking improves the thread to binder adhesion as well as the bulk strength of the bonding material itself. A suitable cross-linking system makes use of "type-8" nylon which is an alkoxyalkylated nylon 66. Type-8 nylons, which are dissolved in suitable solvents, are applied to thread in the manner described hereinabove. Cross-linking of the "type-8" nylon is catalyzed by a suitable acid and takes place as the solvent is removed from the polymer coating. Nevertheless, the manufacture of "type-8" nylon resins is complex and expensive. This drawback has hindered the development of threads with a cross-linked coating.

In addition to using "type-8" nylon, cross-linking of nylon terpolymers has been achieved by the use of epoxy resins, phenol formaldehyde resins and melamine formaldehyde resins. These resins, in solutions with the nylon terpolymers, react with the terpolymers at elevated temperatures. The effect is to cross-link the nylon resin which results in a harder, more durable thread coating.

While the epoxy resins result in highly cross-linked coatings, they require longer cure times than either the "type-8" nylon or the phenol formaldehyde or melamine formaldehyde resins. Longer cure times result in slower coating rates and at times, tacky, uncured coatings. Phenol formaldehyde resins and melamine formaldehyde resins result in highly cross-linked coatings and the curing takes place in a timely manner. However because of residual formaldehyde in these resin formulations, environmental concerns have been raised so that there has been an understandable reluctance to use this system in coating applications.

Another means for minimizing breakage of multifilament sewing threads is provided in U.S. Pat. No. 3,823,031, which describes the use of a thermoplastic segmented copolyester elastomer as a bonding agent coating for nylon and polyester multifilament threads. By bonding together the individual filaments, untwisting is minimized which helps to eliminate breakage.

DISCLOSURE OF THE INVENTION

It is, therefore, an object of the present invention to provide a cross-linkable nylon composition for coating of sewing threads.

It is another object of the present invention to provide a cross-linkable nylon composition that is readily adaptable to standard coating processes.

It is yet another object of the present invention to provide a cross-linkable nylon composition that has a controllable degree of cross-linking to accommodate various end use applications.

It is still another object of the present invention to provide sewing threads coated with the compositions disclosed herein.

It is yet another object of the present invention to provide a cross-linkable nylon composition that is not based on type 8 nylons and does not require cross-linking resins containing high levels of formaldehyde.

These and other objects together with the advantages thereof over the existing art, which shall become apparent from the specification which follows, are accomplished by the invention as hereinafter described and claimed.

In general, a cross-linking composition according to the present invention comprises a nylon terpolymer, from about 1 to 20 percent by weight of a low residual formaldehyde cross-linkable resin, based upon the weight of the terpolymer, from about 0.1 to 10 percent by weight of a catalyst for the cross-linkable resin, based upon the weight thereof, and a suitable solvent for the terpolymer in an amount sufficient to form at least a 5 percent solution by weight of the terpolymer.

A coated sewing thread is also provided comprising a sewing thread and from about 0.1 to 10 percent by weight of a cross-linked nylon composition, based upon the weight of the thread. The latter composition comprises a nylon terpolymer, from about 1 to 20 percent by weight of a low residual formaldehyde cross-linkable resin, based upon the weight of the terpolymer, from about 0.1 to 10 percent by weight of a catalyst for the cross-linkable resin, based upon the weight thereof, and a suitable solvent for the terpolymer in an amount sufficient to form at least a 5 percent solution by weight of the terpolymer.

PREFERRED EMBODIMENT FOR CARRYING OUT THE INVENTION

The present invention relates principally to a cross-linkable coating composition for multifilament nylon sewing thread. These compositions comprise a nylon terpolymer, a low residual formaldehyde cross-linkable resin and a mutual solvent. The terpolymer must be soluble in a lower alcohol. Suitable monomers for preparation of the terpolymers are selected from the group consisting of caprolactam, adipic acid, azelaic acid, sebacic acid, 1,10-decanedicarboxylic acid and hexamethylene diamine. Suitable terpolymers are based on the nylons selected from the group consisting of nylon 6, nylon 66, nylon 69, nylon 610 and nylon 612 and include 6/66/69; 6/66/610 and 6/66/612. In order to insure that the terpolymers are soluble in the lower alcohols, the ratios of the nylon components must be controlled within specific limits as set forth in Table I hereinbelow. All amounts are presented in percent by weight to total 100 percent.

              TABLE I______________________________________Terpolymer CompositionsPossible Range          Preferred Range______________________________________6/66/69 6        35-55%         6     45  5% 66        5-35%         66    25  5% 69       20-55%         69    30  5%6/66/610 6        30-75%         6     45  5% 66       10-80%         66    25  5%610       10-80%        610    30  5%6/66/612 6        30-75%         6     45  5% 66       10-80%         66    25  5%612       10-80%        612    30  5%______________________________________

The cross-linkable resins are selected from the group consisting of low residual formaldehyde resins. By low residual is meant a formaldehyde content of less than 0.1 percent and one suitable low residual formaldehyde cross-linking resin is available from American Cyanamide under the trade name Cymel 1135.

Cross-linking of the coating composition can be initiated by using an acid catalyst such as para toluene sulfonic acid, citric or any of the other known organic acids which decompose at the processing temperatures, up to about 200 C., which include both the saturated and unsaturated types, monobasic, dibasic and tribasic acids and the like. Initiation takes place at an elevated temperature, that is, from about 80 to 200 C., with 150 C. being preferred.

In order to prepare the coating compositions of the present invention, the nylon terpolymer must be dissolved in a solvent. Solvation is conveniently performed in an organic solvent which is a co-solvent for the cross-linkable resin. Suitable solvents include the lower alcohols, such as methanol, ethanol, 1-propanol, 2-propanol and the like. Additionally, other solvents that may be employed include 2-butanol, s-butyl alcohol, t-butyl alcohol, and the like; glycols, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, and 1,4-butanediol; glycol ethers, such as diethylene glycol, triethylene glycol, dipropylene glycol, 2-methoxyethanol, 2-ethoxyethanol, and the like; ethers, such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxane, dimethoxyethane, and the like; and such other solvents as N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, and the like; and mixtures thereof. Preferred solvents include methanol, ethanol, and isopropanol.

The composition is prepared by dissolving the nylon terpolymer in a suitable solvent to form a solution comprising from at least about 5 percent to 20 percent by weight of nylon terpolymer, with a 10 to 15 percent solution being preferred. The low residual formaldehyde cross-linkable resin is added at a level of from about 1 to 20 percent by weight, based upon the weight of the terpolymer, with 10 percent being preferred. The catalyst for the resin is added at a level of from about 0.1 to 10 percent by weight, based upon the weight of the cross-linkable resin with 2 percent being preferred.

After the terpolymer solution is formed, the cross-linkable resin is added with stirring at 60 C. for about 10 minutes. The solution and resin are then cooled and the catalyst is next added at room temperature for 10 minutes and the composition is then ready for use.

As noted hereinabove, the cross-linkable nylon compositions of the present invention have utility in thread coating applications. Threads that may be coated are derived from polymers and include nylons, polyesters, and acrylics. These threads may be monofilament, multifilament, plied monofilament, or monochord and can be substantially any known or useful denier. Multifilament sewing thread includes threads having two or more filaments held together such as by twisting. Monochord sewing thread is composed of a single bundle of individual monofilament strands. The bundle of filaments has a slight twist and is held together with the coating. Monochord is distinguished from plied yarn which consists of two or more twisted bundles which are in turn plied together to form a larger thread. The term "thread" is intended to include a continuous strand of any size which is suitable for sewing and which may be constructed of one or more plies. Thus this term in appropriate cases may include yarn, string, cord, rope and the like. The coating is applied in a suitable fashion to provide a layer comprising from about 0.1 to 20 percent by weight, based upon the weight of the thread with about 3 to 10 percent by weight being preferred.

In thread coating applications, the coating step is carried out by passing the thread through the coating solution. Any excess solution is removed from the thread by passing it through an orifice or between pads. By controlling the orifice size or the pressure on the pads, the amount of coating pick-up can be controlled. Generally a coating pick-up of 5 percent to 10 percent is considered suitable. In addition to controlling the coating pick-up, running the line through an orifice or between pressure pads provides better penetration of the coating solution into the thread.

After the excess coating solution has been removed, the thread is passed through a heated area, between 80 to 150 C., where the solvent is removed from the solution. When the solvent has been removed, the coated thread may be passed through a second heated area where it is stretched or heat stabilized.

Cross-linking of the coating and bonding to the substrate occurs when the solvent is removed and the temperature of the coating is high enough to initiate the catalyst. This will generally occur within a range of about 80 to 150 C. The degree of cross-linking and the rate of cross-linking depend on the concentration of cross-linking resin, the catalyst level and the temperature.

The following examples are presented for the purpose of illustrating the invention disclosed herein in greater detail. The examples are not, however, to be construed as limiting the invention herein in any manner, the scope of which is defined by the appended claims.

EXAMPLES

The thread coated was nylon monochord, described hereinabove. The coating was applied by passing the thread through a dip tank containing the coating solution and removing any excess solution on the thread by passing the thread through a pair of felt pads or through a sizing hole. After coating, the thread was passed through an oven or series of ovens at a temperature and speed sufficient to remove the solvent. The lines were then weighed to determine the resin pick-up and extracted with boiling solvent to determine the degree of cross-linking.

The terpolymer used in these examples was type 651 (6/66/610) manufactured by Shakespeare Company, the Assignee of record herein. The formaldehyde-free cross-linking resin used in these examples was Cymel 1135, manufactured by American Cyanamide.

EXAMPLE 1

A coating solution was prepared by dissolving a nylon terpolymer (6/66/610) in ethanol to make a 10% solution by weight of terpolymer in ethanol. To this solution was added the cross-linking resin, Cymel 1135, at a level of 10% based on the terpolymer weight. A catalyst, para-toluene sulfonic acid was added to the solution at a level of 10%, based on the weight of the Cymel 1135 resin. The coated line was extracted in boiling ethanol without removing the material. It was concluded that the coating was cross-linked.

EXAMPLE 2

A 15% solution of nylon terpolymer (6/66/610) in methanol was prepared. To this solution was added the Cymel 1135 resin at a 10% level based on the terpolymer. Para-toluene sulfonic acid was added to a level of 10% based on the Cymel 1135 resin.

The terpolymer solution was used to coat nylon monochord thread, as in Example 1. The sewing thread was passed through the terpolymer solution and the excess solution was removed from the thread by passing the thread between pads. The pressure on the pads was controlled so that the coating pick-up was 3% based on the weight of the thread. An extraction of the coated thread with boiling methanol indicated that the coating was cross-linked.

EXAMPLE 3

The conditions of Example 2 were repeated with the exception that the pressure on the pad was adjusted so that the coating pick-up was increased to 6% based on the weight of the thread. Extraction tests indicated that the coating had cross-linked. Sewing tests with the coated thread indicated that the coating was well bonded to the nylon substrate and that the bulk strength of the coating was sufficient to withstand the sewing without causing the line to fibrillate.

EXAMPLE 4

A coating solution was prepared as described in Example 3. Nylon monochord thread was coated by passing the line through the coating solution. The excess solution was removed by passing the thread through felt pads. The coated thread was then passed through three ovens, each 10 feet (3M) long. The oven temperatures were 210 C., 221 C. and 221 C., respectively. The speed of the thread was 60 feet (18.3M) per minute. The coating pick-up was found by weight to be 5.6%. Extraction of the coated thread with boiling methanol indicated that the coating was cross-linked.

EXAMPLE 5

An 8% solution of nylon terpolymer (6/66/610) in methanol was prepared. To this solution was added the Cymel 1135 resin at a 10% level based on the terpolymer. Para-toluene sulfonic acid was added at a level of 10% based on the weight of the Cymel 1135 resin. The coating conditions and material coated were the same as described in Example 4. The coating pick-up was found to be 4.3%. Extraction of the coated thread with boiling methanol indicated that the coating was cross-linked.

Thus, it should be clear from the foregoing examples and specification disclosure that the compositions of the present invention are cross-linkable and that they are useful for coating threads.

It is to be understood that the use of nylon terpolymers and cross-linkable resins is not limited to the specific polymers and resins exemplified herein or by the disclosure of typical polymers and resins provided herein, the examples having been provided merely to demonstrate practice of the subject invention. Those skilled in the art may readily select other terpolymers and low residual formaldehyde cross-linkable resins according to the disclosure made hereinabove. Nor, should practice of the invention be limited to coating nylon monochord, it being understood first, that other threads such as the polyesters could be substituted and second, that the composition has utility in applications other than thread coating.

Similarly, practice of the process of the present invention should not be limited to any particular process conditions from the exemplification it being understood by those skilled in the art that accommodations can be made within the spirit of the invention for differences in equipment as well as in the desired composition and physical properties of the coated thread.

Thus, it is believed that any of the variables disclosed herein can readily be determined and controlled without departing from the scope of the invention herein disclosed and described. Moreover, the scope of the invention shall include all modifications and variations that fall within the scope of the attached claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3823031 *Aug 9, 1971Jul 9, 1974Tsukamoto AThread bonded with segmented copolyester elastomers
DE2439918A1 *Aug 20, 1974Mar 6, 1975Daicel LtdUeberzugszusammensetzung und verfahren zu deren herstellung
GB994617A * Title not available
Non-Patent Citations
Reference
1 *Brochure Dupont Elvamide, Nylon Multipolymer Resins, p. 6.
2 *Brochure Elvamide Nylon Multipolymer Resins for Thread Bonding.
3Brochure-Dupont Elvamide, Nylon Multipolymer Resins, p. 6.
4Brochure-Elvamide Nylon Multipolymer Resins for Thread Bonding.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6500541Sep 18, 2000Dec 31, 2002Fil-Tech, Inc.Water-blocked telecommunications cables, and water-blocking yarns usefully employed in same
US6673136May 31, 2001Jan 6, 2004Donaldson Company, Inc.Fluted media treated with deposit of fine fibers; advantageous in high temperature systems such as engines, gas turbines, fuel cells
US6716274May 31, 2001Apr 6, 2004Donaldson Company, Inc.Air filter assembly for filtering an air stream to remove particulate matter entrained in the stream
US6740142May 31, 2001May 25, 2004Donaldson Company, Inc.Filter elements to remove entrained particulates typically from gaseous effluents
US6743273May 31, 2001Jun 1, 2004Donaldson Company, Inc.Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US6746517May 31, 2001Jun 8, 2004Donaldson Company, Inc.Filter structure with two or more layers of fine fiber having extended useful service life
US6800117May 31, 2001Oct 5, 2004Donaldson Company, Inc.Filtration arrangement utilizing pleated construction and method
US6805969 *Mar 13, 2002Oct 19, 2004E. I. Du Pont De Nemours And CompanySelected amino resins (melamine-formaldehyde, glycoluril-formaldehyde, benzoguanamine-formaldehyde) with high imino content or partially alkylated or non-alkylated derivatives to improve the adhesion of nylon polymers
US6875256Dec 10, 2003Apr 5, 2005Donaldson Company, Inc.Methods for filtering air for a gas turbine system
US6955775Sep 30, 2003Oct 18, 2005Donaldson Company, Inc.Addition or condensation polymer containing 2-25% of an additive comprising an aromatic oligomer having a molecular weight of 500-3000, especially a polyphenyl resin with p-tert-butylphenol, p-biphenol or bisphenol A units
US6960369May 14, 2003Nov 1, 2005E. I. Du Pont De Nemours And CompanyCross-linkable nylon compositions for coating applications, processes using such compositions, and articles made therefrom
US6974490Dec 19, 2003Dec 13, 2005Donaldson Company, Inc.Air filtration arrangements having fluted media constructions and methods
US6994742May 3, 2004Feb 7, 2006Donaldson Company, Inc.Filtration arrangement utilizing pleated construction and method
US7037578Dec 11, 2002May 2, 2006The Goodyear Tire & Rubber CompanyPower transmission belt
US7070640Jan 14, 2004Jul 4, 2006Donaldson Company, Inc.filter media comprising fine fiber layer having basis weight of 0.0001-24 gm/m2 and melt blown substrate, the fiber comprising crosslinked polyvinyl alcohol, the fiber having size of 0.01-0.5 micron; humidity resistance, improved efficiency and reduced flow restrictions
US7090712Apr 20, 2005Aug 15, 2006Donaldson Company, Inc.Air filtration arrangements having fluted media construction and methods
US7090715Sep 30, 2003Aug 15, 2006Donaldson Company, Inc.Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US7115150Jun 26, 2002Oct 3, 2006Donaldson Company, Inc.Mist filtration arrangement utilizing fine fiber layer in contact with media having a pleated construction and floor filter method
US7179317Jul 19, 2004Feb 20, 2007Donaldson Company, Inc.Addition or condensation polymer containing 2-25% of an additive comprising an aromatic oligomer having a molecular weight of 500-3000; polyphenyl resin with p-tert-butylphenol, p-biphenol or bisphenol A units; resistance to degradative effects of humidity, heat, air flow, chemicals, stress and impact
US7270692Apr 25, 2006Sep 18, 2007Donaldson Company, Inc.Media packs with circular or oval cross-sections set within a sealing frame and coated with fine fibers; high temperature systems of engines, gas turbines and fuel cells
US7270693Jan 16, 2006Sep 18, 2007Donaldson Company, Inc.Filter media comprising a fine fiber layer, fiber having a size of 0.01-0.5 micron, comprising a condensation polymer and an aromatic resinous additive; humidity resistance, improved efficiency and reduced flow restrictions; filter for air, dust, gas turbines, vehicle engine
US7316723Apr 6, 2006Jan 8, 2008Donaldson Company, Inc.Air filter with fine fiber and spun bonded media
US7318852Apr 6, 2006Jan 15, 2008Donaldson Company, Inc.Bag house filter with fine fiber and spun bonded media
US7318853Nov 2, 2006Jan 15, 2008Donaldson Company, Inc.Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
US7550195Dec 21, 2004Jun 23, 2009Veyance Technologies, Inc.Power transmission belt
US8029588Dec 1, 2010Oct 4, 2011Donaldson Company, Inc.Fine fiber media layer
US8118901Oct 30, 2009Feb 21, 2012Donaldson Company, Inc.Fine fiber media layer
US8366797Aug 17, 2011Feb 5, 2013Donaldson Company, Inc.Fine fiber media layer
US8512431Sep 12, 2012Aug 20, 2013Donaldson Company, Inc.Fine fiber media layer
US8709118Jan 10, 2013Apr 29, 2014Donaldson Company, Inc.Fine fiber media layer
US20120121901 *Nov 16, 2010May 17, 2012Lee Bong-KyuWater based bond sewing thread and method of manufacturing the same
WO2002072673A2 *Mar 14, 2002Sep 19, 2002Du PontCoating solutions suitable for improving the adhesion of nylon coatings and processes for the application thereof
WO2003097744A1 *May 14, 2003Nov 27, 2003Du PontCross-linkable polyamide compositions for coating applications, processes using such compositions, and articles made therefrom
WO2011094673A2 *Jan 31, 2011Aug 4, 2011Invista Technologies S.A R.L.Bio-based terpolymers and process of making the same
WO2013043987A1Sep 21, 2012Mar 28, 2013Donaldson Company, Inc.Fine fibers made from polymer crosslinked with resinous aldehyde composition
Classifications
U.S. Classification525/428, 525/519, 525/419, 525/418, 525/420, 525/427, 525/509
International ClassificationD06M15/59, C08L77/00, D06M15/423
Cooperative ClassificationD06M15/423, C08L77/00, D06M15/59
European ClassificationC08L77/00, D06M15/59, D06M15/423
Legal Events
DateCodeEventDescription
Apr 27, 1999FPExpired due to failure to pay maintenance fee
Effective date: 19990212
Feb 14, 1999LAPSLapse for failure to pay maintenance fees
Sep 8, 1998REMIMaintenance fee reminder mailed
Jul 25, 1994FPAYFee payment
Year of fee payment: 4
Jan 9, 1990ASAssignment
Owner name: SHAKESPEARE COMPANY, A CORP. OF DE., SOUTH CAROLIN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BALLARD, LARRY;REEL/FRAME:005233/0064
Effective date: 19900102