Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5053320 A
Publication typeGrant
Application numberUS 07/509,193
Publication dateOct 1, 1991
Filing dateApr 16, 1990
Priority dateApr 16, 1990
Fee statusLapsed
Also published asDE4126929A1
Publication number07509193, 509193, US 5053320 A, US 5053320A, US-A-5053320, US5053320 A, US5053320A
InventorsJean J. A. Robillard
Original AssigneeRichard L. Scully
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Direct dry negative color printing process and composition
US 5053320 A
Abstract
The invention relates to a photosensitive composition for direct dry negative color printing composition. The photosensitive composition comprises a binder containing a plurality of grains of a semiconductor material, each grain having adsorbed on its surface one of three different complexes of spiropyran with a metal salt, each complex being sensitive to a different wavelength of light, a cross-linkable polymer and free radical initiator. The composition and process enables photofinishing or printing from a negative.
Images(3)
Previous page
Next page
Claims(15)
I claim:
1. A direct negative color photosensitive composition comprising a binder containing a plurality of grains of semiconductor each having absorbed on its surface one of three different photo-bleachable colored complexes of spiropyran with a metal salt, each complex being sensitive to a different wavelength of light of three colors viz. yellow, magenta and cyan, a crosslinkable polymer, and a free radical initiator.
2. The photosensitive composition of claim 1, wherein the binder is selected from the group consisting of polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, carboxyethylcellulose, hydroxyethylcellulose and polyvinylchloride.
3. The photosensitive composition of claim 1, wherein the semiconductor grains are made of an inorganic semiconductor selected from the group consisting of zinc oxide, tin oxide, titanium dioxide, zirconium oxide, lead oxide, lanthanum oxide and cerium oxide.
4. The photosensitive composition of claim 1, wherein the semiconductor grains are made of an organic semiconductor of doped aromatic compounds selected from the group consisting of polyvinylcarbazole, polynaphthazarene, pyrazoline polymers, polyazines and polyphenylacetylene.
5. The photosensitive composition of claim 1, wherein the spiropyran complexes adsorbed on the semiconductor grains are made of spiropyran selected from the group consisting of spiro 2.3 diphenyl-7-methoxy-8'-nitro-[4H,1-benzopyran-4-3' [3H] naphto [2-1-b pyran], spiro 3-ethyl-8-methoxy-3'-methyl, 6-nitro [2H-1 benzopyran-2.2' benzothiazoline] spiro 3,3'-dimethyl, 8-methoxy-6'-methylthio-6-nitro [2H-1-benzopyran-2,2' benzothiazoline] and spiro 8-methoxy-8'-nitro-3 phenyl bi-[2H-naphto [2,3b] pyran].
6. The photosensitive composition of claim 1, wherein the semiconductor grains are made of an organic semiconductor of coordination metal complexes of polymers selected from the group consisting of Cu(I), Cu(II), Ni(II) and Pd(II) complexes of polyaminoquinone, polyvinyl alcohol, polydithioxamide, polythiocarbamic acid and polyquinoxalophenazine.
7. The photosensitive composition of claim 1, wherein the spiropyran complexes adsorbed on the semiconductor grains are complexed with metal salts selected from the group consisting of cuprous chloride, zinc chloride, cobaltous chloride, mercurous chloride, antimony chloride, bismuth chloride, barium naphthenate, lead napthenate and zinc naphthenate.
8. The photosensitive composition of claim 1, wherein the crosslinkable polymer is an unsaturated polyester dissolved in styrene.
9. The photosensitive composition of claim 1, wherein the free radical initiator is selected from the group consisting of peroxides, peresters, peracids, benzoin derivatives, azides and diazocompounds.
10. A photosensitive article comprising a substrate bearing a layer of a composition according to claim 1.
11. A photographic process, which comprises providing a layer of a composition according to claim 1 on a substrate, exposing the layer to a colored image, and heating the exposed layer to fix the image therein and to destroy the photosensitivity of the layer.
12. The photosensitive composition of claim 1, wherein a first complex of spiropyran with a metal salt is sensitive to yellow light, a second complex of spiropyran with a metal salt is sensitive to magenta light and a third complex of spiropyran with a metal salt is sensitive to cyan light.
13. The photosensitive composition of claim 6, wherein the polymers are granulated in powder form with grains smaller than 10 microns.
14. A direct negative color photosensitive article, which comprises:
a substrate,
a first doped organic semiconductor,
a bleachable blue spiropyran and metal salt complex dispersed or dissolved in a binder containing a crosslinkable polymer and additives to promote crosslinking;
a second doped organic semiconductor layer,
a bleachable green spiropyran and metal salt complex dispersed or dissolved in a binder containing a crosslinkable polymer and additives to promote crosslinking,
a third doped organic semiconductor layer,
a bleachable red spiropyran and metal salt complex dispersed or dissolved in a binder containing a crosslinkable polymer and additives to promote crosslinking.
15. The photosensitive composition of claim 1, wherein the semiconductor is doped.
Description

This invention relates to photosensitive compositions for direct dry negative color printing.

In U.S. Pat. No. 4,725,527 to Robillard, there is disclosed photosensitive compositions for direct positive color photography. In the Specification, there is disclosed a process in which each color observed on the print corresponds with the color of the positive object image; e.g. transparency or slide. There is no disclosure in the said Specification for printing a negative. The process of Robillard relates to printing by transmission or reflection from a positive with general application for photocopier, printer etc. for paper, film or textiles. In addition, the process of Robillard only relates to printing from a positive such as a slide or a transparency.

In photofinishing color printing on paper generally uses negative films.

The colors on the negative film are complementary to the corresponding image color on the print viz.

______________________________________  Negative      Print______________________________________  Blue          Yellow  Green         Magenta  Red           Cyan______________________________________

In the production of color from a negative, the spectral distribution of the light source is important as undesirable color may be transmitted by the source to the printing emulsion. Ideally, a yellow image on the negative should be printed on the positive emulsion sensitive to blue using a blue light; a magenta image on the negative should be printed on the positive emulsion sensitive to green using a green light; and a cyan image on the negative should be printed on the positive emulsion sensitive to red using a red light.

An ordinary light bulb cannot be used for color printing unless the light is filtered by three monochromatic filters, red, blue and green. A separate exposure of the negative with each filter is necessary to obtain a true color rendition and the time of each exposure is adjusted to correspond to the sensitivity of the emulsion to the particular color. The three exposures can be reduced to one if the filtered lights of the three sources viz. red, blue and green are superimposed. In that case each source would be compensated to match the relative color sensitivity of each emulsion.

Another alternative is the use of a rotating disk with three color filters (red, blue and green) intercepting the light path to the negative to be printed.

Here again the density of color in the filters should be adjusted to the relative sensitivity of the printing emulsion for each color. The monochromaticity of the filters will determine the quality of color rendition: 450 nm for the blue, 555 nm for the green and 655 nm for the red.

Exposure without a filter can be made with a mercury-cadmium lamp with a very approximate matching of the spectral distribution required:

______________________________________   Ideal        Hg--Cd   (nm) (nm)______________________________________   450  468   555  508   655  643______________________________________

The principle of the process disclosed in Robillard is accelerated photobleaching. In the process, a dye of a given color is bleached by absorption of light corresponding to the same color and the bleaching process is accelerated (amplified) by electron exchange with an organic semiconductor. The positive emulsion contains three kinds of dye corresponding to red, blue and green. The dyes are distributed in three superposed layers or encapsulated and evenly distributed in a single layer. In the former case the layers are separated by a thin organic semiconductor layer. In the latter the semiconductor is placed between the substrate and the dye layer. In both cases the fixing of the image is obtained by thermal crosslinking of the binder containing the dyes.

It is an object of the present invention to provide photosensitive compositions for direct negative color printing.

The invention, therefore, provides a direct negative color photosensitive composition comprising a binder containing a plurality of grains of semiconductor each having absorbed on its surface one of three different photo-bleachable colored complexes of spiropyran with a metal salt, each complex being sensitive to a different wavelength of light of three colors viz. yellow, magenta and cyan, a crosslinkable polymer, and a free radical initiator.

To obtain a positive color picture from a negative original (Yellow, Magenta and Cyan) using the accelerated bleaching process disclosed in Robillard, the red, blue and green dyes (spiro complexes) should be replaced by equivalent cyan, yellow and magenta dyes (spiro complexes). The dye complexes would be sensitized in the same manner as disclosed in Robillard. However, complementary color dyes using spiropyran metal complexes are more difficult to prepare than the ones for the basic colors. The color selection (between Yellow, Magenta and Cyan) would be reached by changing the spiropyran structure rather than changing the complexing metal. For example:

1. Yellow (blue)

A. Spiro 2.3 diphenyl-7-methoxy-8'-nitro[4H,1-benzopyran-4-3' [3H] naphto [2-1-b pyran]

2. Magenta (green)

A. Spiro 3-ethyl-8-methoxy-3,-methyl, 6-nitro [2H-1 benzopyran-2.2, benzothiazoline]

3. Cyan (red)

A. Spiro 3,3'-dimethyl, 8-methoxy-6'-methylthio-6-nitro [2H-1-benzopyran-2,2'-benzothiazoline]

B. Spiro 8-methoxy-8'-nitro-3 phenyl bi-[2H naphto [2,3b] pyran]

The overall composition of the layers will be the same as for the positive process disclosed in Robillard.

The addition of the basic color dyes red, blue and green provide white when viewed with a white light (containing red, blue and green). If one of the three colors is missing (bleached) it is that same color which will be observed with white light. This appears contradictory but in fact, the white light used for viewing contains all three colors and if one of the three colors corresponding to the basic color is missing it will not absorb that color and only that color from the viewing light will be transmitted (or reflected); the other two colors will be absorbed by the dyes which have not been bleached. As a consequence, red and blue will be seen green, red and green will be seen blue, blue and green will be seen red when white light is used.

The addition of the complementary color dyes (Yellow, Magenta and Cyan), when viewed with a white light provide black. Because of the complementary nature of the colors, the associated spectral band is larger and the addition of two by two provides the basic color corresponding to the complementary color of the missing dye which has a narrower spectral band than the originals. For example:

Cyan+Yellow=Green

Cyan+Magenta=Blue

Magenta+Yellow=Red

The invention provides for a lower-cost, environmentally safe composition and process when compared with the prior art and currently used techniques of photofinishing. In particular the composition and process enables printing from a negative.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4010033 *Mar 10, 1976Mar 1, 1977Agence Nationale De Valorisation De La Recherche (Anvar)Photosensitive layer and method of forming a photographic image therefrom
US4725527 *Dec 26, 1985Feb 16, 1988Richard L. ScullyPhotosensitive compositions for direct positive color photography
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5616443Jun 1, 1995Apr 1, 1997Kimberly-Clark CorporationSubstrate having a mutable colored composition thereon
US5643356Jun 5, 1995Jul 1, 1997Kimberly-Clark CorporationInk for ink jet printers
US5643701Jun 1, 1995Jul 1, 1997Kimberly-Clark CorporationElectrophotgraphic process utilizing mutable colored composition
US5645964Jun 5, 1995Jul 8, 1997Kimberly-Clark CorporationDigital information recording media and method of using same
US5681380Dec 19, 1996Oct 28, 1997Kimberly-Clark Worldwide, Inc.Ink for ink jet printers
US5683843Feb 22, 1995Nov 4, 1997Kimberly-Clark CorporationSolid colored composition mutable by ultraviolet radiation
US5685754May 19, 1995Nov 11, 1997Kimberly-Clark CorporationMethod of generating a reactive species and polymer coating applications therefor
US5686503Jan 22, 1996Nov 11, 1997Kimberly-Clark CorporationMethod of generating a reactive species and applications therefor
US5700850Jun 5, 1995Dec 23, 1997Kimberly-Clark WorldwideColorant compositions and colorant stabilizers
US5709955Oct 16, 1996Jan 20, 1998Kimberly-Clark CorporationAdhesive composition curable upon exposure to radiation and applications therefor
US5721287Jun 5, 1995Feb 24, 1998Kimberly-Clark Worldwide, Inc.Method of mutating a colorant by irradiation
US5733693Jan 2, 1997Mar 31, 1998Kimberly-Clark Worldwide, Inc.Method for improving the readability of data processing forms
US5739175Jun 5, 1995Apr 14, 1998Kimberly-Clark Worldwide, Inc.Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer
US5747550Jun 5, 1995May 5, 1998Kimberly-Clark Worldwide, Inc.Method of generating a reactive species and polymerizing an unsaturated polymerizable material
US5773182Jun 5, 1995Jun 30, 1998Kimberly-Clark Worldwide, Inc.Method of light stabilizing a colorant
US5782963Nov 27, 1996Jul 21, 1998Kimberly-Clark Worldwide, Inc.Colorant stabilizers
US5786132May 29, 1996Jul 28, 1998Kimberly-Clark CorporationPre-dyes, mutable dye compositions, and methods of developing a color
US5798015Jun 5, 1995Aug 25, 1998Kimberly-Clark Worldwide, Inc.Method of laminating a structure with adhesive containing a photoreactor composition
US5811199Jun 5, 1995Sep 22, 1998Kimberly-Clark Worldwide, Inc.Adhesive compositions containing a photoreactor composition
US5837429Jun 5, 1996Nov 17, 1998Kimberly-Clark WorldwidePre-dyes, pre-dye compositions, and methods of developing a color
US5849411Jun 5, 1995Dec 15, 1998Kimberly-Clark Worldwide, Inc.Polymer film, nonwoven web and fibers containing a photoreactor composition
US5855655Apr 15, 1997Jan 5, 1999Kimberly-Clark Worldwide, Inc.Colorant stabilizers
US5858586May 16, 1997Jan 12, 1999Kimberly-Clark CorporationDigital information recording media and method of using same
US5865471Dec 21, 1994Feb 2, 1999Kimberly-Clark Worldwide, Inc.Photo-erasable data processing forms
US5885337Oct 31, 1997Mar 23, 1999Nohr; Ronald SinclairColorant stabilizers
US5891229Jul 31, 1997Apr 6, 1999Kimberly-Clark Worldwide, Inc.Colorant stabilizers
US5908495Sep 24, 1997Jun 1, 1999Nohr; Ronald SinclairInk for ink jet printers
US6008268Jan 22, 1998Dec 28, 1999Kimberly-Clark Worldwide, Inc.Photoreactor composition, method of generating a reactive species, and applications therefor
US6017471Apr 23, 1997Jan 25, 2000Kimberly-Clark Worldwide, Inc.Colorants and colorant modifiers
US6017661Oct 8, 1997Jan 25, 2000Kimberly-Clark CorporationTemporary marking using photoerasable colorants
US6033465Apr 5, 1996Mar 7, 2000Kimberly-Clark Worldwide, Inc.Colorants and colorant modifiers
US6054256Dec 3, 1998Apr 25, 2000Kimberly-Clark Worldwide, Inc.Method and apparatus for indicating ultraviolet light exposure
US6060200Feb 3, 1998May 9, 2000Kimberly-Clark Worldwide, Inc.Photo-erasable data processing forms and methods
US6060223Dec 3, 1998May 9, 2000Kimberly-Clark Worldwide, Inc.Plastic article for colored printing and method for printing on a colored plastic article
US6063551Nov 16, 1998May 16, 2000Kimberly-Clark Worldwide, Inc.Mutable dye composition and method of developing a color
US6066439Dec 3, 1998May 23, 2000Kimberly-Clark Worldwide, Inc.Instrument for photoerasable marking
US6071979Dec 26, 1997Jun 6, 2000Kimberly-Clark Worldwide, Inc.Photoreactor composition method of generating a reactive species and applications therefor
US6090236Dec 31, 1997Jul 18, 2000Kimberly-Clark Worldwide, Inc.Photocuring, articles made by photocuring, and compositions for use in photocuring
US6099628Jan 23, 1997Aug 8, 2000Kimberly-Clark Worldwide, Inc.Colorant stabilizers
US6120949Dec 3, 1998Sep 19, 2000Kimberly-Clark Worldwide, Inc.Photoerasable paint and method for using photoerasable paint
US6127073Dec 3, 1998Oct 3, 2000Kimberly-Clark Worldwide, Inc.Method for concealing information and document for securely communicating concealed information
US6168654Apr 6, 1999Jan 2, 2001Kimberly-Clark Worldwide, Inc.Colorant stabilizers
US6168655Dec 15, 1998Jan 2, 2001Kimberly-Clark Worldwide, Inc.Colorant stabilizers
US6211383Feb 10, 1998Apr 3, 2001Kimberly-Clark Worldwide, Inc.Nohr-McDonald elimination reaction
US6227668 *Jul 29, 2000May 8, 2001Visionrx Inc.Visual test using counter-phase chromatic and achromatic stimuli
US6228157Jul 20, 1999May 8, 2001Ronald S. NohrInk jet ink compositions
US6235095Jun 1, 1999May 22, 2001Ronald Sinclair NohrInk for inkjet printers
US6242057Apr 29, 1998Jun 5, 2001Kimberly-Clark Worldwide, Inc.Photoreactor composition and applications therefor
US6265458Sep 28, 1999Jul 24, 2001Kimberly-Clark Worldwide, Inc.Photoinitiators and applications therefor
US6277897Jun 3, 1999Aug 21, 2001Kimberly-Clark Worldwide, Inc.Photoinitiators and applications therefor
US6294698Apr 16, 1999Sep 25, 2001Kimberly-Clark Worldwide, Inc.Photoinitiators and applications therefor
US6331056Feb 24, 2000Dec 18, 2001Kimberly-Clark Worldwide, Inc.Printing apparatus and applications therefor
US6342305Dec 28, 1999Jan 29, 2002Kimberly-Clark CorporationColorants and colorant modifiers
US6368395May 12, 2000Apr 9, 2002Kimberly-Clark Worldwide, Inc.Subphthalocyanine colorants, ink compositions, and method of making the same
US6368396Jan 19, 2000Apr 9, 2002Kimberly-Clark Worldwide, Inc.Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6486227Jun 19, 2001Nov 26, 2002Kimberly-Clark Worldwide, Inc.Zinc-complex photoinitiators and applications therefor
US6503559Jun 3, 1999Jan 7, 2003Kimberly-Clark Worldwide, Inc.Neonanoplasts and microemulsion technology for inks and ink jet printing
US6524379Jan 12, 2001Feb 25, 2003Kimberly-Clark Worldwide, Inc.Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6696229 *Jul 6, 2000Feb 24, 2004Kromotek, Ltd.Dry photographic printing process
US7316875 *May 6, 2005Jan 8, 2008Xerox CorporationPhotochromic paper with improved bistability
US20060251988 *May 6, 2005Nov 9, 2006Xerox CorporationPhotochromic paper with improved bistability
WO2002009578A1 *Jul 28, 2001Feb 7, 2002Visionrx IncVisual test
Classifications
U.S. Classification430/339, 430/293, 430/156, 430/345, 430/337, 430/341, 430/962, 430/333, 430/167
International ClassificationG03C7/46, G03C7/02, G03C1/685
Cooperative ClassificationY10S430/163, G03C1/685, G03C7/46, G03C7/02
European ClassificationG03C7/46, G03C7/02, G03C1/685
Legal Events
DateCodeEventDescription
Apr 16, 1990ASAssignment
Owner name: SCULLY, RICHARD L., VIRGINIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ROBILLARD, JEAN J.;REEL/FRAME:005283/0972
Effective date: 19890317
May 9, 1995REMIMaintenance fee reminder mailed
Sep 19, 1995SULPSurcharge for late payment
Sep 19, 1995FPAYFee payment
Year of fee payment: 4
Apr 27, 1999REMIMaintenance fee reminder mailed
Oct 3, 1999LAPSLapse for failure to pay maintenance fees
Dec 14, 1999FPExpired due to failure to pay maintenance fee
Effective date: 19991001