Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5061073 A
Publication typeGrant
Application numberUS 07/418,496
Publication dateOct 29, 1991
Filing dateOct 10, 1989
Priority dateOct 12, 1988
Fee statusPaid
Also published asDE3834676A1, DE3834676C2, EP0363620A1, EP0363620B1
Publication number07418496, 418496, US 5061073 A, US 5061073A, US-A-5061073, US5061073 A, US5061073A
InventorsDieter Michel
Original AssigneeDr. Johannes Heidenhain Gmbh
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Photoelectric position measuring arrangement
US 5061073 A
Abstract
A position measuring arrangement is provided which presents a graduation carrier with graduation and reference mark fields to a scanning plate. A prism is allocated to one of the measuring graduation fields and reference mark fields. The prism provides an optical separation of the measuring graduation and reference mark fields transversely to the measuring direction.
Images(2)
Previous page
Next page
Claims(15)
I claim:
1. An apparatus for the photoelectric generation of electrical signals in a length or angle measuring arrangement, the measuring arrangement having at least one illuminating device, a graduation carrier having measuring graduations defined by measuring graduation markings and reference marks having reference graduation markings, a plurality of fields for measuring the measuring graduation markings and reference graduation markings a scanning plate having a plurality of scanning fields for the graduation markings, a plurality of photodetectors and an evaluating circuit, wherein at least the individual graduation markings are formed as phase grids, and wherein the photodetectors detect the radiation diffracted by the graduation markings depending on: (1) the wavelength of the radiation, (2) the orientation and (3) the grid parameters of the markings, the improvement comprising:
the scanning fields for measuring graduation and reference mark fields being arranged substantially symmetrically about the optical axis of the illuminating device, wherein the measuring graduation markings have a different orientation than the reference graduation markings, and the apparatus further comprises means for deflecting optically transversely to the measuring direction for providing optical separation of the radiation diffracted from the measuring graduation and the radiation diffracted from the reference marks.
2. The apparatus according to claim 1 wherein the optically deflecting means is allocated to one of (1) the measuring graduation fields, and (2) the reference mark scanning fields of the scanning plate.
3. The apparatus according to claim 2 wherein the optically deflecting means comprises a prism.
4. The apparatus according to claim 1 wherein at least one of the measuring graduation and the reference marks formed by the reference mark fields comprise phase grids.
5. The apparatus according to claim 1 wherein the reference marks are surrounded by a surrounding-field graduation.
6. The apparatus according to claim 5 wherein the grid lines of the reference marks and of the surrounding-field graduation have the same spatial orientation and wherein the grid lines of the reference marks and of the surrounding-field graduation have different graduation periods.
7. The apparatus according to claim 1 wherein the reference marks on the graduation carrier are offset relative to one another in the measuring direction.
8. The apparatus according to claim 1 wherein the measuring graduation markings are disposed perpendicular to the reference graduation markings.
9. An apparatus for the photoelectric generation of electrical signals in a length or angle measuring arrangement, the measuring arrangement having at least one illuminating device, a graduation carrier having measuring graduation defined by measuring graduation markings and reference marks having reference graduation markings, a plurality of fields for measuring the measuring graduation markings and reference graduation markings, a scanning plate having a plurality of scanning fields for the graduation markings, a plurality of photodetectors and an evaluating circuit, wherein at least the individual graduation markings are formed as phase grids, and wherein the photodetectors detect the radiation diffracted by the graduation markings depending on (1) the wavelength of the radiation, (2) the orientation, and (3) the grid parameters of the markings, the improvement comprising:
the scanning fields for measuring graduation and reference mark fields being arranged substantially symmetrically about the optical axis of the illuminating device, wherein the measuring graduation markings have a different orientation than the reference graduation markings, and the apparatus further comprises means for deflecting optically transversely to the measuring direction for providing optical separation of the radiation diffracted from the measuring graduation and the radiation diffracted from the reference marks, the optically deflecting means being allocated to one of: (1) the measuring graduation fields, and (2), the reference mark scanning fields of the scanning plate.
10. The apparatus according to claim 9 wherein the optically deflecting means comprises a prism.
11. The apparatus according to claim 9 wherein at least one of the measuring graduation and the reference marks formed by the reference mark fields comprise phase grids.
12. The apparatus according to claim 9 wherein the reference marks are surrounded by a surrounding-field graduation.
13. The apparatus according to claim 9 wherein the grid lines of the reference marks and of the surrounding-field graduation have the same spatial orientation and wherein the grid lines of the reference marks and of the surrounding-field graduation have different graduation periods.
14. The apparatus according to claim 9 wherein the reference marks on the graduation carrier are offset relative to one another in the measuring direction.
15. The apparatus according to claim 9 wherein the measuring graduation markings are disposed perpendicular to the reference graduation markings.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to a length or angle measuring arrangement and more particularly to a length or angle measuring arrangement which includes a graduation carrier including a measuring graduation and reference mark fields.

Devices for generating photoelectric electrical signals in length or angle measuring arrangements are known in the art. For example, a position measuring arrangement of this type is disclosed in German DE-C2-3416864. This reference discusses the problems which are peculiar to the generation of reference impulses in such position measuring arrangements and suggest possible solutions to such problems. In the disclosed device, the arrangement of the photodetectors is governed by the wavelength of the light as well as by the orientation of the grid parameters of the phase grids.

However in such arrangements the measuring result may be impaired for example through refracted partial beam bundles of higher order which impinge or fall upon detectors that are allocated or dedicated to other partial beam bundles which are of lower order. Further, if there are geometric and/or optical changes in the measuring arrangement, errors can occur if the individual allocations described above are deviated from further.

Therefore, in view of the above, it is a primary object of the present invention to provide a scanning arrangement wherein a reference mark is scanned in a high-resolution position measuring arrangement having a very large scanning space in relation to the resolution of the measuring graduation of the arrangement.

It is a further object of the present invention to provide a measuring arrangement which is insensitive to tilting, turning, scanning-distance changes, aging of the light source, and other interfering factors to thereby provide a clear allocation of the reference marks to the scanning graduation which remain constantly preserved.

SUMMARY OF THE INVENTION

To achieve the foregoing and other objects of the present invention, a device for the photoelectric generation of electrical signals for use in length or angle measuring arrangements is provided. The arrangement includes at least one illuminating arrangement, a graduation carrier having graduation markings having several fields for measuring graduation marks and reference marks, a scanning plate having several scanning fields for the graduation markings, several photodetectors and an evaluating circuit. The device is configured such that at least individual graduation markings are formed as phase grids. The photodetectors are provided to detect the radiation defracted by the graduation markings which depends on the wavelength of the radiation, and on the orientation and the grid parameters of the graduation markings. Advantageously, the scanning fields for measuring graduation and reference mark fields are arranged substantially symmetrically to the optical axis of the illuminating arrangement. Means are provided for deflecting optically transversely to the measuring direction for providing optical separation of the scanning beam paths of the measuring graduation and reference marks. Preferably the optically deflecting means is allocated to one of the measuring graduation scanning fields and the reference mark scanning fields of the scanning plate.

The arrangement of the present invention has the advantages that the arrangement is insensitive with respect to the interfering factors which are discussed above. Accordingly, the measuring arrangement clearly operates at a much higher level of reliability in its long-term behavior as well as in the attainable relationship of the resolution to the scanning distance.

Additional objects, advantages, and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following description or may be learned by practice of the invention. The objects and advantages of the invention may be obtained by means of the combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a preferred embodiment of the graduation carrier of the present invention.

FIG. 2 illustrates a cut-out of the enlargement labeled X in FIG. 1.

FIG. 3 illustrates a preferred embodiment of an optical arrangement of a device for the scanning of the graduation carrier illustrated in FIG. 1.

FIG. 3a illustrates a preferred embodiment of the detector plate used with the arrangement illustrated in FIG. 3.

FIG. 3b illustrates a preferred embodiment of a scanning plate according to FIG. 1 with the measuring graduation carrier.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

Referring now specifically to the drawings and particularly to FIG. 1, a preferred embodiment of the graduation carrier according to the present invention is illustrated. The graduation carrier is fastened in a manner known in the art and therefore not further specified (not represented) to one of the objects whose position is to be measured. The graduation carrier 1 carries a measuring graduation 2, which is preferably constructed as a phase grid. The graduation carrier preferably has a graduation period of 8μ (microns). A surrounding-field graduation 3 extends along each side of the measuring graduation 2. The surrounding-field graduation 3 is also preferably constructed as a phase grid. Preferably the phase grid of the surrounding-field graduation 3 has a l5μ graduation. In the preferred embodiment illustrated, the grid lines of this surrounding-field graduation 3 preferably run perpendicularly to the grid lines of the measuring graduation 2.

In an exposed location--the so-called calibration or reference point of the measuring graduation--a reference mark RI or two reference marks RI and RII are arranged within the surrounding-field graduation 3.

Referring now to FIG. 2, an enlarged representation of the detail X illustrated in FIG. 1 is illustrated. Reference marks are typically used for the calibration of incremental measuring systems because a reference point of the incremental measuring graduation can be reproduced at any time due to the absolutely fixed position of the reference marks with respect to the measuring graduation. The reference marks RI and RII preferably comprise a number of fields RI1 . . . n and RII1 . . . n, which are arranged within the surrounding-field graduation 3 in a predetermined manner. Specifically, the manner in which the reference marks are arranged is disclosed in U.S. Pat. No. 4,677,293 corresponding to German DE-C2-34l6864 which is referred to above and which is incorporated herein by reference.

The fields RI1 . . . n and RIIi . . . n also have grid lines that run perpendicular to the grid lines of the measuring graduation 2. The grids of the fields RI1 . . . n preferably have a graduation period of 6μ, and the grids of fields RII1 . . . n preferably have a graduation period of 9μ. As best illustrated in FIG. 2 grid lines of the surrounding-field graduation 3 are provided between the fields RI1 . . . n and RIIi...n of the reference marks RI and RII.

Preferably, as illustrated in FIG. 3, the reference marks RI and RII are slightly offset from one another in the measuring direction providing a special evaluation after the scanning. Such an offset mark arrangement is disclosed for example in German DE-C2-3509I02. However, this reference does not disclose the specific arrangement of the reference marks of the present invention which are described above.

Referring now to FIGS. 3 and 3b, a scanning plate 4 is provided in the scanning arrangement for the scanning of the graduation carrier 1. Preferably the scanning plate 4 includes graduation scanning fields A2 and reference mark scanning fields ARI and ARII. These scanning fields A2, ARI and ARII are preferably arranged substantially symmetrically to the optical axis of an illuminating arrangement L. That is, the scanning field A2 is disposed such that it is divided symmetrically about the optical axis of the illuminating arrangement L and the scanning fields ARI and ARII are disposed one on each side of the optical axis.

An optically deflecting means such as a prism 5 is disposed over the measuring graduation scanning field A2. The prism 5 deflects transversely to the measuring direction such that an optical separation of the scanning beam paths in the scanning of the measuring graduation 2 and of the reference marks RI and RII is achieved.

It will however be recognized by those skilled in the art that the scope of the invention contemplates the use of deflecting means other than the prism 5. Similarly it will be recognized that the allocation of the deflecting means to the scanning field A2 of the measuring graduation is not required. For example, the deflecting means may be allocated to the reference mark scanning fields ARI and/or ARII to provide an optical separation of the scanning beam paths. Specific implementation of these variations may be realized by those skilled in the art.

Referring now specifically to FIG. 3a, the plate 6 on which the illuminating arrangement L and photodetectors P1 to P6 is illustrated. Preferably, the photodetectors P1, P2 and P3 are arranged horizontally in series such that the refracted partial beam bundles from the illuminating radiation fall on these three photodetectors P1, P2 and P3 with a phase displacement in each case of 120 relative to one another. The partial beam bundles are generated through refraction on the grids as is described in U.S. Pat. No. 4,776,701 corresponding to EP-B1-0163362 which is incorporated herein by reference. The partial beam bundles are formed by the measuring graduation 2 and the appertaining scanning fields A2.

From the surrounding-field graduation 3, the refracted beam bundles are cast onto the photodetector P4. The refracted partial beam bundles that have been refracted by the reference mark fields RII1 . . . n and RI1 . . . n are cast onto the photodetectors P5 and P6 in cooperation with the appertaining scanning fields ARII and ARI on the scanning plate 4.

The electrical summarizing of the signals generated by the reference marks RI and RII be implemented in a manner known in the art, for example in the manner disclosed in DE-C2-3509l02.

It will be recognized by those skilled in the art that the periods of the grids mentioned above have proved suitable in actual practice, but obviously the invention is not restricted to the particular relationships disclosed and other variations are possible depending on the use contemplated.

Therefore, the present invention provides an arrangement which is insensitive to interfering factors such as tilting, turning, scanning-distance change, aging of the light source and other interfering factors. The device of the present invention achieves a higher operating reliability in long-term behavior. Additionally, the device of the present invention attains a higher operating reliability in relation of the resolution, for example 4μ, to the scanning distance, for example, 2500μ.

The foregoing description of the preferred embodiments of the present invention has been presented for purposes of illustration and description. The embodiments are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. It is intended that the scope of the invention be defined by the following claims, including all equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2886718 *May 24, 1956May 12, 1959Ferranti LtdMeasuring apparatus
US4195909 *Jun 14, 1976Apr 1, 1980Ernst Leitz Wetzlar GmbhScanning grating for a focus detector
US4459750 *Jan 20, 1983Jul 17, 1984Dr. Johannes Heidenhain GmbhReference mark selection arrangement for measuring instrument
US4479716 *Oct 5, 1981Oct 30, 1984Johannes Heidenhain GmbhIncremental measuring instrument
US4677293 *Apr 29, 1985Jun 30, 1987Dr. Johannes Heidenhain GmbhPhotoelectric measuring system
US4766310 *Nov 19, 1986Aug 23, 1988Dr. Johannes Heidenhain GmbhPhotoelectric position measuring instrument with grids
US4776701 *May 20, 1985Oct 11, 1988Dr. Johannes Heidenhain GmbhDisplacement measuring apparatus and method
DE3416864A1 *May 8, 1984Nov 21, 1985Heidenhain Gmbh Dr JohannesPhotoelektrische messeinrichtung
DE3509102A1 *Mar 14, 1985Sep 18, 1986Heidenhain Gmbh Dr JohannesMesseinrichtung
EP0163362A1 *Feb 19, 1985Dec 4, 1985Dr. Johannes Heidenhain GmbHDisplacement measuring apparatus and method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5519492 *Jun 25, 1993May 21, 1996Dr. Johannes Heidenhain GmbhOptical arrangement for detecting the intensity modulation of partial ray beams
US5648658 *Feb 23, 1995Jul 15, 1997Johannes Heidenhain GmbhApparatus and method for generating position-dependent signals using a scanning plate having a plurality of differently configured scanning regions
US5739911 *Jul 12, 1996Apr 14, 1998Dr. Johannes Heidenhain GmbhPosition measuring system
US6175109Dec 16, 1998Jan 16, 2001Renco Encoders, Inc.Encoder for providing incremental and absolute position data
US6429940Feb 24, 2000Aug 6, 2002Dr. Johannes Heidenhain GmbhOptical position measuring system employing a scale with multiple partial measuring graduations having different graduation periods
US6543149 *Oct 17, 2000Apr 8, 2003The Regents Of The University Of CaliforniaCoordinate measuring system
US6907372Sep 14, 2000Jun 14, 2005Dr. Johannes Heidenhain GmbhDevice for position indication and detection of guidance errors
US7114265 *Mar 17, 2004Oct 3, 2006Klingelnberg GmbhApparatus for detecting the position of a probe element in a multi-coordinate measuring device
US7127824 *Mar 17, 2004Oct 31, 2006Klingelnberg GmbhApparatus for detecting the position in space of a carriage moveable along a coordinate axis
DE102010045355A1 *Sep 14, 2010Mar 15, 2012Festo Ag & Co. KgSensor carrier position determination system has coding track with grating assembly that includes different grid regions which are arranged along scanning line with specific grating angle and grating period
EP0754933A2 *Jun 15, 1996Jan 22, 1997Dr. Johannes Heidenhain GmbHPosition measuring device
EP1085291A2 *Sep 2, 2000Mar 21, 2001Dr. Johannes Heidenhain GmbHDevice for determination of positions and faults in guidance
Classifications
U.S. Classification356/619, 356/617, 33/707
International ClassificationG01D5/249, G01D5/36, G01D5/38
Cooperative ClassificationG01D5/38
European ClassificationG01D5/38
Legal Events
DateCodeEventDescription
Apr 3, 2003FPAYFee payment
Year of fee payment: 12
Apr 7, 1999FPAYFee payment
Year of fee payment: 8
Mar 21, 1995FPAYFee payment
Year of fee payment: 4
Dec 7, 1989ASAssignment
Owner name: DR. JOHANNES HEIDENHAIN GMBH, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MICHEL, DIETER;REEL/FRAME:005205/0783
Effective date: 19891113