Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5068199 A
Publication typeGrant
Application numberUS 07/696,438
Publication dateNov 26, 1991
Filing dateMay 6, 1991
Priority dateMay 6, 1991
Fee statusPaid
Also published asDE69221530D1, DE69221530T2, EP0513615A2, EP0513615A3, EP0513615B1
Publication number07696438, 696438, US 5068199 A, US 5068199A, US-A-5068199, US5068199 A, US5068199A
InventorsGurtej S. Sandhu
Original AssigneeMicron Technology, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for anodizing a polysilicon layer lower capacitor plate of a DRAM to increase capacitance
US 5068199 A
Abstract
A method for fabricating a DRAM cell having enhanced-capacitance attributable to the use of a porous structured polycrystalline silicon layer storage node capacitor plate. The present invention is particularly applicable to DRAM cells which employ a stacked capacitor design. Such designs generally employ a conductively-doped polycrystalline silicon layer as the storage node, or lower, capacitor plate. A microstructure is formed by anodizing the storage node plate layer in a solution of hydrofluoric acid to produce microstructures resembling elongated pores in the storage node plate layer. This is followed by the deposition of a thin conformal (typically less than 100 Angstroms) silicon nitride layer which in turn is followed by the deposition of a second polycrystalline silicon (poly) layer, which functions as the capacitor field plate. Since the nitride layer is thin in comparison to the elongated pores in the storage node plate layer, capacitive area is substantially augmented. Cell capacitance can be increased by more than 1,000 percent using a storage node plate having microstructures thus formed.
Images(10)
Previous page
Next page
Claims(44)
What is claimed is:
1. A method of fabricating a storage capacitor having an intrinsic silicon layer doped with an impurity to produce an extrinsic first doped silicon conductive layer forming a storage node capacitor plate comprising the following steps:
a) anodizing said first doped silicon layer, said anodizing producing a porous upper surface by consuming portions of said first doped silicon layer to produce micro structures resembling elongated pores, a porosity of said porous upper surface measured by a porous film density, said porous film density equal to the percent of weight loss for a given volume of said first doped silicon layer experience during said anodizing, said anodizing increasing a surface area of said storage node capacitor plate;
b) depositing a dielectric layer to overlie said first doped silicon layer, said dielectric layer having lower and upper surfaces, the porous upper surface of said first doped silicon layer being in contact at all points with the lower surface of said dielectric layer, said dielectric layer being substantially conformal with the porous upper surface of said first doped silicon layer; and
c) depositing of an intrinsic silicon layer doped with an impurity to produce an extrinsic second doped silicon conductive layer to overlie said dielectric layer, said second doped silicon layer having lower and upper surfaces, said lower surface being in contact with the upper surface of said dielectric layer and being substantially conformal thereto.
2. The method of claim 1, wherein said first and second doped silicon layers comprise polycrystalline silicon.
3. The method of claim 1, wherein said first and second doped silicon layers comprise monocrystalline silicon.
4. The method of claim 1, wherein said first and second doped silicon layers are positively doped.
5. The method of claim 4, wherein said impurity is a trivalent atom comprising aluminum, boron and gallium, said trivalent atom effecting said positively doped layers.
6. The method of claim 1, wherein said first and second doped silicon layers are negatively doped layers.
7. The method of claim 6, wherein said impurity is a pentavalent atom comprising arsenic, antimony, and phosphorus, said pentavalent atom effecting said negatively doped layers.
8. The method of claim 1, wherein said first and second doped silicon layers are oppositely doped, one of said doped layers being negatively doped and one of said doped layers being positively doped.
9. The method of claim 8, wherein said impurity is a trivalent atom comprising aluminum, boron and gallium, said trivalent atom effecting said positively doped layers.
10. The method of claim 8, wherein said impurity is a pentavalent atom comprising arsenic, antimony, and phosphorus, said pentavalent atom effecting said negatively doped layers.
11. The method of claim 1, wherein said depositing of the dielectric layer further comprises depositing a silicon nitride layer.
12. The method of claim 11 wherein the thickness of said silicon nitride layer is less than 100 Angstroms.
13. The method of claim 1, wherein said anodizing further comprises submerging said first doped silicon layer in a container of electrolytic solution comprising hydrofluoric acid and subjecting said first doped silicon layer and said electrolytic solution to an electrolytic current, said current generated between two electrodes, one being an anode and one being a cathode.
14. The method of claim 13, wherein said anode further comprises said first doped silicon layer.
15. The method of claim 13, wherein said first doped silicon layer is a portion of a semiconductor wafer, said anode comprising said wafer.
16. The method of claim 13, wherein said container is defined by walls, said cathode comprising said walls.
17. The method of claim 13, wherein said cathode further comprises a platinum electrode immersed in said electrolytic solution parallel to said first doped silicon layer.
18. The method of claim 13, further comprising applying said electrolytic current within the range of 10 mA/cm2 and 100 mA/cm2 in said hydrofluoric acid solution having a concentration between 10 to 60 percent by weight.
19. The method of claim 18, further comprising regulating said porous film density within the range of 20 to 70 percent, with a preferred porous film density of about 45 percent.
20. The method of claim 13, further comprising the step of a first texturizing of the upper surface of said first doped silicon layer prior to said anodizing to produce three-dimensional asperities to increase current flow and initiate pores in said first doped silicon layer during said anodizing.
21. The method of claim 20, wherein said first texturizing comprises:
a) growing a layer of oxide on said first doped silicon layer prior to said anodizing to produce inhomogeneities to increase current flow and initiate pores in said first doped silicon layer during said anodizing; and
b) removing of said layer of oxide to expose said first doped silicon layer.
22. The method of claim 21, wherein said growing of said layer of oxide is accomplished with a wet oxidation.
23. The method of claim 21, wherein said removing is accomplished with a wet oxide etch.
24. The method of claim 13, further comprising the step of a second texturizing of the porous upper surface subsequent to said anodizing to increase the surface area of said storage node capacitor plate.
25. The method of claim 24, wherein said second texturizing comprises:
a) growing a layer of oxide on the porous upper surface subsequent to said anodizing to increase porous film density; and
b) removing of said layer of oxide to expose said porous upper surface.
26. The method of claim 23, wherein said growing of said layer of oxide is accomplished with a wet oxidation.
27. The method of claim 23, wherein said removing is accomplished with a wet oxide etch.
28. A method of fabricating an enhanced-capacitance DRAM cell comprising the following steps:
a) constructing a field-effect transistor (FET) on a silicon substrate, a first portion of said substrate being conductively-doped to function as the FET's access node junction and a second portion of said substrate being conductively-doped to function as the FET's storage node junction;
b) fabricating a storage capacitor having an intrinsic silicon layer doped with an impurity to produce an extrinsic first doped silicon conductive layer forming a storage node capacitor plate in electrical communication with said storage node junction comprising the following steps:
1) anodizing said first doped silicon layer, said anodizing producing a porous upper surface by consuming portions of said first doped silicon layer to produce micro structures resembling elongated pores, a porosity of said porous upper surface measured by a porous film density, said porous film density equal to the percent of weight loss for a given volume of said first doped silicon layer experience during said anodizing, said anodizing increasing a surface area of said storage node capacitor plate;
2) depositing a dielectric layer to overlie said first doped silicon layer, said dielectric layer having lower and upper surfaces the porous upper surface of said first doped silicon layer being in contact at all points with the lower surface of said dielectric layer, said dielectric layer being substantially conformal with the porous upper surface of said first doped silicon layer; and
3) depositing of an intrinsic silicon layer doped with an impurity to produce an extrinsic second doped silicon conductive layer to overlie said dielectric layer, said second doped silicon layer having lower and upper surfaces, said lower surface being in contact with the upper surface of said dielectric layer and being substantially conformal thereto.
29. The method of claim 28, further comprises:
a) forming an oxide layer to provide a texturized surface;
b) performing a wet oxidation to form said oxide layer; and
c) removing said oxide layer with a wet oxide etch.
30. The method of claim 28, wherein said first and second doped silicon layers comprise polycrystalline silicon and monocrystalline silicon.
31. The method of claim 28, further comprising said first and second doped silicone layers being positively doped, said first and second doped silicon layers being negatively doped, and said first and second doped silicon layers being oppositely doped, one of said doped layers being negatively doped and one of said doped layers being positively doped.
32. The method of claim 28, wherein said impurity is a trivalent atom comprising aluminum, boron and gallium.
33. The method of claim 28, wherein said impurity is a pentavalent atom comprising arsenic, antimony, and phosphorus.
34. The method of claim 28, wherein said depositing of the dielectric layer further comprises depositing a silicon nitride layer.
35. The method of claim 34, wherein the thickness of said silicon nitride layer is less than 100 Angstroms.
36. The method of claim 28, wherein said anodizing further comprises submerging said first doped silicon layer in a container of electrolytic solution comprising hydrofluoric acid and subjecting said first doped silicon layer and said electrolytic solution to an electrolytic current, said current generated between two electrodes, one being an anode and one being a cathode.
37. The method of claim 36, wherein said anode comprises said first doped silicon layer and said silicon substrate.
38. The method of claim 36, wherein said container is defined by walls, said cathode comprising said walls and a platinum electrode immersed in said electrolytic solution parallel to said first doped silicon layer.
39. The method of claim 36, further comprising applying said electrolytic current within the range of 10 mA/cm2 and 100 mA/cm2 in said hydrofluoric acid solution having a concentration between 10 to 60 percent by weight.
40. The method of claim 39, further comprising regulating said porous film density within the range of 20 to 70 percent, with a preferred porous film density of about 45 percent.
41. The method of claim 36, further comprising the step of texturizing of the upper surface of said first doped silicon layer prior to said anodizing to produce three-dimensional asperities to increase current flow and initiate pores in said first doped silicon layer during said anodizing.
42. The method of claim 41, wherein said texturizing comprises:
a) growing a layer of oxide on said first doped silicon layer prior to said anodizing to produce inhomogeneities to increase current flow and initiate pores in said first doped silicon layer during said anodizing; and
b) removing of said layer of oxide to expose said first doped silicon layer.
43. The method of claim 36, further comprising the step of texturizing of the porous upper surface subsequent to said anodizing to increase the surface area of said storage node capacitor plate.
44. The method of claim 43, wherein said texturizing comprises:
a) growing a layer of oxide on the porous upper surface subsequent to said anodizing to increase porous film density; and
b) removing of said layer of oxide to expose said porous upper surface.
Description
FIELD OF THE INVENTION

This invention relates to semiconductor technology and, more specifically, to the design of capacitors used in dynamic random access memory (DRAM) cells. The focus of the invention is the formation of micro structures for increasing the capacitance of a DRAM cell having a polysilicon storage node capacitor plate, without increasing cell area and without utilizing any additional masking steps.

BACKGROUND OF THE INVENTION

The invention uses various materials which are electrically either conductive, insulative or semiconductive, although the completed semiconductor circuit device itself is usually referred to as a "semiconductor."

The memory cells of dynamic random access memories (DRAMs) are comprised of two main components: a field-effect transistor and a capacitor. In DRAM cells utilizing a conventional planar capacitor (such as the one depicted in FIG. 1), far more chip surface area is dedicated to planar capacitor 11 than to field-effect transistor (FET) 12. The gate 13 of FET 12 and the word line 14 are formed from an etched polycrystalline silicon-1 layer. Bit line 15 connects with access-node junction 16. Capacitor 11 has a lower plate formed from the n+silicon substrate extension 17 of storage node junction 18 of FET 12. Upper capacitor plate (or field plate) 19 is formed from a layer of conductively-doped polycrystalline silicon. Substrate extension 17 is electrically insulated from upper plate 19 by a dielectric layer 20. Planar capacitors have generally proven adequate for use in DRAM chips up to the one-megabit level. However, planar capacitors constructed with conventional dielectric materials appear to be unusable beyond the one-megabit DRAM level. As component density in memory chips has increased, the shrinkage of cell capacitor size has resulted in a number of problems. Firstly, the alpha-particle component of normal background radiation will generate hole-electron pairs in the n+ silicon substrate plate of a cell capacitor. This phenomena will cause the charge within the affected cell capacitor to rapidly dissipate, resulting in a "soft" error. Secondly, as cell capacitance is reduced, the sense-amp differential signal is reduced. This aggravates noise sensitivity and makes it more difficult to design a sense-amp having appropriate signal selectivity. Thirdly, as cell capacitance is decreased, the cell refresh time must generally be shortened, thus requiring more frequent interruptions for refresh overhead. The difficult goal of a DRAM designer is therefore to increase or, at least, maintain cell capacitance as cell size shrinks, without resorting to processes that reduce product yield or that markedly increase the number of masking and deposition steps in the production process.

Several methods for providing adequate cell capacitance in the face of shrinking cell size are either in use or under investigation. Basically, the efforts fall into two categories. Efforts within the first category are aimed at creating complex three-dimensional capacitors; those within the second are aimed at improving the dielectric of the planar capacitor.

The three-dimensional technique currently receiving the most attention involves the creation of "trench" capacitors in the cell substrate. FIG. 2 depicts a DRAM cell having a typical trench capacitor 21. Similar in concept to planar capacitor 11 of FIG. 1, the trench is employed to provide greater plate area, and hence, greater capacitance. The lower plate 22 may be formed from the n+doped silicon substrate or it may be formed from a polysilicon layer which lines a trenoh cut in the n+ doped silicon substrate. The upper plate 23 is formed from a layer of conductively-doped polycrystalline silicon (poly). Lower plate 22 and upper plate 23 are electrically insulated with a dielectric layer 24. DRAM chips employing trench capacitors have been built by a number of European, Japanese and U.S. companies, including IBM Corporation, Texas Instruments, Inc., Nippon Electric Company, Toshiba, Matsuchita and Mitsubishi Electric Corporation. There are several problems inherent in the trench design, not the least of which is trench-to-trench capacitive charge leakage which is the result of a parasitic transistor effect between trenches. Another problem is the difficulty of completely cleaning the capacitor trenches during the fabrication process; failure to completely clean a trench will generally result in a defective cell.

Another three-dimensional technique, which is being used by Mitsubishi Electric Corporation, Hitachi, and Fujitsu, Ltd., is the stacking of capacitor plates between dielectric layers on the DRAM cell surface. FIG. 3 is a graphic representation of a typical DRAM cell having a stacked capacitor 31. The lower plate 32 is formed from an n-type polycrystalline silicon layer which is in contact with the silicon substrate 33 in the region of the FET storage node junction, while the upper plate 34 is formed from a conductively-doped polycrystalline silicon layer. The two layers are separated by a dielectric layer 35. Lower plate 32 and upper plate 34 are both stacked on top of FET 12 and word line 36, resulting in a high-profile cell which requires more stringent process control for the connection of bit line 37 to access-node junction 38.

Alternately, other schemes involve the use of ferroelectric materials for DRAM cell capacitor dielectrics. Since ferroelectric materials have a dielectric constant more than 100 times that of silicon oxides, the use of such materials has the potential for allowing the size of DRAM cell capacitor to be shrunk to one of the smaller cell elements without resorting to three-dimensional structures. Critics of ferroelectric materials point out that such materials suffer from a "wearout" mechanism. In addition, they warn that there are many chemical incompatibilities with the other materials used in integrated circuit fabrication and that the layering of ferroelectric films within integrated circuit structures has not yet been done successfully.

The present invention utilizes a porous semiconductor as a storage node capacitor plate. Micro structures are formed by anodizing the semiconductor in hydrofluoric acid to produce the porous semiconductor. An article entitled "Microstructure and Formation Mechanism of Porous Silicon" by M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Culis, and J. D. Benjamin presents a systematic study of the formation and properties of micro structures produced in a semiconductor subjected to anodization in hydrofluoric acid. Elongated pores are formed in the semiconductor where an anodizing current flows. Inhomogeneities at the semiconductor-electrolyte interface result in localization of the current flow and the initiation of pores. Since the semiconductor between the inhomogeneities is highly resistive in comparison to the electrolyte concentrated at the inhomogeneities, the current flow is concentrated down the electrolyte at the inhomogeneities consuming the silicon and forming elongated pores and resulting in a microstructure comprising elongated pores.

SUMMARY OF THE INVENTION

The present invention is applicable to DRAM cell designs, such as the stacked capacitor design heretofore described or a poly-lined trench design, that utilize a conductively-doped polycrystalline layer for the storage node, or lower, capacitor plate. The invention is a method for anodizing the storage node plate in hydrofluoric acid employed to create micro structures on the upper surface of the storage node plate. The micro structures are typified as elongated pores. The micro structures increase the capacitance of the stacked capacitor without increasing cell size by providing a larger storage node plate area in the same cell area. The porous film density after anodization is one measure of the effectiveness of the anodization in creating the micro structures. The porous film density is equal to the percent of weight loss (for a given volume of material anodized) experienced during anodizing.

In addition to the formation of micro structures, a texturization process may be employed to create three-dimensional asperities on the upper surface of the storage node plate prior to the anodizing. The texturization process provides more inhomogeneities for the localization of current and the initiation of pores. A final texturization process may also be employed subsequent to the anodization to provide three-dimensional asperities on the sides of the micro structures formed during anodization. The final texturization further increases the surface area of the storage node plate without increasing cell size.

Both the texturization prior to and subsequent to the anodization are accomplished by subjecting the storage node plate layer to a wet oxidation step. Since oxidation at the crystal grain boundaries on the surface of the poly layer proceeds more rapidly than elsewhere, the surface develops three-dimensional asperities. When maximum texturization has been achieved, the overlying oxide is removed during a wet etch step.

With texturization complete, a thin conformal (typically less than 100 Angstroms) dielectric layer of silicon nitride is deposited on top of the texturized poly layer. The nitride deposition is followed by the deposition of a second poly layer, which functions as the capacitor field plate. Since the nitride layer is thin in comparison to the texturized micro structures of the storage node plate layer, capacitive area is substantially augmented. Cell capacitance can be increased by more than 1,000 percent using a storage node plate so texturized.

It should be noted that the texturization process was developed by Xicor, Inc. as a means to increase electron injection during write and erase operations in electrically-erasable programmable read-only memory (EEPROM) cells. During EEPROM construction, texturization is followed by thermal oxidation of the texturized surface. The three-dimensional asperities on the surface of the poly create regions of increased electric field strength, which both lowers breakdown voltage of the thermally-grown oxide and enhances current leakage by several orders of magnitude. The thermal oxide thus functions as a tunneling layer. Because conduction in silicon dioxide is electrode limited, generally considered to be in accordance with what is known as the Fowler-Nordheim mechanism, the use of thin layers of silicon dioxide as a DRAM cell dielectric between two roughened surfaces is precluded. However, because conduction in silicon nitride is bulk limited, most likely in accordance with what is known as the Frankel-Poole mechanism, silicon nitride is a much more suitable thin layer dielectric for use in DRAMs where capacitive layers are not smooth.

This texturizing process was also described in U.S. Pat. application 7/460,453, filed Jan. 3, 1990, entitled "DRAM Cell Having a Texturized Polysilicon Lower Capacitor Plate for Increased Capacitance," by inventors Pierre C. Fazan and Ruojia R. Lee.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 through 3 depict existing technologies, while FIGS. 4 through 11 depict the fabrication of a DRAM array having a capacitor design conforming to the present invention.

FIG. 1 is a cross-sectional view of a DRAM cell having a conventional planar capacitor.

FIG. 2 is a cross-sectional view of a DRAM cell having a typical trench capacitor.

FIG. 3 is a cross-sectional view of a DRAM cell having a typical stacked capacitor.

FIG. 4 is a cross-sectional view of a DRAM cell of the stacked capacitor design type during the fabrication process and subsequent to the deposition of the storage node poly layer.

FIG. 5 is a cross-sectional view of the DRAM cell of FIG. 4 following a wet oxidation of the storage node poly layer.

FIG. 6 is a cross-sectional view of the DRAM cell of FIG. 5 following a wet oxide etch which removes oxide that accumulated on the storage node poly layer during the wet oxidation step.

FIG. 7 is a cross-sectional view of the DRAM cell of FIG. 6 following anodizing of the storage node poly layer.

FIG. 8a is an exaggerated enlarged cross-sectional view of a portion of the microstructure formed during the anodizing step shown in FIG. 7.

FIG. 8b is a cross-sectional view of FIG. 8a following a wet oxidation of the storage node poly layer. following a wet oxide etch which removes oxide that accumulated on the storage node poly layer during the wet oxidation step.

FIG. 9 is a cross-sectional view of the DRAM cell of FIG. 7 following the oxidation and etch depicted in FIGS. 8b and 8c.

FIG. 10 is a cross-sectional view of the DRAM cell of FIG. 9 following the blanket deposition of a dielectric layer, the blanket deposition of a polysilicon cell plate layer, and the masking of the cell plate layer.

FIG. 11 is an exaggerated enlarged cross-sectional view of a portion of the DRAM cell of FIG. 10 following the blanket deposition of a dielectric layer and the blanket deposition of a polysilicon cell plate layer.

FIG. 12 is a cross-sectional view of the DRAM cell of FIG. 10 following the etching of the polysilicon cell plate layer.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 4, a DRAM cell 50 of stacked capacitor design is shown during the early stages of the fabrication process using a portion of a wafer of intrinsic polycrystalline silicon (poly). The cell's field-effect transistor (FET) 51 and word line 52 have already been formed. The FET gate 53, formed from a poly-1 layer, is covered on the top and sides by a silicon oxide spacer layer 55. A poly-2 layer 57, from which will be formed the cell's storage node capacitor plate, has been deposited over the FET 51, the word line 52, the storage node junction 58, and the access node junction 59. Poly-2 layer 57 is then doped with phosphorus to produce an extrinsic conductive poly-2 layer.

Referring now to FIG. 5, poly-2 layer 57 has been subjected to a wet oxidation step, which has created a multitude of three-dimensional asperities (inhomogeneities) on the surface of poly-2 layer 57. Conductive doping of poly-2 layer 57 was done prior to the wet oxidation step because the oxidation proceeds more rapidly at polysilicon crystal boundaries when the material is doped. In addition, the wet oxidation process has created an intermediate oxide layer 60 which covers the now texturized poly-2 layer 57.

Referring now to FIG. 6, a wet oxide etch has removed intermediate oxide layer 60 which covered poly-2 layer 57, thus exposing the now texturized surface 61 of poly-2 layer 57.

Referring now to FIG. 7, the poly-2 layer 57 has been anodized by submerging the wafer in a container of electrolytic solution of hydrofluoric acid and subjecting the wafer to an electrolytic current. The electrolytic current is generated between two electrodes, an anode and a cathode. The wafer, or poly-2 layer 57, comprises the anode. The container, or a platinum electrode immersed in the electrolytic solution parallel to the poly-2 layer 57, comprises the cathode.

Typically anodizing creates a porous surface on the material employed as the anode. In this case, silioon 62, having a microstructure 63 resembling elongated pores, is formed by the anodic conversion of the poly-2 layer 57 silicon in the hydrofluoric acid. An enlarged exaggerated depiction of the porous substrate 62 formed by anodic conversion is shown in cross section in FIGS. 8a, 8b and 8c. FIG. 8a is an enlargement of portion 64 of FIG. 7 depicting the microstructure 63 of the porous layer 62. The anodic conversion of the poly-2 layer 57 increases the porous film density of the poly-2 layer 57. Since inhomogeneities at the start of anodization result in localization of the current flow to initiate pores, the wet oxidation prior to anodization will further increase the anodization of the poly-2 layer 57 typically has a charge within the range of 10 mA/cm2 and 100 mA/cm2 and is performed in a hydrofluoric acid solution having a concentration between 10 to 60 percent by weight. The anodization charge and concentration of hydrofluoric acid solution are typically chosen to produce a porous film density of substantially 45 percent.

Referring now to FIG. 8b, the porous silicon 62 has been subjected to a second wet oxidation step filling the pores with an intermediate oxide layer 65 which covers the porous silicon 62. The oxidation step creates a texturized surface 66 comprising a multitude of three-dimensional asperities on the sides of the filled pores 63.

Referring now to FIG. 8c, a wet oxide etch has removed intermediate oxide layer 65 which covered the porous silioon 62, thus exposing the texturized surface 66 of the porous silicon 62. The texturized surface 66 is present on the porous silicon 62 shown in FIGS. 9 through 11. However, because of its minute size it is not discernable in the Figures.

Referring now to FIG. 9, porous silicon 62 has been masked with first photomask 67 and etched (patterned) to form the cell's storage node capacitor plate 68. The etch also exposed the access node junction 59.

Referring now to FIG. 10, photomask 67 has been removed and the conformal blanket deposition of a dielectric layer of silicon nitride 69 has taken place. The dielectric layer has a thickness of less than 100 Angstroms. It is necessary for the dielectric layer to provide good step coverage and its deposition is followed by the blanket deposition of a poly-3 layer 70, conductive doping of poly-3 layer 70 with phosphorus, and the masking of poly-3 layer with second photomask 71.

FIG. 11 is an exaggerated enlargement of portion 72 of FIG. 10 depicting the conformal deposition of silicon nitride 69 followed by the blanket deposition of the poly-3 layer 70.

Referring now to FIG. 12, poly-3 layer 70 and silicon nitride layer 69 have been etched, forming a cell plate 73, which functions as the cell capacitor's field plate, being dielectrically insulated from storage node capacitor plate 68 by silicon nitride layer 69. The process is completed with a conformal deposition of oxide 74 etched to expose access node junction 59. A bit line 76 is then deposited and patterned to contact the access node junction 59.

By anodizing the poly-2 layer 57 no additional masking steps are needed to increase the surface area of the cell's storage node capacitor plate while retaining the lateral dimension of the cell's storage node capacitor plate. By increasing the surface area, the capacitance of the cell's storage node capacitor is greatly increased.

In addition to negatively doping of the poly with phosphorus other pentavalent impurity atoms comprising arsenic, and antimony, may be used. Alternately, the poly may be positively doped by using trivalent impurity atoms comprising aluminum, boron and gallium.

The invention may also be implemented wherein the stacked capacitor is fabricated overlaying the bit lines. Monocrystalline silicon may also be used in place of polycrystalline.

Although only a single embodiment of the invention has been described herein, it will be apparent to one skilled in the art that changes and modifications may be made thereto without departing from the spirit and the scope of the invention as claimed.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
JPS6429956A * Title not available
JPS6442161A * Title not available
JPS6487847A * Title not available
JPS61279166A * Title not available
Non-Patent Citations
Reference
1Fazan et al., "Electrical Characterization of Textured Interpolycapacitors for Advanced Stacked DRAMs", IEDM, 1990, pp. 663-666.
2 *Fazan et al., Electrical Characterization of Textured Interpolycapacitors for Advanced Stacked DRAMs , IEDM, 1990, pp. 663 666.
3M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin; "Microstructure and Formation Mechanism of Pourous Silicon;" Jan. 1, 1985, Appl. Phys. Lett., pp. 86-88.
4 *M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin; Microstructure and Formation Mechanism of Pourous Silicon; Jan. 1, 1985, Appl. Phys. Lett., pp. 86 88.
5Mine et al., "Capacitance-Enhanced Stacked-Capacitor with Engraved Storage Electrode for Deep Submicron DRAMs", Extended Abstracts of the 21st Conference of Solid State Devices and Materials, Aug. 89, Tokyo, pp. 137-140.
6 *Mine et al., Capacitance Enhanced Stacked Capacitor with Engraved Storage Electrode for Deep Submicron DRAMs , Extended Abstracts of the 21st Conference of Solid State Devices and Materials, Aug. 89, Tokyo, pp. 137 140.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5138411 *May 6, 1991Aug 11, 1992Micron Technology, Inc.Anodized polysilicon layer lower capacitor plate of a dram to increase capacitance
US5208176 *Oct 25, 1990May 4, 1993Micron Technology, Inc.Method of fabricating an enhanced dynamic random access memory (DRAM) cell capacitor using multiple polysilicon texturization
US5227322 *Apr 14, 1992Jul 13, 1993Samsung Electronics Co., Ltd.Method for manufacturing a highly integrated semiconductor device having a capacitor of large capacitance
US5227651 *Feb 28, 1992Jul 13, 1993Samsung Electronics, Co., Ltd.Semiconductor device having a capacitor with an electrode grown through pinholes
US5234857 *May 8, 1992Aug 10, 1993Samsung Electronics, Co., Ltd.Method of making semiconductor device having a capacitor of large capacitance
US5238862 *Mar 18, 1992Aug 24, 1993Micron Technology, Inc.Method of forming a stacked capacitor with striated electrode
US5244842 *Dec 17, 1991Sep 14, 1993Micron Technology, Inc.Method of increasing capacitance by surface roughening in semiconductor wafer processing
US5266514 *Dec 21, 1992Nov 30, 1993Industrial Technology Research InstituteMethod for producing a roughened surface capacitor
US5300801 *Apr 28, 1993Apr 5, 1994Micron Technology, Inc.Stacked capacitor construction
US5324679 *Feb 28, 1992Jun 28, 1994Samsung Electronics Co., Ltd.Method for manufacturing a semiconductor device having increased surface area conductive layer
US5372962 *Feb 1, 1993Dec 13, 1994Nec CorporationMethod of making a semiconductor integrated circuit device having a capacitor with a porous surface of an electrode
US5405801 *Mar 1, 1993Apr 11, 1995Samsung Electronics Co., Ltd.Method for manufacturing a capacitor of a semiconductor device
US5427974 *Mar 18, 1994Jun 27, 1995United Microelectronics CorporationMethod for forming a capacitor in a DRAM cell using a rough overlayer of tungsten
US5429979 *Jul 13, 1994Jul 4, 1995Industrial Technology Research InstituteMethod of forming a dram cell having a ring-type stacked capacitor
US5445986 *Sep 1, 1994Aug 29, 1995Nec CorporationMethod of forming a roughened surface capacitor with two etching steps
US5466627 *Mar 18, 1994Nov 14, 1995United Microelectronics CorporationStacked capacitor process using BPSG precipitates
US5482882 *Mar 18, 1994Jan 9, 1996United Microelectronics CorporationMethod for forming most capacitor using polysilicon islands
US5482885 *Mar 18, 1994Jan 9, 1996United Microelectronics Corp.Method for forming most capacitor using poly spacer technique
US5492848 *Mar 18, 1994Feb 20, 1996United Microelectronics Corp.Stacked capacitor process using silicon nodules
US5508542 *Oct 28, 1994Apr 16, 1996International Business Machines CorporationPorous silicon trench and capacitor structures
US5512768 *Mar 18, 1994Apr 30, 1996United Microelectronics CorporationCapacitor for use in DRAM cell using surface oxidized silicon nodules
US5580814 *Sep 11, 1995Dec 3, 1996Ramtron International CorporationMethod for making a ferroelectric memory cell with a ferroelectric capacitor overlying a memory transistor
US5583368 *Aug 11, 1994Dec 10, 1996International Business Machines CorporationStacked devices
US5635419 *May 4, 1995Jun 3, 1997International Business Machines CorporationPorous silicon trench and capacitor structures
US5644156 *Apr 12, 1995Jul 1, 1997Kabushiki Kaisha ToshibaPorous silicon photo-device capable of photoelectric conversion
US5872033 *Nov 21, 1995Feb 16, 1999Micron Technology, Inc.Method for increasing capacitance of an HSG rugged capacitor using a phosphine rich oxidation and subsequent wet etch
US5930626 *Nov 1, 1996Jul 27, 1999Lg Semicon Co., Ltd.Method of fabricating capacitor of memory cell
US5932333 *Apr 8, 1998Aug 3, 1999United Silicon IncorporatedMethod for manufacturing charge storage electrode
US5933727 *Dec 9, 1997Aug 3, 1999Micron Technology, Inc.Method for increasing capacitance of an HSG rugged capacitor using a phosphine rich oxidation and subsequent wet etch
US6074926 *Mar 7, 1997Jun 13, 2000Micron Technology, Inc.Method of increasing capacitance by surface roughening in semiconductor wafer processing
US6124607 *Jun 11, 1998Sep 26, 2000Micron Technology, Inc.Capacitive memory cell
US6160285 *Dec 21, 1998Dec 12, 2000Micron Technology, Inc.Polysilicon electrode with increased surface area and method for making same
US6190992Jul 15, 1996Feb 20, 2001Micron Technology, Inc.Method to achieve rough silicon surface on both sides of container for enhanced capacitance/area electrodes
US6236078 *Sep 19, 1997May 22, 2001Oki Electric Industry Co., Ltd.Semiconductor memory device
US6258660Feb 12, 1999Jul 10, 2001Micron Technology, Inc.Method of making a self-aligned recessed container cell capacitor
US6303956Feb 26, 1999Oct 16, 2001Micron Technology, Inc.Conductive container structures having a dielectric cap
US6333226Oct 22, 1999Dec 25, 2001Oki Electric Industry Co., Ltd.Method of manufacturing semiconductor memory device having a capacitor
US6358793Feb 26, 1999Mar 19, 2002Micron Technology, Inc.Method for localized masking for semiconductor structure development
US6429127Jun 8, 2000Aug 6, 2002Micron Technology, Inc.Methods for forming rough ruthenium-containing layers and structures/methods using same
US6476435 *Sep 30, 1997Nov 5, 2002Micron Technology, Inc.Self-aligned recessed container cell capacitor
US6482689Jun 27, 2001Nov 19, 2002Micron Technology, Inc.Stacked local interconnect structure and method of fabricating same
US6482736Jun 8, 2000Nov 19, 2002Micron Technology, Inc.Methods for forming and integrated circuit structures containing enhanced-surface-area conductive layers
US6498088Nov 9, 2000Dec 24, 2002Micron Technology, Inc.Stacked local interconnect structure and method of fabricating same
US6528436Feb 17, 2000Mar 4, 2003Micron Technology. Inc.Method of forming silicon nitride layer directly on HSG polysilicon
US6544881Feb 14, 2002Apr 8, 2003Micron Technology, Inc.Stacked local interconnect structure and method of fabricating same
US6555478Jan 15, 2002Apr 29, 2003Micron Technology, Inc.Stacked local interconnect structure and method of fabricating same
US6573554Jul 24, 2001Jun 3, 2003Micron Technology, Inc.Localized masking for semiconductor structure development
US6590246Feb 8, 2000Jul 8, 2003Micron Technology, Inc.Structures and methods for improved capacitor cells in integrated circuits
US6596583Oct 29, 2001Jul 22, 2003Micron Technology, Inc.Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US6613641 *Jan 17, 2001Sep 2, 2003International Business Machines CorporationProduction of metal insulator metal (MIM) structures using anodizing process
US6639266Aug 30, 2000Oct 28, 2003Micron Technology, Inc.Modifying material removal selectivity in semiconductor structure development
US6660610 *Jul 8, 1996Dec 9, 2003Micron Technology, Inc.Devices having improved capacitance and methods of their fabrication
US6764943Jul 15, 2002Jul 20, 2004Micron Technology, Inc.Methods for forming and integrated circuit structures containing enhanced-surface-area conductive layers
US6784504Oct 25, 2001Aug 31, 2004Micron Technology, Inc.Methods for forming rough ruthenium-containing layers and structures/methods using same
US6812112Sep 26, 2001Nov 2, 2004Micron Technology, Inc.Methods for forming and integrated circuit structures containing enhanced-surface-area conductive layers
US6818501Jul 9, 2001Nov 16, 2004Micron Technology, Inc.Method of making a self-aligned recessed container cell capacitor
US6831001Apr 4, 2003Dec 14, 2004Micron Technology, Inc.Method of fabricating a stacked local interconnect structure
US6833576Oct 29, 2001Dec 21, 2004Micron Technology, Inc.Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US6833579Aug 30, 2001Dec 21, 2004Micron Technology, Inc.Conductive container structures having a dielectric cap
US6838353Feb 9, 1999Jan 4, 2005Micron Technology, Inc.Devices having improved capacitance and methods of their fabrication
US6858525Apr 4, 2003Feb 22, 2005Micron Technology, Inc.Stacked local interconnect structure and method of fabricating same
US6897160Oct 25, 2001May 24, 2005Micron Technology, Inc.Methods for forming rough ruthenium-containing layers and structures/methods using same
US6946357Aug 30, 2001Sep 20, 2005Micron Technology, Inc.Conductive container structures having a dielectric cap
US6992368Apr 25, 2003Jan 31, 2006International Business Machines CorporationProduction of metal insulator metal (MIM) structures using anodizing process
US7015529Jun 3, 2003Mar 21, 2006Micron Technology, Inc.Localized masking for semiconductor structure development
US7105405 *Jan 26, 2001Sep 12, 2006Micron Technology, Inc.Rugged metal electrodes for metal-insulator-metal capacitors
US7126205Sep 22, 2004Oct 24, 2006Micron Technology, Inc.Devices having improved capacitance and methods of their fabrication
US7144810May 19, 2005Dec 5, 2006Micron Technology, Inc.Methods for forming rough ruthenium-containing layers and structures/methods using same
US7199415Aug 31, 2004Apr 3, 2007Micron Technology, Inc.Conductive container structures having a dielectric cap
US7205599Dec 22, 1999Apr 17, 2007Micron Technology, Inc.Devices having improved capacitance
US7253076Jun 8, 2000Aug 7, 2007Micron Technologies, Inc.Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US7253102Jun 2, 2004Aug 7, 2007Micron Technology, Inc.Methods for forming and integrated circuit structures containing enhanced-surface-area conductive layers
US7298000Jul 17, 2006Nov 20, 2007Micron Technology, Inc.Conductive container structures having a dielectric cap
US7314822Feb 3, 2005Jan 1, 2008Micron Technology, Inc.Method of fabricating stacked local interconnect structure
US7468534Aug 30, 2005Dec 23, 2008Micron Technology, Inc.Localized masking for semiconductor structure development
US7491602Jul 8, 2003Feb 17, 2009Micron Technology, Inc.Structures and methods for improved capacitor cells in integrated circuits
US7560351Jan 3, 2006Jul 14, 2009Infineon Technologies AgIntegrated circuit arrangement with low-resistance contacts and method for production thereof
US7868369Nov 21, 2008Jan 11, 2011Micron Technology, Inc.Localized masking for semiconductor structure development
US8048755Feb 8, 2010Nov 1, 2011Micron Technology, Inc.Resistive memory and methods of processing resistive memory
US8324065Sep 7, 2011Dec 4, 2012Micron Technology, Inc.Resistive memory and methods of processing resistive memory
US8617959Nov 30, 2012Dec 31, 2013Micron Technology, Inc.Resistive memory and methods of processing resistive memory
US20040094787 *Jul 8, 2003May 20, 2004Micron Technology, Inc.Structures and methods for improved capacitor cells in integrated circuits
US20040217409 *Jun 2, 2004Nov 4, 2004Micron Technology, Inc.Methods for forming and integrated circuit structures containing enhanced-surface-area conductive layers
US20050037592 *Sep 22, 2004Feb 17, 2005Micron Technology, Inc.Devices having improved capacitance and methods of their fabrication
US20050095848 *Dec 14, 2004May 5, 2005Trivedi Jigish D.Method of fabricating a stacked local interconnect structure
US20050130403 *Feb 3, 2005Jun 16, 2005Trivedi Jigish D.Stacked local interconnect structure and method of fabricating same
US20050208741 *May 19, 2005Sep 22, 2005Micron Technology, Inc.Methods for forming rough ruthenium-containing layers and structures/methods using same
US20060006448 *Aug 30, 2005Jan 12, 2006Micron Technology, Inc.Localized masking for semiconductor structure development
USRE35420 *Jun 19, 1995Jan 7, 1997Micron Technology, Inc.Method of increasing capacitance by surface roughening in semiconductor wafer processing
USRE37505 *Apr 5, 1996Jan 15, 2002Micron Technology, Inc.Stacked capacitor construction
EP0578856A1 *Jul 16, 1992Jan 19, 1994International Business Machines CorporationMicro-capacitor
Classifications
U.S. Classification438/255, 257/E21.648, 257/E21.396, 257/E21.013, 438/398, 257/303, 257/E21.215, 438/960, 257/E21.3
International ClassificationH01L21/334, H01L21/02, H01L21/8242, H01L21/321, H01L21/306
Cooperative ClassificationY10S438/96, H01L21/321, H01L21/306, H01L27/10852, H01L28/84, H01L29/66181
European ClassificationH01L27/108M4B2, H01L28/84, H01L29/66M6D6, H01L21/306, H01L21/321
Legal Events
DateCodeEventDescription
May 6, 1991ASAssignment
Owner name: MICRON TECHNOLOGY, INC., A CORPORATION OF DE, IDAH
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SANDHU, GURTEJ S.;REEL/FRAME:005704/0350
Effective date: 19910503
Oct 26, 1993CCCertificate of correction
Apr 24, 1995FPAYFee payment
Year of fee payment: 4
May 17, 1999FPAYFee payment
Year of fee payment: 8
May 6, 2003FPAYFee payment
Year of fee payment: 12