Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5068487 A
Publication typeGrant
Application numberUS 07/554,727
Publication dateNov 26, 1991
Filing dateJul 19, 1990
Priority dateJul 19, 1990
Fee statusLapsed
Publication number07554727, 554727, US 5068487 A, US 5068487A, US-A-5068487, US5068487 A, US5068487A
InventorsKevin J. Theriot
Original AssigneeEthyl Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
US 5068487 A
Abstract
A process for making an α-olefin oligomer comprises contacting an α-olefin monomer containing from about 6 to 20 carbon atoms with a catalyst comprising boron trifluoride and an alcohol alkoxylate so as to form an oligomer product.
Images(6)
Previous page
Next page
Claims(21)
What is claimed is:
1. A process for making an α-oligomer comprising contacting a straight-chain α-olefin monomer containing from about 6 to 20 carbon atoms with a catalyst comprising boron trifluoride and alcohol alkoxylate so as to form an oligomer product which is predominantly dimer and trimer of said α-olefin monomer wherein the dimer to trimer ratio is greater than about 1.
2. The process of claim 1 including hydrogenating said product.
3. The process of claim 1 wherein said α-olefin contains 8 to 12 carbon atoms.
4. The process of claim 3 wherein said α-olefin is 1-decene.
5. The process of claim 1 wherein said boron trifluoride is present in an amount of at least about 0.002 mole per mole of α-olefin, the alcohol alkoxylate is present in an amount of from about 0.001 to 0.040 moles per mole of α-olefin and the reaction temperature is in the range of about 0° to 200° C.
6. The process of claim 1 wherein said alcohol alkoxylate has the formula:
RO--CHR'--CHR"--O)n H
where R is hydrocarbyl containing from 1 to 24 carbons, including mixtures thereof, R' and R" are independently hydrogen, methyl, or ethyl, and n averages 1 to 15.
7. The process of claim 1 including the step of separating the catalyst from the product and using said catalyst to contact an α-olefin monomer in the presence of additional BF3 so as to form an oligomer product.
8. A process for making an α-olefin oligomer comprising contacting a straight chain α-olefin monomer, which contains from about 6 to 20 carbon atoms, with a catalyst comprising boron trifluoride and alcohol alkoxylate so as to produce an α-olefin oligomer reaction product which contains at least about 40 weight percent dimer of said α-olefin monomer based on the total weight of oligomer in said product and which has a dimer to trimer ratio of greater than about 1.
9. A process of claim 8 wherein said boron trifluoride is present in an amount of at least about 0.002 mole per mole of α-olefin, the alcohol alkoxylate is present in an amount of from about 0.001 to 0.040 moles per mole of α-olefin and the reaction temperature is in the range of about 0° C. to 200° C.
10. The process of claim 9 wherein said alcohol alkoxylate has the formula:
RO--CHR'--CHR"--O)n H
where R is hydrocarbyl containing from 1 to 24 carbons, including mixtures thereof, R' and R" are independently hydrogen, methyl, or ethyl, and n averages 1 to 15.
11. The process of claim 10 wherein the alcohol alkoxylate is 2-methoxyethanol.
12. The process of claim 11 wherein the α-olefin is 1-decene and said product contains at least about 50 wt percent dimer based on the total weight of oligomer.
13. The process of claim 11 wherein the α-olefin is 1-decene and said product contains at least about 85 wt percent dimer based on the total weight of oligomer.
14. The process of claim 10 wherein the alcohol alkoxylate is a C6 to C10 mixed alcohol ethoxylate having an average of three --CH2 --CH2 O-- groups.
15. The process of claim 10 wherein the alcohol alkoxylate is a C8 to C10 mixed alcohol ethoxylate having an average of six --CH2 --CH2 O-- groups.
16. The process of claim 10 including the step of separating the catalyst from the product and using said catalyst to contact an α-olefin monomer in the presence of additional BF3 so as to form an oligomer product.
17. The process of claim 8 wherein a portion of the monomer is recycled monomer.
18. The process of claim 17 wherein the recycled monomer is up to about 25 weight percent of total monomer.
19. The process of claim 1 wherein said oligomer product contains at least about 40 weight percent dimer.
20. The process of claim 19 wherein said oligomer product contains at least about 50 weight percent dimer.
21. The process of claim 20 wherein said oligomer product contains from about 50 to 85 weight percent dimer.
Description
BACKGROUND

This invention relates generally to the preparation of alpha-olefin oligomers which are useful as synthetic lubricants and functional fluids and more particularly to a BF3 -promoter catalyst system using alcohol alkoxylates as promoters to control the oligomer product distribution and especially to provide higher percentages of lower oligomers.

Alpha-olefin oligomers and their use as synthetic lubricants ("synlubes") are well-known. The oligomers are usually hydrogenated in order to improve their stability. Early reports of such synlubes are in Seger et al. U.S. Pat. No. 2,500,161 and Garwood U.S. Pat. No. 2,500,163. U.S. Pat. No. 2,766,312 describes the oligomerization of α-olefins in a Group IV metal oxide bed using a BF3 -polar promoter catalyst. Promoters include water, carboxylic acid, alkyl halides, alcohols and ethers. U.S. Pat. No. 2,806,072 discloses the dimerization of C6 -C12 polypropylenes using a preformed BF3 -dialkylether catalyst. U.S. Pat. No. 3,882,291 describes the oligomerization of olefins using BF3 -promoter catalyst complexes which include acid anhydrides, esters, ketones and aldehydes. U.S. Pat. No. 4,172,855 describes BF3 -promoter catalysts for grafting a second α-olefin onto C6 -C12 α-olefin dimer to form a low volatility lubricating oil. The promoters include glycol ethers such as ethylene glycol monomethyl ether, propylene glycol monoethyl ether, and di-isobutyl ether.

The particular applications for which the oligomer oils are used depends upon their viscosity, with viscosities of about 2-10 cSt at 100° C. being preferred for general lubricating oil applications. These materials are mixtures of different percentages of dimer, trimer, tetramer, pentamer and higher oligomers which oligomers are produced in different proportions in the oligomerization process. In order to increase the viscosity, processes are used which either produce more of the higher oligomers or some of the lower oligomers are removed such as by distillation. Most low viscosity dimer and trimer products are obtained as by-products of the production of higher viscosity synthetic oils. Due to the increasing use of dimers in applications such as low temperature lubricants and drilling fluids, methods for their preferential production are of interest. It is known that higher temperatures favor dimer production, but such higher temperatures can cause corrosion of production equipment. I have now discovered a new process for producing dimers as the primary oligomerization product at moderate temperatures.

BRIEF SUMMARY

In accordance with this invention, there is provided a process for making a o-olefin oligomer comprising contacting an α-olefin monomer containing from about 6 to 20 carbon atoms with a catalyst comprising boron trifluoride and alcohol alkoxylate so as to form an oligomer product.

In one embodiment of the invention the co-catalyst complex is recycled.

DETAILED DESCRIPTION

The olefins used in making the oligomer are predominately (at least 50 mole percent) C6 to C20 straight-chain monoolefinically unsaturated hydrocarbons in which the olefinic unsaturation occurs at the 1- or alpha-position of the straight carbon chain. Such alpha-olefins are commercially available and can be made by the thermal cracking of paraffinic hydrocarbons or by the well-known Ziegler ethylene chain growth and displacement on triethyl aluminum. Individual olefins may be used as well as mixtures of such olefins. Examples of such olefins are 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodeoene, 1-hexadecene and 1-tetradecene. The more preferred normal-alpha-olefin monomers are those containing about 8-12 carbon atoms. The most preferred olefin monomer is 1-decene.

The olefin monomers can also contain minor amounts of up to about 50 and usually less than 25 mole percent of internal olefins and vinylidene olefins.

The olefin is contacted as known in the art with a catalytic amount of boron trifluoride which should be at least about 0.002 moles per mole of olefin. Preferably the reaction mixture is saturated with BF3. To be effective, the boron trifluoride is used in combination with a promoter which is an alcohol alkoxylate. This promoter surprisingly favors the production of lower oligomers and particularly products containing predominantly dimer and trimer with a dimer to trimer ratio of greater than about 1. Under ordinary reaction conditions the dimer does not further react, and particularly does not dimerize, to any significant extent so that the reaction is easily controllable to produce a large proportion (at least about 40 and preferably 50 to 85 wt % or more dimer based on the total weight of oligomers in the product) of dimer. The dimer content asymptotically approaches a maximum rather than sharply peaking at a transient maximum, which is common in prior processes.

Alcohol alkoxylates useful in the invention can be represented, for example, by the formula:

RO--CHR'--CHR"--O)n H

where R is hydrocarbyl containing from 1 to 24 carbons, including mixtures thereof, R' and R" are independently hydrogen, methyl, or ethyl, and n averages 1 to 15.

Examples of such alcohol alkoxylates include glycol ethers such as ethylene glycol monomethyl ether (2-methoxyethanol) and propylene glycol monoethyl ether and the like and ethoxylates derived from mixed C2 to C24, preferably C2 to C18 and most preferably C6 to C12 straight chain alcohols. Suitable ethoxylates where R' and R" are hydrogen and n in the formula averages about 2 to 12, and preferably 3 to 6, are commercially available under the Ethonic® trademark.

The promoters are used in minor, effective amounts, for example, from about 0.001 to 0.040 moles per mole of α-olefin monomer (0.01 to 4.0 mole percent). In general, the BF3 is used in molar excess to the amount of promoter. This can be accomplished by using a closed reactor and a small BF3 pressure over the reaction mixture. The promoter can be mixed with the olefin feed and the reaction can be carried out in a batch or continuous process at temperatures of about 0° to 200° C. and pressures ranging from atmospheric up to, for example, 1,000 psig. The reaction temperature will change the oligomer distribution with temperatures of about 50° C. and above favoring the production of lower oligomers, namely dimer. Preferred reaction temperatures and pressures are about 20° to 65° C. and 5 to 100 psig.

The oligomer mixture from the reaction contains monomer which can be removed by distillation. The monomer has been found to contain mostly less reactive, isomerized material. However, this monomer can be recycled because it will react to form oligomers in the presence of fresh α-olefin monomer. For example, portions of up to about 25 wt % and preferably 5 to 15 wt % recycled monomer based on total monomer can be mixed with fresh monomer. The product mixture can be further separated by distillation to provide one or more product fractions having the desired viscosities for use in various lubricant applications such as drilling, hydraulic or metal working fluids, gear oils and crankcase lubricants.

The alcohol alkoxylates in the presence of BF3, form stable complexes which separate from the product mixture on standing and can be readily recovered and reused. This avoids the BF3 separation and recovery procedures necessary when using, for example, a BF3 -butanol complex. In fact, because the alcohol ethoxylates are surfactants, it is preferable to let the catalyst settle from the reaction mixture prior to quenching with base, and especially when using NaOH, in order to avoid the formation of an emulsion.

The oligomer product can be hydrogenated by conventional methods. Supported nickel catalysts are useful. For example, nickel on a kieselguhr support gives good results. Batch or continuous processes can be used. For example, the catalyst can be added to the liquid and stirred under hydrogen pressure or the liquid may be trickled through a fixed bed of the supported catalyst under hydrogen pressure. Hydrogen pressures of about 100 to 1,000 psig at temperatures of about 150° to 300° C. are especially useful.

The invention is further illustrated by, but is not intended to be limited to, the following examples in which the oligomerizations are performed in a three pint stirred reactor consisting of a glass reactor bowl, glass jacket, and a stainless steel top. The reactor is equipped with an air driven magnetic drive stirrer with a marine propeller, a heating/cooling coil and circulating system, dip tube, gas inlet and outlet valves and a pressure relief valve.

EXAMPLES 1-5

1-Decene (600.0 grams, 4.29 moles) and 1.0 mole % based on 1-Decene of Ethonic 610-3, (which is a C6 to C10 mixed alcohol ethoxylate having an average of three --CH2 --CH2 O-- groups), are charged into the reactor which is then assembled and purged with N2 with gentle agitation for 30 minutes. During this time the reactor is brought up to the appropriate reaction temperature by the heating coil circulating system. The reactor is then pressurized (N2) to 20 psig to insure that no leaks exist. After the pressure is relieved the stirring rate is increased and BF3 is introduced into the reactor via a sparge tube located below the surface of the liquid. After a brief (5-10 seconds) purge, the system is pressurized to 10 psig with BF3. The reaction is stopped after the chosen reaction time by venting the BF3 through a 10 wt % NaOH scrubber and quenching with either 5% aqueous NaOH (Examples 2 and 3) or saturated Na2 SO4 (Examples 1, 4 and 5) (50-150 ml). The reactor is purged with dry N2 until all of the BF3 is removed. The polyalphaolefin (PAO)--unreacted decene mixture is washed several times with water, dried over anhydrous CaCl2, and filtered. The product content is determined by gas chromatographic analysis. The reaction times, temperatures and product analysis are given in Table 1.

                                  TABLE 1__________________________________________________________________________Time    Temperature            GC Area %1Example(min)    (°C.) [Max.]            Monomer                   Dimer                       Trimer                            Tetramer__________________________________________________________________________1    120 20 [28] 11     41  42   62    120 32 [39] 15     48  32   43    120 45 [50] 23     48  20   94     60 45 [52] 29     50  19   35    120 80 [86] 14     68  16   3__________________________________________________________________________ 1 Where area % ˜weight %
EXAMPLE 6

The process of Example 2 is repeated except at double the amount of alcohol ethoxylate (4 wt %/2 mole %) and quenching is with saturated Na2 SO4. The product distribution in G.C. area % is 9% monomer, 48% dimer, 37% trimer and 6% tetramer.

EXAMPLE 7

The process of Example 3 is repeated except that quenching is with saturated Na2 SO4 and 9.1 wt % of the decene monomer is recycled, considerably isomerized monomer from a previous reaction. The product distribution in G.C. area % is 20% monomer, 52% dimer, 24% trimer and 5% tetramer.

EXAMPLE 8

The process of Example 2 is repeated except that Ethonic 810-6 (2.8 wt %, 1.0 mole %) which is a C8 to C10 mixed alcohol ethoxylate having an average of six --CH2 --CH2 O-- groups is used as the promoter and quenching is with saturated Na2 SO4. The product distribution in G.C. area % is 24% monomer, 46% dimer, 26% trimer and 4% tetramer.

The dimer fractions from Examples 1, 2 and 3 are separated by distillation and hydrogenated. Their physical properties are reported in Table 2 where the composition is given in G.C. area %.

              TABLE 2______________________________________Example     1          2          3______________________________________Monomer     --         0.5        0.7Dimer       98.9       96.7       97.9Trimer      1.1        2.6        1.4Tetramer    --         0.2        --V100°C. (cSt)       1.71       1.66       1.63V40°C. (cSt)       5.22       4.99       --V-40°C. (cSt)       266.0      251.0      257.0Pour Point (°C.)       <-65       <-65       <-65Flash Point (°C.)       160.0      148.0      152.0______________________________________
EXAMPLE 9 A-E

This example illustrates the recycle of the promoter/BF3 co-catalyst complex.

1-Decene (600.0 g, 4.29 mol) and Ethonic® 610-3 ethoxylate (11.79 g, 42.9 mmol) are charged into the reactor which is then assembled and purged with N2 with gentle agitation for 30 minutes; during this time the vessel temperature is brought up to 45° C. The reactor is then pressurized (N2) to 20 psig to insure that no leaks exist. After the pressure is relieved, the stirring rate is increased and BF3 is introduced into the reactor via a sparge tube located below the surface of the liquid. After a brief (5-10 seconds) purge, the system is pressurized to 10 psig with BF3. Periodic samples are collected and quenched with saturated aqueous Na2 SO4, washed with water (twice), dried over anhydrous CaCl2, filtered through syringe disk filters, and analyzed by gas chromatography.

After 60 minutes, the BF3 is purged from the reactor with N2 for about 30 minutes. The stirring is then stopped to allow the two existing phases to separate (˜20 minutes). The upper layer (product 9A) is then drained and washed with 5% aqueous NaOH followed by 2 water washes. The lower layer (co-catalyst) remains in the reactor.

At this point more 1-decene is added and a second reaction initiated by pressurizing the reactor with BF3 (no additional Ethonic® 610-3 is added). After 60 minutes the mixture is again purged with N2, allowed to settle (˜20 minutes), and the PAO drained (9B). This procedure is repeated once more to collect a third lot of PAO (9C).

After the third run, the co-catalyst layer is kept in the reactor under an atmosphere of BF3 /N2. After 20 hours another run (120 minutes) is made to collect a fourth lot of PAO (9D). Again, after an additional 20 hours, a fifth run is made (9E). Results are tabulated in Table 3.

              TABLE 3______________________________________  Time    GC Area %Reaction  (min)   Monomer     Dimer Trimer Tetramer______________________________________9A     60      26          50    21     39B     60      44          42    12     19C     60      46          41    12     19D     120     29          54    16     29E     120     34          50    14     1______________________________________

The results illustrate that the co-catalyst can be easily recycled and remains effective in providing high yields of dimer.

EXAMPLE 10

Example 3 is repeated using 2-methoxyethanol promoter at a concentration of 1 mole % based on monomer. After two hours the G.C. area % product distribution is 8% monomer, 77% dimer, 13% trimer and 2% tetramer or about 85% dimer based on total oligomer product with a conversion to oligomer of over 90%. Repeating the process at double the promoter concentration 2.0 mol % (1.0 wt %) gave about the same result in half the time (one hour instead of two). This example illustrates that an oligomer which is close to a 2 cSt (at 100° C.) viscosity product can be produced by merely removing the monomer.

COMPARISON

A product prepared from 1-Decene monomer using a BF3 n-butanol catalyst (1.3 mole % n-butanol on monomer) at a reaction temperature of 40° C. and 20 psig BF3 pressure typically gives a G.C. area % product distribution of about 1% monomer, 2% dimer, 53% trimer, 28% tetramer, 11% pentamer, and 5% hexamer.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2806072 *Dec 31, 1953Sep 10, 1957Exxon Research Engineering CoDimerization process
US3382291 *Apr 23, 1965May 7, 1968Mobil Oil CorpPolymerization of olefins with bf3
US4172855 *Apr 10, 1978Oct 30, 1979Ethyl CorporationLubricant
US4218330 *Jun 26, 1978Aug 19, 1980Ethyl CorporationLubricant
US4902846 *Feb 2, 1989Feb 20, 1990Ethyl CorporationSynlube process
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5171905 *Jul 26, 1991Dec 15, 1992Ethyl CorporationOlefin dimer products
US5210346 *Feb 6, 1992May 11, 1993Ethyl CorporationSynthetic lubricant compositions with alphaolefin dimer
US5250750 *Sep 8, 1992Oct 5, 1993Ethyl CorporationElectric power transformer, heat exchanging, lubrication
US5396013 *Jul 12, 1993Mar 7, 1995Albemarle CorporationBoron trifluoride, proton promoter and polyether
US5420373 *Mar 24, 1994May 30, 1995Chevron Chemical CompanyControlled formation of olefin oligomers
US5550307 *Aug 31, 1994Aug 27, 1996Chevron Chemical CompanyIncreased dimer yield of olefin oligomers through catalyst modifications
US5633420 *Sep 22, 1995May 27, 1997Amoco CorporationOlefin oligomerization process
US5650548 *Jun 16, 1995Jul 22, 1997Amoco CorporationOlefin oligomerization process
US5714661 *May 31, 1996Feb 3, 1998Tuli; Deepak KumarProcess for the preparation of synthetic lubricant base stocks
US5744676 *Feb 26, 1996Apr 28, 1998Theriot; Kevin J.Olefin oligomerization process
US5817899 *Jun 16, 1997Oct 6, 1998Chevron Chemical CompanyBranched octene, decene and tetradecene dimers
US5877375 *Jun 6, 1996Mar 2, 1999Amoco CorporationOne step
US5922636 *Nov 19, 1997Jul 13, 1999Sarin; RakeshOligomerization of olefins in the presence of aromatics, paraffins, and naphthenes from refinery distillate streams using a catalyst of at least one aluminum halide and a group 4b tetraalkoxide
US5929297 *Sep 25, 1997Jul 27, 1999Bp Amoco CorporationOlefin oligomerization process
US5994605 *Dec 3, 1996Nov 30, 1999Chevron Chemical CompanyHigh viscosity polyalphaolefins
US6002061 *Sep 11, 1996Dec 14, 1999Bp Amoco CorporationProduction of monoolefin oligomer
US6004256 *May 26, 1995Dec 21, 1999Townsend; PhillipCatalytic distillation oligomerization of vinyl monomers to make polymerizable vinyl monomer oligomers uses thereof and methods for same
US6075174 *May 8, 1995Jun 13, 2000Bp Amoco CorporationBF3 removal from BF3 catalyzed olefin oligomer
US6184429Jul 16, 1999Feb 6, 2001The Indian Oil Corporation Ltd.Oligomerization of alpha-olefins
US6689723Mar 5, 2002Feb 10, 2004Exxonmobil Chemical Patents Inc.Higher concentration of polysulfides combined with phosphorous or boron compound; enhancing performance without adverse effects
US7585823Sep 10, 2004Sep 8, 2009Exxonmobil Chemical Patents Inc.Lubricating fluids with enhanced energy efficiency and durability
US7595365Sep 30, 2005Sep 29, 2009Exxonmobil Chemical Patents Inc.Polycyclopentadiene resins; adhesives
US7989670Jan 22, 2007Aug 2, 2011Exxonmobil Chemical Patents Inc.to produce liquid poly-alpha-olefins in the presence of a metallocene catalyst with a non-coordinating anion activator and hydrogen; natural mineral oil-based lubricants
US8071835Apr 26, 2007Dec 6, 2011Exxonmobil Chemical Patents Inc.Process to produce polyolefins using metallocene catalysts
US8207390Jul 19, 2006Jun 26, 2012Exxonmobil Chemical Patents Inc.Process to produce low viscosity poly-alpha-olefins
US8227392May 13, 2008Jul 24, 2012Exxonmobil Research And Engineering CompanyBase stocks and lubricant blends containing poly-alpha olefins
US8247358Oct 1, 2009Aug 21, 2012Exxonmobil Research And Engineering CompanyHVI-PAO bi-modal lubricant compositions
US8283419Jun 19, 2009Oct 9, 2012Exxonmobil Chemical Patents Inc.Olefin functionalization by metathesis reaction
US8283428Jun 19, 2009Oct 9, 2012Exxonmobil Chemical Patents Inc.Polymacromonomer and process for production thereof
US8299007Oct 28, 2010Oct 30, 2012Exxonmobil Research And Engineering CompanyBase stock lubricant blends
US8318648Dec 15, 2009Nov 27, 2012Exxonmobil Research And Engineering CompanyPolyether-containing lubricant base stocks and process for making
US8372930Jun 20, 2008Feb 12, 2013Exxonmobil Chemical Patents Inc.High vinyl terminated propylene based oligomers
US8394746Aug 18, 2009Mar 12, 2013Exxonmobil Research And Engineering CompanyLow sulfur and low metal additive formulations for high performance industrial oils
US8399725Jun 19, 2009Mar 19, 2013Exxonmobil Chemical Patents Inc.Functionalized high vinyl terminated propylene based oligomers
US8431662Aug 20, 2012Apr 30, 2013Exxonmobil Chemical Patents Inc.Polymacromonomer and process for production thereof
US8476205Oct 1, 2009Jul 2, 2013Exxonmobil Research And Engineering CompanyChromium HVI-PAO bi-modal lubricant compositions
US8501675Oct 27, 2010Aug 6, 2013Exxonmobil Research And Engineering CompanyHigh viscosity novel base stock lubricant viscosity blends
US8513478Aug 1, 2007Aug 20, 2013Exxonmobil Chemical Patents Inc.Process to produce polyalphaolefins
US8530712Dec 17, 2010Sep 10, 2013Exxonmobil Chemical Patents Inc.Process for producing novel synthetic basestocks
US8535514Jun 4, 2007Sep 17, 2013Exxonmobil Research And Engineering CompanyHigh viscosity metallocene catalyst PAO novel base stock lubricant blends
US8569216Jun 16, 2011Oct 29, 2013Exxonmobil Research And Engineering CompanyLubricant formulation with high oxidation performance
US8586520Jun 27, 2012Nov 19, 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8598102Dec 21, 2010Dec 3, 2013ExxonMobil Research and Egineering CompanyLubricant base stocks based on block copolymers and processes for making
US8598103Jan 28, 2011Dec 3, 2013Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8623796May 27, 2011Jan 7, 2014Exxonmobil Research And Engineering CompanyOil-in-oil compositions and methods of making
US8642523Jan 28, 2011Feb 4, 2014Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8653209Nov 6, 2012Feb 18, 2014Exxonmobil Chemical Patents Inc.High vinyl terminated propylene based oligomers
US8703666Jun 1, 2012Apr 22, 2014Exxonmobil Research And Engineering CompanyLubricant compositions and processes for preparing same
US8703683Apr 23, 2010Apr 22, 2014Exxonmobil Research And Engineering CompanyPoly (alkyl epdxides), process for making, and lubricant compositions having same
US8716201Sep 29, 2010May 6, 2014Exxonmobil Research And Engineering CompanyAlkylated naphtylene base stock lubricant formulations
US8728999Jan 28, 2011May 20, 2014Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8748361Jun 2, 2006Jun 10, 2014Exxonmobil Chemical Patents Inc.Polyalpha-olefin compositions and processes to produce the same
US8748362Jan 28, 2011Jun 10, 2014Exxonmobile Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8759267Jan 28, 2011Jun 24, 2014Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8779067Nov 6, 2012Jul 15, 2014Exxonmobil Chemical Patents Inc.High vinyl terminated propylene based oligomers
US8802797Sep 27, 2012Aug 12, 2014Exxonmobil Chemical Patents Inc.Vinyl-terminated macromonomer oligomerization
EP0678493A2 *Mar 14, 1995Oct 25, 1995Chevron Chemical CompanyControlled formation of olefin oligomers using boron trifluoride and a hydroxy carbonyl
EP0699647A1Aug 29, 1995Mar 6, 1996Chevron Chemical CompanyProcess for the oligomerisation of olefins with a high yield of dimers
EP1975222A1Mar 18, 2008Oct 1, 2008ExxonMobil Research and Engineering CompanyLubricant compositions with improved properties
EP2363453A1Jun 2, 2006Sep 7, 2011ExxonMobil Research and Engineering CompanyAshless detergents and formulated lubricating oil containing same
EP2366763A1Jun 2, 2006Sep 21, 2011ExxonMobil Research and Engineering CompanyAshless detergents and formulated lubricating oil containing same
EP2366764A1Jun 2, 2006Sep 21, 2011ExxonMobil Research and Engineering CompanyAshless detergents and formulated lubricating oil containing same
WO1993016152A1 *Feb 3, 1993Aug 19, 1993Ethyl CorpSynthetic lubricant compositions with alphaolefin dimer
WO1997000232A1 *Jun 12, 1996Jan 3, 1997Amoco CorpOlefin oligomerization process
WO2006132964A2Jun 2, 2006Dec 14, 2006Exxonmobil Res & Eng CoAshless detergents and formulated lubricating oil contraining same
WO2008013698A1Jul 17, 2007Jan 31, 2008Exxonmobil Res & Eng CoMethod for lubricating heavy duty geared apparatus
WO2008121304A1Mar 27, 2008Oct 9, 2008Exxonmobil Res & Eng CoLubricating compositions containing ashless catalytic antioxidant additives
WO2010065129A1Dec 4, 2009Jun 10, 2010Exxonmobil Research And Engineering CompanyLubricants having alkyl cyclohexyl 1,2-dicarboxylates
WO2011094562A1Jan 28, 2011Aug 4, 2011Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
WO2011094566A1Jan 28, 2011Aug 4, 2011Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
WO2011094571A1Jan 28, 2011Aug 4, 2011Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094575A1Jan 28, 2011Aug 4, 2011Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094582A1Jan 28, 2011Aug 4, 2011Exxonmobil Research And Engineering CompanyMethod for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2012166571A1May 25, 2012Dec 6, 2012Exxonmobil Research And Engineering CompanyA method for producing a two phase lubricant composition
WO2012166999A1Jun 1, 2012Dec 6, 2012Exxonmbil Research And Engineering CompanyHigh efficiency lubricating composition
WO2013003392A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyMethod of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyetheramines
WO2013003405A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLubricating compositions containing polyalkylene glycol mono ethers
WO2013003406A1Jun 27, 2012Jan 3, 2013Exxonmobil Research And Engineering CompanyLow viscosity engine oil with superior engine wear protection
WO2013066915A1Oct 31, 2012May 10, 2013Exxonmobil Research And Engineering CompanyLubricants with improved low-temperature fuel economy
WO2013074498A1Nov 13, 2012May 23, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013096532A1Dec 20, 2012Jun 27, 2013Exxonmobil Research And Engineering CompanyMethod for improving engine fuel efficiency
WO2013141887A1 *Apr 26, 2012Sep 26, 2013The Government Of The United States Of America As Represented By The Secretary Of The NavyProcess and apparatus for the selective dimerization of terpenes and alpha-olefin oligomers with a single-stage reactor and a single-stage fractionation system
WO2013181318A1May 30, 2013Dec 5, 2013Exxonmobil Research And Engineering CompanyLubricant compostions and processes for preparing same
WO2014008121A1Jun 28, 2013Jan 9, 2014Exxonmobil Research And Engineering CompanyEnhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
WO2014066444A1Oct 23, 2013May 1, 2014Exxonmobil Research And Engineering ComapnyFunctionalized polymers and oligomers as corrosion inhibitors and antiwear additives
Classifications
U.S. Classification585/510, 585/525
International ClassificationC07C9/22, C10M107/10, C07C2/20
Cooperative ClassificationC10N2240/407, C10N2240/404, C10N2240/201, C10N2240/403, C10N2240/401, C10N2240/409, C10M2205/028, C10N2240/202, C10M107/10, C10N2240/405, C07C2527/1213, C07C9/22, C10N2240/40, C10N2240/408, C10N2270/02, C07C2531/02, C10N2240/402, C07C2/20, C10N2240/06, C10N2240/02, C10N2240/406
European ClassificationC10M107/10, C07C9/22, C07C2/20
Legal Events
DateCodeEventDescription
Jan 20, 2004FPExpired due to failure to pay maintenance fee
Effective date: 20031126
Nov 26, 2003LAPSLapse for failure to pay maintenance fees
Jun 11, 2003REMIMaintenance fee reminder mailed
May 3, 1999FPAYFee payment
Year of fee payment: 8
Jun 28, 1996ASAssignment
Owner name: AMOCO CORPORATION, ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALBEMARLE CORPORATION;REEL/FRAME:008013/0758
Effective date: 19960301
Apr 14, 1995FPAYFee payment
Year of fee payment: 4
Aug 16, 1994ASAssignment
Owner name: ALBERMARLE CORPORATION, VIRGINIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHYL CORPORATION;REEL/FRAME:007109/0340
Effective date: 19940228
Apr 6, 1993CCCertificate of correction
Jun 27, 1991ASAssignment
Owner name: ETHYL CORPORATION, A CORP. OF VA., VIRGINIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:THERIOT, KEVIN J.;REEL/FRAME:005751/0372
Effective date: 19900716