Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5151120 A
Publication typeGrant
Application numberUS 07/684,632
Publication dateSep 29, 1992
Filing dateApr 12, 1991
Priority dateMar 31, 1989
Fee statusPaid
Also published asEP0508153A2, EP0508153A3
Publication number07684632, 684632, US 5151120 A, US 5151120A, US-A-5151120, US5151120 A, US5151120A
InventorsYoung S. You, John D. Meyer
Original AssigneeHewlett-Packard Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Solid ink compositions for thermal ink-jet printing having improved printing characteristics
US 5151120 A
Abstract
Disclosed is an ink-jet composition including an organic carrier that is solid at 25 C. and liquid at the operating temperature of an ink-jet nozzle and a driver having a critical pressure greater than 10 atmospheres, the carrier and driver being miscible in liquid phase. The ink-jet composition is characterized by a viscosity of less than 15 centipoise at 90 C. and a surface tension of between about 20 to about 25 dynes per centimeter at 90 C. The ink-jet compositions disclosed herein are particularly useful in thermal ink-jet printing using thermally induced vapor bubbles to eject ink droplets from the printer and onto a substrate.
Images(7)
Previous page
Next page
Claims(8)
What is claimed is:
1. An ink-jet composition comprising:
from about 30 to about 94.5 weight percent of a carrier that is solid at 25 C. and liquid at the operating temperature of an ink-jet;
at least about 5 weight percent of an added driver which is miscible with said carrier and which has a critical pressure of at least 15 atmospheres, a boiling point of from about 100 C. to about 300 C. and a vapor pressure at 20 C. of less than about 0.04 atmospheres; and
from about 0.05 to about 5 weight percent of a colorant
wherein said composition is a solid at 25 C., has a viscosity at 90 C. of 15 centipoise or less and has a surface tension at 90 C. of from about 20 to about 25 dynes per centimeter.
2. The ink composition according to claim 1 wherein said driver has a boiling point of between 180 C. and 250 C.
3. The ink composition according to claim 1 wherein said driver has a vapor pressure at 20 C. of less than 0.025 atmospheres.
4. The ink composition according to claim 1 wherein said driver is selected from the group consisting of C4 to C18 alcohols, C2 to C10 polyols, and C4 to C18 glycol ethers.
5. The ink composition according to claim 4 wherein said driver is one or more C4 to C18 a alcohols.
6. The ink composition according to claim 4 wherein said driver is one or more C2 to C18 polyols.
7. The ink composition according to claim 4 wherein said driver is one or more C4 to C18 glycol ethers.
8. The ink composition according to claim 4 wherein said driver is selected from the group consisting of hexyl alcohol, octyl alcohol, benzyl alcohol, ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediols, 2,3-butanediol, diethylene glycol, ethylene glycol monomethyl ether, and propylene glycol monomethyl ether.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Ser. No. 07/332,242, filed Mar. 31, 1989, now abandoned which is incorporated herein by reference in its entirely. U.S. Ser. No. 07/526,210, filed May 21, 1990, now U.S. Pat. No. 5,065,167, is in turn a Divisional Application based on U.S. Ser. No. 07/332,242.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to ink-jet compositions particularly solid ink-jet compositions for use in thermal ink-jet printers. Specifically, the present invention is directed to solid ink-jet compositions for use in thermal ink-jet printing using thermally induced vapor bubbles which compositions are formulated so as to provide improved printing characteristics including greater control of the solid ink dot height on the absorbing surface, i.e. the substrate.

2. State of the Art

In thermal ink-jet printing, solid ink-jet compositions are typically employed. These compositions typically employ an ink which is normally a solid at room temperature and which is capable of a phase change at elevated temperatures. When the ink is heated, the ink melts to form a fluid which can be ejected from the printer as droplets onto a substrate for marking whereupon it resolidifies by freezing on the marked substrate. Because of their nature of operation, such ink compositions are termed "hot melt inks" which term is art recognized to define an ink which is in a solid phase at room temperature and in a fluid phase at the operating temperature, i.e., a temperature above the melting temperature of the waxy component of the ink. Most solid ink-jet compositions reported so far have involved one phase change, that is, from solid at room temperature to liquid at operating temperatures.

Solid ink-jet compositions can be used in thermal ink-jet printing utilizing thermally induced vapor bubbles as a driving force to eject ink drops out of the nozzle of the jet printer and onto the substrate. When so used, the composition is sometimes referred to herein as a thermal ink-jet ink composition. In this case, a portion of the solid ink in the printing head is first liquified and then a portion of the liquified ink is vaporized so as to generate a bubble which is used to force the ink from the printer head and onto the substrate.

Thermal ink-jet ink compositions generally contain a carrier, a driver and a colorant. The carrier is an organic material which carries the colorant(s) and which is a solid at 25 C. and a liquid at the operating temperature of the printer head. The driver is a bubble-forming substance which can provide enough driving force to eject ink drops from the print head or nozzle. The colorant can be a dye or pigment, which is soluble in the carrier and which produces the visible printed images on the substrate. Upon contact with the surface of the substrate, the ink composition rapidly freezes to form an ink dot which imparts a mark onto the substrate.

However, with regard to such solid ink compositions, a problem exists with regard to the formation of raised dots of ink droplet forming on the substrate surfaces. These raised dots arise from the instant freezing of the ink droplet on the substrate surface and the resulting lack of spreading of the droplet on the surface. The raised dots are aesthetically unacceptable since they can result in images with an embossed characteristic. Additionally, when the raised ink dots becomes too high, the raised dot may have poor adhesion to the substrate or may easily be scraped off or flake off from the substrate by action of folding or creasing of the substrate or may be subject to smearing or offsetting to other sheets.

The reduction of the height of such raised dots can be achieved by incorporating a sufficient amount of a penetrate into the ink composition. However, the use of such penetrates can result in the dye in the ink being carried unevenly into the pores of certain substrates, e.g., paper, by capillary action which in turn leads to feathering, i.e., the undesired diffusion of the dye which results in the dot becoming fuzzy. This, in turn, results in poor print quality.

Other heretofore known means for reducing dot height include the procedures disclosed in U.S. Pat. Nos. 4,745,420: and 4,801,473: and European Patent Application Pub. No. 308 117A. In particular, U.S. Pat. No. 4,745,420 discloses passing the marked substrate through rollers in order to minimize the height of such raised dots. Likewise, U.S. Pat. No. 4,801,473 discloses the use of a liquid coating applied to the surface of the marked substrate which wets the surface of the substrate as well as the ink dots. The coating apparently reduces dot height by increasing the surface area of the dot. Also, European Patent Application Pub. No. 308 117A discloses that the initially formed dots in a solid state can be flattened by heating the substrate and then subsequently cooling it. However, as can be seen, each of these other procedures requires a separate post-treatment step to reduce dot height which imparts an additional level of complexity to the printing process.

In View of the above, solid ink-jet compositions formulated to reduce dot height without resulting in feathering would provide an important advance in the art of thermal ink-jet printing.

In this regard, the present invention is directed to the discovery that solid ink-jet compositions meeting defined criteria including a specified surface tension range and a defined viscosity range permit the application of printed dots of reduced dot height without causing feathering provided that the printer head is operated at defined temperature differentials from the melting point of the ink and from the temperature of the substrate.

Specifically, the present invention is directed to the discovery that in thermal ink-jet printing utilizing thermally induced vapor bubbles, solid ink-jet compositions which are formulated to have less than a specified maximal surface tension will result in reduced dot height as compared to the dot height resulting from the use of ink compositions having a surface tension greater than that described herein. Likewise, when the herein described compositions are also formulated to have greater than a specified minimal surface tension, then the resulting ink composition achieves such reduced dot height without causing feathering of the dot into the substrate.

The above discovery is particularly surprising in view of the fact that, in oil based inks, ink compositions with too low of a surface tension result in poor print quality. See, for instance, Lin et al., U.S. Pat. No. 4,758,276. Further in this regard, Cooke et al., U.S. Pat. No. 4,361,843, discloses that acceptable print quality is achieved by oil based inks employing oleic acid when the surface tension of the ink is greater than 35 dynes per centimeter.

With regard to the defined criteria concerning viscosity and the defined temperature differentials, the present invention is directed to the discovery that these criteria are also essential to achieving reduced dot height.

SUMMARY OF THE INVENTION

The present invention is directed to the discovery that solid ink-jet compositions formulated to have a surface tension within a defined range and a viscosity within a defined range provide for ink compositions which result in reduced dot height and without causing feathering when an ink droplet is applied to a substrate by vapor bubble ejection from the print head of a thermal ink-jet printer; provided that the print head is operated at defined temperature differentials from the melting point of the ink composition and from the temperature of the substrate. Additionally, the solid ink-jet compositions of this invention are also formulated to specified criteria with regard to the critical pressure of the driver in order to effect efficient printing.

Specifically, in one of its composition aspects, the present invention is directed to an ink-jet composition comprising a carrier that is solid at 25 C. and liquid at the operating temperature of an ink-jet, a driver which is miscible with said carrier and which has a critical pressure of at least 15 atmospheres, and a colorant wherein said composition is a solid at 25 C., has a viscosity at 90 C. of 15 centipoise or less and has a surface tension at 90 C. of from about 20 to about 25 dynes per centimeter.

In one of its process aspects, the present invention is directed to a process for applying an ink composition to a substrate via an ink-jet which contains a printer head having an inlet for receiving a portion of the ink composition and an ejection nozzle for applying a drop of the ink composition onto the substrate and which ink composition comprises a carrier that is solid at 25 C. and liquid at the operating temperature of an ink-jet, a driver which is miscible with said carrier and which has a critical pressure of at least 15 atmospheres, and a colorant wherein said ink composition is a solid at 25 C., has a viscosity at 90 C. of 15 centipoise or less and a surface tension of from about 20 to about 25 dynes per centimeter at 90 C. wherein said process comprises:

passing a portion of said ink composition to the inlet of said ink-jet printer head;

heating said composition in the ink-jet printer head so as to form a droplet of liquid ink adjacent to the ejection nozzle;

superheating said driver within said print head in an area immediately behind said droplet and nucleating said superheated driver;

ejecting said droplet from the printer head via the ejection nozzle and onto the substrate so as to form a marked substrate,

wherein the temperature differential between the operating temperature of the print head and the melting point of the ink composition is at least 10 C. and further wherein the temperature differential between the operating temperature of the print head and the temperature of the substrate is less than 100 C.

In another of its process aspects, the present invention is directed to a process for reducing the height of an ink dot applied to a substrate by an ink-jet printer which process comprises the steps of:

selecting an ink composition comprising a carrier that is solid at 25 C. and liquid at the operating temperature of an ink-jet, a driver which is miscible with said carrier and which has a critical pressure of at least 15 atmospheres, and a colorant wherein said ink composition is a solid at 25 C., has a viscosity at 90 C. of 15 centipoise or less, and a surface tension at 90 C. of from about 20 to about 25 dynes per centimeter;

adding said ink composition to said ink-jet printer; and

applying an ink dot formed from said composition to said substrate

wherein the temperature differential between the operating temperature of the print head and the melting point of the ink composition is at least 10 C. and further wherein the temperature differential between the operating temperature of the print head and the temperature of the substrate is less than 100 C.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to solid ink jet compositions that greatly mitigate the problems arising with dot height as well as methods directed to the use of such compositions. The ink-jet compositions of this invention comprise three components, namely a carrier, a driver and a colorant. These compositions are formulated so as to meet defined criteria with regard to surface tension properties and viscosity properties, whereas the driver employed is selected to meet defined criteria with regard to critical pressure. When so formulated, the herein described compositions provide reduced dot size without resulting in feathering. However, prior to describing this invention in detail, the following terms will first be defined.

The term "carrier" refers to any organic material which is a solid at 25 C. and which carries the colorants, i.e., the colorants are soluble in the carrier. Suitable carriers include waxes, plastics, polymers, oligomers and the like. The carrier must be liquid at the operating temperature of the printer jet. Because the carriers and ink compositions which are useful for this invention may not have sharply defined melting points, the term "liquid" as used herein and as applied to the carrier and/or ink composition includes the carriers and ink compositions in a condition in which they can flow through a printing jet and the term "melting point" refers to the lowest temperature of the carrier and/or ink composition which permits them to flow through a printing jet. In this regard, in order to prevent premature freezing of the ink-jet composition onto the substrate which can cause, among other things, raised dots on the substrate, clogging and/or crusting of the ink in the ink-jets, the temperature differential between the operating temperature of the print head and the melting point of the solid ink composition should be at least 10 C., preferably at least 20 C. That is to say that the ink composition should melt at least 10 C., preferably at least 20 C., below the operating temperature of the printer head. Additionally, as noted below, the temperature differential between the operatinq temperature of the printer head and the temperature of the substrate should not be more than 100 C. and preferably, not more than 80 C. That is to say that the operating temperature of the print head should be no more than 100 C. and preferably, no more than 80 C. above the temperature of the substrate.

The material selected as the carrier should not introduce other problems into the thermal ink-jet composition. For example, the carrier should be stable at the temperature of the printing process, it should not chemically react with those portions of the structure that it contacts nor should it crust and/or clog in the ink-jets and it should not be poisonous or otherwise noxious. The carrier can be a mixture of materials.

When the carrier has a critical pressure of greater than 10 atmospheres and preferably greater than 15 atmospheres and a boiling point of less than 300 C., the carrier can also serve in the capacity of the driver. That is to say that when a suitable carrier meets these defined criteria with regard to critical pressure and boiling point, then the carrier can simultaneously perform the functions of both the carrier, i.e., a carrier of the colorants, and the driver, i.e., a bubble-forming substance. Carriers which can function as both the carrier and the driver include fatty acids, long chain alcohols, and fatty acid esters meeting the defined criteria with regard to critical pressure and melting temperature.

Suitable carriers meeting these criteria so as to perform both functions include fatty acids, long chain alcohols and fatty acid esters having at least 5 carbon atoms and preferably from about 14 to about 40 carbon atoms. Preferred fatty acids include stearic acid, palmitic acid, myristic acid, behenic acid, and tridecanoic acid. Preferred long chain alcohols include octadecanol, hexadecanol and tetradecanol. Preferred fatty acid esters include monoethylstearate, diethylstearate and monoethylpalmitate.

Carriers containing a mixtures of components can also be used to perform both functions. In such cases, at least one of the components of the mixture must have a critical pressure of at least 10 atmospheres and preferably, at least 15 atmospheres, and a boiling point of about 300 C. or less which permits the formation of explosive vapor bubbles at the conditions of the ink head.

When using an ink-jet composition wherein the carrier and the driver are the same material, it is preferred to produce the vapor bubble with a multi-part electrical pulse, with (a) the first pulse or pulses (precursor pulses) heating the driver without nucleating a bubble, and (b) the final pulse or pulses (kicker pulses) quickly heating the driver to a temperature near its superheat limit, a temperature at which molecular movement is so great that the probability of homogeneous nucleation of a bubble Within a fluid approaches unity.

The multi-part heating may be accomplished with two or a train of three or more pulses. This multi-part heating system causes rapid nucleation and explosive bubble formation to drive the ink through the jet. Control of the timing of the nucleation pulses and the rate of ink flow through the jet produces ink drops that are the correct size to produce high quality print on the substrate. Such control is within the skill of the art.

Vaporization of the driver occurs within a drop ejection channel in the printing head and behind that portion of the thermal ink-jet composition that is to be expelled from the ink-jet by the expansion of the bubble. The temperature of the ink to be expelled is such that the ink is liquid when it is ejected from the nozzle onto the substrate.

Heretofore, most materials used as the carrier for solid inks have such low critical pressures and/or high boiling points at the operating temperature of the printer that they are not suitable for use as both the carrier and the driver. In such cases, the thermal ink-jet ink compositions of this invention will include a separate driver. In this case, the only criteria necessary for these carriers is that it be any organic material which is a solid at 25 C., liquid at the operating temperatures of the printer jet, and which carries the colorants, i.e., the colorants are soluble in the carrier. Accordingly, a much greater deal of latitude is permitted in the selection of the carrier when a separate driver is employed.

The term "driver" refers to a bubble-forming substance, which can provide enough driving force to eject ink drops from the print head or nozzle. The driver is chosen so as to be compatible (miscible) with the carrier. Additionally, the material selected as the driver should not introduce other problems into the solid ink-jet composition. For example, the driver should be stable at the temperature of the printing process, it should not chemically react with those portions of the structure that it contacts nor should it crust in the ink-jets and it should not be poisonous or otherwise noxious.

In order to function properly as a driver, the driver should have a boiling point of about 300 C. or less and more specifically, from about 100 C. to 300 C., should have a vapor pressure of less than about 0.04 atmospheres at 20 C., and should have critical pressure of greater than 10 atmospheres and preferably greater than 15 atmospheres.

In particular, the ink composition containing the driver is generally heated by a resister which achieves a maximum temperature of about 300-400 C. when electric pulses are passed through. Accordingly, if the driver has a boiling point of greater than about 300 C., then explosive formation of a bubble may not form under these conditions. On the other hand, if the driver has too low of a boiling point (i.e., less than about 100 C.), then it becomes more difficult to control bubble formation. Accordingly, the driver should have a boiling point between 100 C. and 300 C. and preferably between 180 C. and 250 C. and more preferably, between 210 C. and 225 C.

Additionally, since the ink-jet composition is stored in the printer as a solid at room temperature, the long term stability of such compositions requires that the driver also possess a relatively low vapor pressure at room temperature. That is to say that if the driver possesses a high vapor pressure at room temperature, then sufficient driver could evaporate from the composition over time so as to impair the long term ability of the composition to function in thermal ink-jet printers employing a thermally induced vapor bubble. Accordingly, when a separate driver is employed, the driver preferably should have a vapor pressure at 20 C. of less than about 0.04 atmospheres and preferably less than about 0.025 atmospheres. In an even more preferred embodiment, the driver is chosen so that the vapor pressure remains relatively low until the boiling point of the driver is approached.

Lastly, as noted above, suitable drivers have a critical pressure of greater than 10 atmospheres and preferably greater than 15 atmospheres. Such high critical pressures permit the driver to be highly superheated so that bubble nucleation occurs rapidly to efficiently drive the ink composition from the jets.

The specific driver chosen is not critical provided it meets the above-defined criteria. Suitable driver include, for example, C4 to C18 alcohols, C2 to C16 polyols, C4 to C18 glycol ethers, and the like provided that the driver meets the above-noted criteria. Mixtures of these can be used and even mixtures of the above with water, as long as there is insufficient water present to form a separate phase. Preferred alcohols include, for example, hexyl alcohol, octyl alcohol, benzyl alcohol, among others. Preferred polyols include, for example, ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediols, and 2,3-butanediol. Glycol ethers that may be employed include diethylene glycol, ethylene glycol monomethyl ether, and propylene glycol monomethyl ether, among others. Other suitable drivers include materials which are solid at room temperature and have a boiling point of less than 300 C. Such drivers include, for example, propionamide, isobutyroamide, and the like. Such drivers are disclosed in U.S. Ser. No. 671,590 (filed on Mar. 19, 1991, and entitled Solid Driver For The Solid Ink Jet Ink) which application is incorporated hereby reference.

The term "vehicle" defines a combination of all of the components involved in solid ink except the colorant.

The term "colorant" refers to a dye or pigment, which is soluble in the carrier and which produces the visible printed images on the substrate. The particular dye or pigment employed is not critical provided that the dye is stable at the temperature of the printing process, does not chemically react with those portions of the structure that it contacts and is not poisonous or otherwise noxious. Suitable dyes or pigments include those heretofore used in solid inks including, for example, Morfast 101 (available from Morton Thiokol) Neptune Red (available from Morton Thiokol) and the like.

The term "substrate" refers to the material onto which the ink dot is applied. Suitable substrates are well known in the art and include, for example, paper, polyester, cloth, cardboard, and the like.

"Ink-jet compositions" refer to ink compositions containing the vehicle and the colorant which can be used in thermal ink-jet printers utilizing thermally induced vapor bubbles to eject the ink onto the substrate.

When the carrier and the driver are the same, such compositions preferably comprise a carrier containing at least about 0.5 weight percent of a colorant and from about 70 to about 99.5 weight percent of a carrier based on the total weight of the composition. Even more preferably, such compositions comprise from about 0.5 to about 5 weight percent of a colorant. Additionally, such compositions can contain one or more additives which enhance the ink with regard to (i) improved solubility of other components, (ii) improved print quality, (iii) improved adhesion of the ink to the media, (iv) control of wetting characteristics, which may be related to such properties as surface tension and viscosity, and (v) improve the mechanical properties of the ink, among other properties. Such additives are well known in the art. When employed, the total of these additives generally comprise no more than about 30 weight percent of the weight of the total composition.

When a separate driver is employed, such compositions are formulated to contain at least 5 weight percent of a driver. Preferably, such compositions comprise at least about 5 weight percent of a driver, at least about 0.5 weight percent of a colorant, and from about 30 to about 94.5 weight percent of a carrier based on the total weight of the composition. Even more preferably, such compositions comprise from about 5 to about 30 weight percent of a driver, and from about 0.5 to about 5 weight percent of a colorant based on the total weight of the composition. Additionally, such compositions can contain one or more additives which enhance the ink with regard to (i) improved solubility of other components, (ii) improved print quality, (iii) improved adhesion of the ink to the media, and (iv) control of wetting characteristics, which may be related to such properties as surface tension and viscosity, (v) improve the mechanical properties of the ink, among other properties. Such additives are well known in the art. When employed, the total of these additives generally comprise no more than about 50 weight percent of the weight of the total composition.

Compounds that form the carrier or the driver may also function as additives. Dodecyl alcohol may be an additive to improve the ability of the ink to wet the medium. Octadecanol and stearic acid may be separate additives to improve adhesion or they may act as additives and form all or part of the carrier.

The central aspect of the present invention is the discovery that dot height size can be reduced by specifically formulating the ink-jet ink composition to have a viscosity of less than 15 centipoise at 90 C. and a surface tension of from about 20 to about 25 dynes per centimeter at 90 C. The particularly preferred composition has a viscosity of less than 10 centipoise at 90 C. and a surface tension of about 20 dynes per centimeter at 90 C. and a melting point of less than about 90 C. Solid ink compositions meeting these defined criteria will produce acceptable dot height, about 1 mil or less, when the temperature differential between the operating temperature of the print head and the melting point of the ink composition is at least 10 C. and also when the temperature differential between the operating temperature of the print head and the temperature of the substrate is less than 100 C.

The viscosity of the formulated composition at 90 C. can be controlled by the appropriate selection of the carrier and, if employed, the driver. Such selection is within the skill of the art. Ink compositions meeting defined criteria with regard to viscosity define ink compositions which will flow smoothly and rapidly at the operating temperature of the print head and accordingly, will not interfere with efficient printing operations.

On the other hand, if the formulated ink composition has a surface tension greater than 25 dynes per centimeter at 90 C., one or more additives can be added to the composition to reduce the surface tension value to between 20 and 25 dynes per centimeter. Such additives include surfactants, alcohols, and the like which are well known for enhancing spreadability. Without being limited to any theory, it is believed that the reduction in surface tension to about 25 dynes per centimeter or less at 90 C. enhances the spreadability of the ink dot as it contacts the substrate which, in turn, leads to reduced dot height. It is further believed that by maintaining a surface tension of at least about 20 dynes per centimeter at 90 C., the spreadability of the composition is sufficiently controlled so as to avoid feathering. This is particularly surprising insofar as heretofore known oiled and water based ink compositions specifically required high surface tension in order to achieve acceptable print quality, e.g., surface tension values of greater than 35 dynes per centimeter for oil based inks employing oleic acid.

This is the appropriate point to note that the viscosity and surface tension values recited herein are recited at 90 C. only for a point of reference and are not to be inferred that operating temperatures other than 90 C. cannot be used. As it is well known in the art, both viscosity and surface tension values are variables depending on the temperature. Accordingly, if other operating temperatures are employed, the surface tension and viscosity values at the operating temperature will be different from that found at 90 C. However, solid ink compositions meeting the defined criteria at 90 C. will also provide for acceptable dot height at such other operating temperatures; provided of course that the above-defined temperature differentials are maintained.

The ink composition of this invention is prepared by combining all of the ingredients and generally mixing the components at a temperature above the melt point of the carrier until a homogeneous mixture is achieved. The composition is then cooled to provide for a solid ink composition of this invention.

The ink composition of this invention is employed in thermal ink-jet printing using thermally induced vapor bubbles to eject ink droplets from the printer onto the substrate. The specific thermal ink-jet printer employed is not critical and does not form a part of this invention. However, suitable ink-jet printers include those disclosed by Vaught et al., U.S. Pat. No. 4,490,728, which disclosure is incorporated herein by reference. Other suitable zo ink-jet printers include SI 480 (commercially available from DataProducts, Woodland Hills, CA), Pixelmaster (commercially available from Howtech, Hudson, NH 03051), and the like.

In regard to such printers, the difference between the operating temperature of the print head and the temperature of the substrate should be no more than 10 C., and preferably no more than 80 C. In particular, when this temperature differential is greater than 100 C., then the cooling gradient of the ejected ink drop is so great that it is not possible to control ink height. In this regard, the temperature of the substrate can be adjusted to within 100 C. of the operatinq temperature of the print head by heating the substrate. Methods for heating the substrate are well known in the art.

The following examples are offered to illustrate the present invention and are not to be construed in any manner as limiting it.

EXAMPLES Comparative Example A

A prior art solid ink composition was prepared for comparative purposes. This composition was prepared from stearic acid and had the characteristics set forth below:

______________________________________        Composition                 Weight %______________________________________Carrier:       Stearic acid                     100%Colorant (dye):          --         --______________________________________

The ink of Comparative Example A is a colorless (white) ink and represents an ink which can be used in thermal ink-jet printers. This ink has a viscosity of less than 15 centipoise at 90 C. and a surface tension of about 28 dynes per centimeter and accordingly, in view of this surface tension, is not a composition within the scope of this invention.

The ink of Comparative Example A was applied to a black substrate by a conventional bubble driver ink-jet printer which employed electric resistance heaters. Insofar as the ink was not highly volatile, a multipulse heating procedure was required to obtain rapid nucleation of the solvent bubble. The electric resistance heaters had a resistance of about 26 ohms. The precursor pulse of 380 mA had a duration of 80 microsec and the kicker pulse of 520 mA has a duration of 5 microsec. The printer head was operated such that the temperature differential between the melting point of the ink composition and the operating temperature of the print head was more than 10 C. and the temperature differential between the operating temperature of the print head and the temperature of the substrate was less than 100 C.

When applied to a substrate, the ink of Comparative Example A produced embossed characteristics evidencing the fact that the dot height produced by this composition was too high. In fact, when measured, the height of the ink dot produced by this composition was about 3 mils.

EXAMPLE 1

A solid ink composition of this invention was prepared and had the following characteristics:

______________________________________       Composition Weight %______________________________________Carrier:      Stearic acid  55Driver:       Neopentyl alcohol                       15         2,3-Butanediol                       15Colorant (dye):         Morfast 101 (liquid)                       15         (Morton Thiokol)______________________________________

The ink of Example 1 was found to have a viscosity of about 4 centipoise at 90 C. and a surface tension of about 23 dynes per centimeter and accordingly, is an ink composition within the scope of this invention. In this regard, it is seen that the addition of the neopentyl alcohol and 2,3-butanediol have reduced the surface tension of the ink composition as compared to that of Comparative Example A.

The ink of Example 1 was used in a conventional bubble driver ink-jet printer in which electric resistance heaters vaporized the driver. The heaters were operated at a resistance of about 26 ohms and used a single stage heating pulse of 450 mA (milliamperes) for a period of 6 microsec (microseconds). The printer head was operated such that the temperature differential between the melting point of the ink composition and the operating temperature of the print head was more than 10 C. and the temperature differential between the operating temperature of the print head and the temperature of the substrate was less than 100 C.

The ink produced a sharp, black image on paper which was water resistant. Additionally, the ink dot height size produced by this composition did not produce embossed characteristics evidencing that the dot height produced by this composition has been reduced as compared to Comparative Example A. In fact, when measured, the height of the ink dot produced by this composition was less than 1 mil.

The above data demonstrates that the ink compositions of this invention meeting the defined criteria with regard to surface tension and viscosity provide for reduced dot height as compared to a prior art composition not meeting this criteria.

EXAMPLE 2

A second solid ink composition of this invention was prepared and had the following characteristics:

______________________________________       Composition Weight %______________________________________Carrier:      1-octadecanol 55Driver:       Neopentyl alcohol                       15         2,3-butanediol                       15Colorant (dye):         Morfast 101 (liquid)                       15         (Morton Thiokol)______________________________________

The ink of Example 2 was found to have a viscosity of about 4 centipoise at 90 C. and a surface tension of about 23 dynes per centimeter and accordingly is an ink composition of this invention.

The ink of Example 2 was also used in the printer of Example 1 in a one pulse printing process at the same conditions of Example 1. The ink of Example 2 also produced a sharp, black image on paper which Was water resistant; additionally, the height of the ink dot produced by this composition was sufficiently small so as not to produce embossed characteristics.

In addition to the above formulations, other solid ink compositions meeting the defined criteria with regard to melting point, viscosity, surface tension and the like, can be used in the practice of this invention. For example, a formulation containing 15 weight percent of neopentyl alcohol, 15 weight percent 2,3-butanediol, 3-10 weight percent of a dye (Morofast 101 black dye) and 60-70 weight percent of stearic acid or durawax, i.e., Durawax C, will produce solid ink compositions within the scope of this invention. Likewise, the use of a solid carrier having a viscosity of less than 15 centipoise at 90 C., a surface tension of between 20 and 25 dynes per centimeter, and a boiling point of less than 300 C. can function both the carrier and the driver without the need to add additional components other than the colorant. Such carriers include palmitic acid, myristic acid, behenic acid, tridecanoic acid, octadecanol, hexadecanol, tetradecanol, monoethylstearate, diethylstearate and monoethylpalmitate, and the like.

When the driver employed is not highly volatile as in the case where the driver and the carrier are the same, to obtain rapid nucleation of the solvent bubble a multipulse heating procedure can be employed. One such procedure employs electric resistance heaters having a resistance of about 26 ohms and utilizes both a precursor pulse to transform a portion of the solid ink into a liquid and a kicker pulse to form a bubble. Suitable precursor pulses of 380 mA for a duration of 80 microsec and suitable kicker pulses of 520 mA for a duration of 5 microsec have been bound satisfactory.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4066789 *Mar 12, 1976Jan 3, 1978Emery Industries, Inc.Blends of lanolin wax and esters of aliphatic polyols and fatty acids
US4361843 *Mar 27, 1981Nov 30, 1982Exxon Research And Engineering Co.Ink jet compositions and method
US4390369 *Dec 17, 1981Jun 28, 1983Exxon Research And Engineering Co.Natural wax-containing ink jet inks
US4484948 *Jun 27, 1983Nov 27, 1984Exxon Research And Engineering Co.Hot melts, carnauba, candelilla, japan
US4490728 *Sep 7, 1982Dec 25, 1984Hewlett-Packard CompanyThermal ink jet printer
US4490731 *Nov 22, 1982Dec 25, 1984Hewlett-Packard CompanyInk dispenser with "frozen" solid ink
US4659383 *Aug 27, 1984Apr 21, 1987Exxon Printing Systems, Inc.High molecular weight, hot melt impulse ink jet ink
US4745420 *Jul 21, 1986May 17, 1988Dataproducts CorporationMethod and apparatus for controlling the size of dots produced by jetting phase change ink
US4751528 *Sep 9, 1987Jun 14, 1988Spectra, Inc.Platen arrangement for hot melt ink jet apparatus
US4758276 *Sep 16, 1986Jul 19, 1988Dataproducts CorporationStearic acid-containing ink jet inks
US4776887 *Mar 10, 1987Oct 11, 1988Mitsubishi Chemical Industries Ltd.Alpha-olefin and maleic anhydraide copolymer or adduct with pigment; carbon number sixteen to ninety-seven
US4793264 *Apr 13, 1987Dec 27, 1988Dataproducts CorporationLow corrosion impulse ink jet ink containing anti-oxidant
US4797692 *Sep 2, 1987Jan 10, 1989Xerox CorporationThermal ink jet printer having ink nucleation control
US4801473 *May 14, 1987Jan 31, 1989Spectra, Inc.Method for preparing a hot melt ink transparency
US4851045 *Aug 24, 1987Jul 25, 1989Seiko Epson CorporationHot-melt ink
US4878946 *Feb 26, 1988Nov 7, 1989Dainippon Ink And Chemicals, Inc.Oil-soluble dye in phosphate or carboxylate solvent
US5006170 *Jun 22, 1989Apr 9, 1991Xerox CorporationHot melt ink compositions
US5021802 *Apr 28, 1989Jun 4, 1991Dataproducts CorporationInk exhibits controlled penetration and spreading on the surface of substrate
EP0308117A1 *Sep 6, 1988Mar 22, 1989Dataproducts CorporationTransparency with jetted color ink and method of making same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5259874 *Oct 23, 1991Nov 9, 1993Hewlett-Packard CompanySolid ink compositions suitable for use in color transparencies
US5409530 *Nov 6, 1992Apr 25, 1995Seiko Epson CorporationHot-melt ink composition
US5421873 *May 24, 1994Jun 6, 1995Fujicopian Co., Ltd.Containing wax that is reaction product of aliphatic monohydric and polyhydric alcohols and toluene diisocyanate
US5574078 *Nov 10, 1994Nov 12, 1996Lasermaster CorporationThermal compositions
US5645632 *Feb 14, 1996Jul 8, 1997Union Camp CorporationDiesters of polymerized fatty acids useful in formulating hot-melt inks
US5688311 *Jan 30, 1997Nov 18, 1997E. I. Du Pont De Nemours And CompanyInk jet inks containing long chain alcohols
US5750604 *Jun 28, 1996May 12, 1998Tektronix, Inc.Phase change ink formulation using a urethane isocyanate-derived resin
US5780528 *Jun 28, 1996Jul 14, 1998Tektronix, Inc.Isocyanate-derived colored resins for use in phase change ink jet inks
US5782966 *Jun 28, 1996Jul 21, 1998Tektronix, Inc.Includes a tackifier and a mono-amide
US5783658 *Jun 28, 1996Jul 21, 1998Tektronix, Inc.Phase change ink formulation using a urethane isocyanate-derived resin and a urethane isocyanate-derived wax
US5827918 *Jun 28, 1996Oct 27, 1998Tektronix, Inc.Resins and waxes made by reacting selected nucleophiles, including alcohols and/or amines with an isocyanate
US5830942 *Jun 28, 1996Nov 3, 1998Tektronix, Inc.Phase change ink formulation using a urethane and urethane/urea isocyanate-derived resins
US5876492 *Sep 23, 1997Mar 2, 1999Xerox CorporationLiquid ester vehicle, a solid ester compound, a liquid crystalline ester compound, a uv absorber, an antioxidant, and a colorant. hot melt acoustic inks.
US5902390 *Sep 23, 1997May 11, 1999Xerox CorporationNonaqueous ink composition comprised of liquid ketone vehicle, solid ketone compound, lightfastness ultraviolet light absorber, lightfastness antioxidant, colorant; having specified acoustic loss value
US5919839 *Aug 8, 1997Jul 6, 1999Tektronix, Inc.Blend of colored wax and clear ink carrier
US5922117 *Sep 23, 1997Jul 13, 1999Xerox CorporationInk compositions containing alcohols
US5931995 *Sep 23, 1997Aug 3, 1999Xerox CorporationNonaqueous ink consists of liquid aldehyde, liquid acid vehicle such as hexanoic acid, a solid additive aldehyde, a solid acid compound or mixture, a lightfastness ultraviolet absorber, an antioxidant and a colorant
US5958119 *Sep 23, 1997Sep 28, 1999Xerox CorporationHot melt ink compositions
US5994453 *Jan 26, 1998Nov 30, 1999Tektronix, Inc.Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urea resin, a mono-amide and a polyethylene wax
US6015847 *Feb 13, 1998Jan 18, 2000Tektronix, Inc.Magenta phase change ink formulation containing organic sulfonic acid
US6017385 *May 7, 1999Jan 25, 2000Xerox CorporationInk compositions
US6018005 *Feb 13, 1998Jan 25, 2000Tektronix, Inc.Phase change ink formulation using urethane isocyanate-derived resins and a polyethylene wax
US6027555 *May 7, 1999Feb 22, 2000Xerox CorporationHot melt ink compositions
US6028138 *Feb 13, 1998Feb 22, 2000Tektronix, Inc.Phase change ink formulation using urethane isocyanate-derived resins, a polyethylene wax and toughening agent
US6048925 *Jan 29, 1999Apr 11, 2000Xerox CorporationPolyurethanes with a toughening agent for inks
US6133353 *Nov 11, 1999Oct 17, 20003D Systems, Inc.Phase change solid imaging material
US6153667 *Jan 21, 1999Nov 28, 2000Pelikan Produktions, AgHot melt ink
US6180692Feb 10, 1998Jan 30, 2001Xerox CorporationPhase change ink formulation with organoleptic maskant additive
US6235094Sep 15, 1999May 22, 2001Xerox CorporationPhase change ink formulations, colorant formulations, and methods of forming colorants
US6303185Sep 3, 1999Oct 16, 2001Xerox CorporationOvercoating of printed substrates
US6309453Sep 20, 1999Oct 30, 2001Xerox CorporationColorless compounds, solid inks, and printing methods
US6350889Jun 24, 1999Feb 26, 2002Arizona Chemical CompanyOligomers of diacids, diols, aminoalcohols
US6380423May 23, 2001Apr 30, 2002Xerox CorporationColorless compounds
US6395811Apr 11, 2000May 28, 20023D Systems, Inc.Alkyl urethane viscosity controller, adhesion promoter; toughness, shrinkage inhibition; jetting from print heads
US6464766Feb 15, 2002Oct 15, 2002Xerox CorporationSolid inks and printing methods
US6472523Feb 8, 2002Oct 29, 2002Xerox CorporationWherein m is an atom or group of atoms capable of bonding to the central cavity of a phthalocyanine molecule, wherein axial ligands optionally can be attached to metal
US6476122Jun 16, 1999Nov 5, 2002Vantico Inc.Selective deposition modeling material
US6476219Feb 8, 2002Nov 5, 2002Xerox CorporationMethods for preparing phthalocyanine compositions
US6528613Jun 26, 2000Mar 4, 20033D Systems, Inc.Diurethane tetraamide solubilizing agent from fatty acid, hydroxy fatty acid, diamine and diisocyanate reactants
US6567642Jul 8, 2002May 20, 2003Heidelberger Druckmaschinen AgHybrid thermal transfer roller brush wax applicator for rub-off reduction
US6576748Jun 27, 2002Jun 10, 2003Xerox CorporationMethod for making dimeric azo pyridone colorants
US6585816Nov 9, 2001Jul 1, 2003Xerox CorporationPhase change inks containing borate esters
US6586492 *Apr 21, 1999Jul 1, 2003Coates Brothers PlcInk-jet ink comprising colorant and ink jet vehicle comprising radiation curable material and thickener, being thixotropic paste at 20 degrees C., and having specified viscosity
US6590082Jun 27, 2002Jul 8, 2003Xerox CorporationAzo pyridone colorants
US6620228May 13, 1998Sep 16, 2003Xerox CorporationTailored nonpolymeric mixed urethane/urea reaction products
US6646111Jun 27, 2002Nov 11, 2003Xerox CorporationDimeric azo pyridone colorants
US6652635Apr 10, 2002Nov 25, 2003Xerox CorporationFor use in direct printing mode or an indirect or offset printing transfer system
US6663703Jun 27, 2002Dec 16, 2003Xerox CorporationPhase change inks containing dimeric azo pyridone colorants
US6673139Jun 27, 2002Jan 6, 2004Xerox CorporationPhase change inks containing dimeric azo pyridone colorants
US6676255Jul 24, 2002Jan 13, 2004Heidelberger Druckmaschinen AgMethod for reducing rub-off from a toner image using a colored phase change composition
US6692121Jul 8, 2002Feb 17, 2004Heidelberger Druckmaschinen AgMethod for reducing rub-off from a toner image using a phase change composition with a rotary brush
US6695502Jul 8, 2002Feb 24, 2004Heidelberger Druckmaschinen AgMultilayer; containing phase changing material; uniformity covering
US6726755Feb 8, 2002Apr 27, 2004Xerox CorporationInk compositions containing phthalocyanines
US6730150Sep 5, 2000May 4, 2004Xerox CorporationPhase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US6741828Jul 8, 2002May 25, 2004Heidelberg Digital L.L.C.Method for reducing rub-off from a toner image using a phase change composition
US6755902Jun 27, 2002Jun 29, 2004Xerox CorporationYellow dye; thermal stability; lightfastness; solubility; sharp durable images; nonclogging
US6761758Sep 4, 2002Jul 13, 2004Xerox CorporationAlkylated tetrakis(triaminotriazine) compounds and phase change inks containing same
US6764541Apr 24, 2003Jul 20, 2004Xerox CorporationColorant compositions
US6775510Jul 8, 2002Aug 10, 2004Heidelberg Digital L.L.C.Method for reducing rub-off from toner or printed images using a phase change composition
US6790267Apr 24, 2003Sep 14, 2004Xerox CorporationColorant compositions
US6801746Jun 26, 2002Oct 5, 2004Eastman Kodak CompanyMethod and system for reducing toner rub-off in an electrophotographic apparatus by using printers' anti-offset spray powder
US6811595Sep 4, 2002Nov 2, 2004Xerox CorporationGuanidinopyrimidinone compounds and phase change inks containing same
US6811596May 12, 2003Nov 2, 2004Xerox CorporationPhase change inks with improved image permanence
US6821327Sep 27, 2002Nov 23, 2004Xerox CorporationPhase change inks
US6835238Jun 26, 2003Dec 28, 2004Xerox CorporationHot melts
US6835833Feb 2, 2004Dec 28, 2004Xerox CorporationAlkylated tetrakis(triaminotriazine) compounds and phase change inks containing same
US6858070Nov 25, 2003Feb 22, 2005Xerox CorporationPhase change inks
US6860928Sep 4, 2002Mar 1, 2005Xerox CorporationAlkylated urea and triaminotriazine compounds and phase change inks containing same
US6860930Jun 25, 2003Mar 1, 2005Xerox CorporationPhase change inks containing branched triamides
US6860931Jun 26, 2003Mar 1, 2005Xerox CorporationPhase change inks containing colorant compounds
US6872243Sep 4, 2002Mar 29, 2005Xerox CorporationPhase change inks containing gelator additives
US6878198Nov 25, 2003Apr 12, 2005Xerox CorporationInk carrier of a monoamide and a tetra-amide; pigment particles having oxygen containing functional groups on the surfaces
US6946025Oct 22, 2003Sep 20, 2005Xerox CorporationProcess for preparing tetra-amide compounds
US6958406Sep 27, 2002Oct 25, 2005Xerox CorporationColorant compounds
US6960248May 22, 2003Nov 1, 2005Arizona Chemical Companybisamide containing cyclopentyl or cyclohexyl ring; hot melt jet inks
US6969759May 25, 2004Nov 29, 2005Xerox CorporationColorant compositions
US6989052Jun 30, 2004Jan 24, 2006Xerox CorporationPhase change ink printing process
US6998493Jun 26, 2003Feb 14, 2006Xerox CorporationColorant compounds
US7022879Jan 30, 2001Apr 4, 2006Xerox CorporationPhase change ink formulations, colorant formulations, and methods of forming colorants
US7033424Jul 23, 2004Apr 25, 2006Xerox CorporationPhase change inks
US7034185Apr 24, 2003Apr 25, 2006Xerox CorporationCompound containing aldehyde, tertiary amine bonded to phenyl ring and a (poly)ether group; phase change ink for ink jet printers
US7053227Sep 27, 2002May 30, 2006Xerox CorporationMethods for making colorant compounds
US7064230Mar 18, 2004Jun 20, 2006Xerox CorporationPhase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US7084189Feb 20, 2003Aug 1, 2006Xerox CorporationPhase change inks with isocyanate-derived antioxidants and UV stabilizers
US7087752Mar 26, 2004Aug 8, 2006Xerox Corporationsuitable for hot melt ink jet printing processes; smear resistance, low viscosity values at jetting temperature and can be fused or transfused to substrates at relatively high temperatures; tetrakis[4-[N,N-bis[4,6-dioctylamino-1,3,5-triazin-2-yl]amino]phenoxy]methane for example
US7094812Apr 24, 2003Aug 22, 2006Xerox Corporationsphase change inks for piezoelectric ink jet printing
US7144450Dec 4, 2004Dec 5, 2006Xerox CorporationInk jets, piezoelectric printing
US7153349Dec 4, 2004Dec 26, 2006Xerox CorporationPhase change inks containing curable trans-1,2-cyclohexane bis(urea-urethane) compounds
US7157601Feb 28, 2006Jan 2, 2007Xerox Corporationsuitable for hot melt ink jet printing processes; smear resistance, low viscosity values at jetting temperature and can be fused or transfused to substrates at relatively high temperatures; pentaerythritol, tetrakis(p-(alkylaminocarbonylamino)phenyl) ether for example
US7172276Dec 10, 2004Feb 6, 2007Xerox CorporationPhase change inks for use piezoelectric ink jet printing device
US7176317Jun 26, 2003Feb 13, 2007Xerox CorporationAnthraquinone, xanthene dyes
US7186762Nov 25, 2003Mar 6, 2007Xerox CorporationAdmixing pigment particles with dispersant, extruding at temperature above peak crystallization, thereby forming dispersion, then high shear mixing to form ink; polyurethanes
US7202883Dec 10, 2004Apr 10, 2007Xerox CorporationHeterogeneous reactive ink composition
US7211131Aug 13, 2004May 1, 2007Xerox CorporationHot melts; for ink jet/piezoelectric printing
US7220300Dec 4, 2004May 22, 2007Xerox CorporationPhase change inks containing bis(urea-urethane) compounds
US7259275Nov 30, 2005Aug 21, 2007Xerox CorporationMethod for preparing curable amide gellant compounds
US7271284Nov 30, 2005Sep 18, 2007Xerox Corporationreacting a diacid with a diamine in the presence of a catalyst, a solvent, and a coupling agent to form an oligoamide intermediate; and reacting the oligoamide intermediate with an alcohol
US7276614Nov 30, 2005Oct 2, 2007Xerox CorporationEster-terminated oligoamides and polyamides having terminal ethylenic double bonds; gelling agents for phase change ink jet inks with improved ultraviolet curability and solubility
US7279587Nov 30, 2005Oct 9, 2007Xerox CorporationPhotoinitiator with phase change properties and gellant affinity
US7293868Dec 22, 2004Nov 13, 2007Xerox CorporationCurable phase change ink composition
US7294730Nov 30, 2005Nov 13, 2007Xerox CorporationAmmonium or amine salts of metal complexes of azodiphenols or (hydroxyphenyl)azo(hydroxypyrazolones); particularly suitable for use in phase change inks
US7301025Jun 1, 2005Nov 27, 2007Xerox CorporationN-(2-(2-(alkyl[carbamoyl, carbonyloxy or ureido]alkyl)pyridinium)-5-(carboxy or sulfo)phenyl-8-((2-(N-alkyl[carbamoyl or ureido]alkyl)pyridinyl) xanthene ligands complexed with a metal or metal-containing moiety; magenta dye with improved heat resistance; hot melts or phase change inks
US7304173Jul 31, 2006Dec 4, 2007Xerox CorporationColorant compositions
US7311767Jul 23, 2004Dec 25, 2007Xerox CorporationProcesses for preparing phase change inks
US7311768Nov 30, 2005Dec 25, 2007Xerox CorporationPhase change inks containing Fischer-Tropsch waxes
US7314949Dec 4, 2004Jan 1, 2008Xerox Corporation1,2-bis(6-(ethylhexyloxycarbonylamino)hexylaminocarbonylamino)cyclohexane; gelling agents for hot melt and phase change inks
US7317122Dec 4, 2004Jan 8, 2008Xerox CorporationCurable trans-1,2-cyclohexane bis(urea-urethane) compounds
US7323595Feb 16, 2006Jan 29, 2008Xerox CorporationInk jet printing, reacting benzylamine-aldehyde compound with stearyl cyanoacetamide
US7345200Feb 16, 2006Mar 18, 2008Xerox CorporationPhase change ink formulations, colorant formulations, and methods of forming colorants
US7347892Aug 13, 2004Mar 25, 2008Xerox Corporationink carrier comprising a polyalkylene wax and a component selected from the group consisting of amides, esters, ester-amides, urethanes, ureas, urethane-ureas, and pigment particles having hydrophobic functional groups covalently bonded to surface
US7371858Mar 5, 2004May 13, 2008Xerox CorporationGuanidinopyrimidinone compounds and phase change inks containing same
US7377971Nov 30, 2005May 27, 2008Xerox CorporationPhase change inks
US7381253Dec 3, 2004Jun 3, 2008Xerox CorporationPhase change inks; piezoelectric printing
US7381254Nov 30, 2005Jun 3, 2008Xerox CorporationPhase change inks
US7381255Nov 30, 2005Jun 3, 2008Xerox CorporationPhase change inks
US7381831Apr 4, 2007Jun 3, 2008Xerox CorporationDimeric azo acetoacetamido dyes, e.g., Dimer Dianthranilate Bis-(2-ethylhexylacetoacetamide) Azo; for use in hot melt or phase change inks
US7407539Nov 30, 2005Aug 5, 2008Xerox CorporationPhase change inks
US7442242Nov 30, 2005Oct 28, 2008Xerox CorporationPhase change inks containing specific colorants
US7449515Nov 30, 2005Nov 11, 2008Xerox Corporationcontaining isocyanate-based curable amides, ureas, urethanes, urea/urethanes, amide/urethanes, and the like
US7485728Feb 6, 2007Feb 3, 2009Xerox CorporationColorant compounds
US7485737Feb 6, 2007Feb 3, 2009Xerox CorporationColorant compounds
US7504502Jan 22, 2008Mar 17, 2009Xerox CorporationGuanidinopyrimidinone compounds and phase change inks containing same
US7520222Mar 18, 2004Apr 21, 2009Xerox CorporationPhase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US7524979Feb 21, 2006Apr 28, 2009Xerox CorporationMethods of making colorant compounds
US7541406Nov 30, 2005Jun 2, 2009Xerox CorporationPhase change inks containing curable isocyanate-derived compounds
US7544796Dec 19, 2006Jun 9, 2009Xerox CorporationColorant compounds
US7553011Sep 11, 2007Jun 30, 2009Xerox CorporationCurable phase change ink composition
US7556679Aug 4, 2005Jul 7, 2009Xerox Corporationobtaining an extrusion of coloring material from an extruder; forming a dispersion, mixing the dispersion in a rotor-stator style, in-line homogenizer, filtering dispersion in molten state with filters
US7560587Dec 4, 2004Jul 14, 2009Xerox Corporationgel agents for hot melt or phase change inks; lower melting point; scratch resistance;
US7572845Jul 31, 2006Aug 11, 2009Xerox CorporationPhase change inks
US7578875 *Nov 30, 2005Aug 25, 2009Xerox CorporationBlack phase change ink comprising low polarity ink carrier comprising ester-terminated polyamide, Guerbet alcohol or Guerbet alcohol mixture with at least one linear alcohol, and low polarity wax; and black colorant; resistant to aggregation and settling of black colorant
US7582687Jul 31, 2006Sep 1, 2009Xerox CorporationPhase change inks
US7592460May 25, 2004Sep 22, 2009Xerox CorporationMethine colorant compounds for phase change inks
US7619075Aug 16, 2005Nov 17, 2009Xerox CorporationColorant compositions
US7622580Aug 13, 2004Nov 24, 2009Xerox CorporationColorant compounds
US7625956Nov 30, 2005Dec 1, 2009Xerox CorporationPhotoinitiators that lead to reduced odor with curable phase change inks; reduced migration through cured images when used in curable phase change inks; Ester- or amine-terminated oligoamides, can have acrylated end(s)
US7645875Dec 19, 2006Jan 12, 2010Xerox CorporationColorant compounds
US7658486Nov 30, 2005Feb 9, 2010Xerox CorporationPhase change inks
US7674842Nov 30, 2005Mar 9, 2010Xerox CorporationPhase change inks containing curable isocyanate-derived compounds and phase change inducing components
US7713342Dec 19, 2006May 11, 2010Xerox CorporationComprising a phase change ink carrier and a phthalocyanine molecule; radiation curable ink
US7714040Nov 30, 2005May 11, 2010Xerox CorporationPhase change inks containing curable amide gellant compounds
US7732581Mar 25, 2009Jun 8, 2010Xerox CorporationColorant compounds
US7732625Jul 23, 2004Jun 8, 2010Xerox CorporationMetallized dye
US7736426Feb 6, 2007Jun 15, 2010Xerox CorporationPhase change inks containing colorant compounds
US7737278Nov 6, 2007Jun 15, 2010Xerox CorporationColorant compounds
US7749315Apr 4, 2007Jul 6, 2010Xerox CorporationContaaining polymeric dye or dimer thereof
US7754862Nov 30, 2007Jul 13, 2010Xerox CorporationMulti-chromophoric AZO pyridone colorants
US7772377Jan 25, 2008Aug 10, 2010Xerox CorporationEasily purified polymer alkylene oxide linked monoazo dyes; reduced printer head clogging and toxicity
US7781026Dec 19, 2006Aug 24, 2010Xerox CorporationComprising a phase change ink carrier and a phthalocyanine molecule; radiation curable ink
US7811368Apr 4, 2007Oct 12, 2010Xerox CorporationPhase change inks containing colorant compounds
US7811370Apr 24, 2007Oct 12, 2010Xerox CorporationPhase change ink compositions
US7812064Aug 7, 2007Oct 12, 2010Xerox Corporationradiation curable; titanium dioxide white pigment; dispersant; vehicle comprising at least one curable monomer; bis-amide gellant; ink jet printing
US7812140Apr 4, 2007Oct 12, 2010Xerox CorporationDimeric azo pyrazolone derivatives; hot melt or phase change inks; yellow to orange; high optical density images; nonclogging; heat and oxidation resistance
US7887176May 15, 2008Feb 15, 2011Xerox CorporationImaging on flexible packaging substrates
US7905948Aug 14, 2007Mar 15, 2011Xerox CorporationPhase change ink compositions
US7910754Dec 17, 2008Mar 22, 2011Xerox CorporationColorant compounds
US7939678Dec 14, 2007May 10, 2011Xerox CorporationPhase change ink formulations, colorant formulations, and methods of forming colorants
US7985865Dec 14, 2007Jul 26, 2011Xerox Corporationabsorbs light from the visible wavelength range and is soluble in a phase change ink; new colorants with substantial hydrophobic character
US7997712Feb 6, 2007Aug 16, 2011Xerox CorporationPhase change inks containing colorant compounds
US8029861Sep 23, 2008Oct 4, 2011Xerox CorporationInk carriers containing low viscosity functionalized waxes, phase change inks including same, and methods for making same
US8057589Dec 21, 2006Nov 15, 2011Xerox CorporationPhase change inks
US8123344Aug 4, 2008Feb 28, 2012Xerox CorporationInk carriers containing surface modified nanoparticles, phase change inks including same, and methods for making same
US8142557Jun 28, 2006Mar 27, 2012Xerox CorporationRadiation curable ink containing gellant and radiation curable wax
US8163074Feb 6, 2007Apr 24, 2012Xerox CorporationPhase change inks containing colorant compounds
US8177897Nov 17, 2008May 15, 2012Xerox CorporationPhase change inks containing graphene-based carbon allotrope colorants
US8269046Aug 2, 2005Sep 18, 2012Arizona Chemical Company, LlcCyclic bisamides useful in formulating inks for phase-change printing
US8303671Feb 6, 2007Nov 6, 2012Xerox CorporationMixture of basic dye and acid dye with wax
US8308286Sep 14, 2010Nov 13, 2012Xerox CorporationCurable phase change ink containing alkoxysilane monomer
US8348409Nov 17, 2008Jan 8, 2013Xerox CorporationInk jet inks containing nanodiamond black colorants
US8449095Jul 13, 2010May 28, 2013Xerox CorporationRadiation curable solid ink compositions suitable for transfuse printing applications
US8603235Apr 3, 2008Dec 10, 2013Xerox CorporationPhase change inks containing Fischer-Tropsch waxes
US8616693Nov 30, 2012Dec 31, 2013Xerox CorporationPhase change ink comprising colorants derived from plants and insects
US8647422Nov 30, 2012Feb 11, 2014Xerox CorporationPhase change ink comprising a modified polysaccharide composition
US8696100Oct 2, 2012Apr 15, 2014Xerox CorporationPhase change ink containing synergist for pigment dispersion
US8714724Oct 2, 2012May 6, 2014Xerox CorporationPhase change inks containing novel synergist
DE102013223281A1Nov 14, 2013Jun 5, 2014Xerox CorporationPhasenwechsel Tinte mit aus Pflanzen und Insekten gewonnenen Farbmitteln
EP1935950A1Dec 7, 2007Jun 25, 2008Xerox CorporationPhase Change Inks Containing Dialkyl Ethers
EP1956052A2Jan 10, 2008Aug 13, 2008Xerox CorporationColorant compounds
EP1956053A2Jan 10, 2008Aug 13, 2008Xerox CorporationColorant compounds
EP1956054A2Jan 30, 2008Aug 13, 2008Xerox CorporationColorant compounds
EP1958993A1Jan 30, 2008Aug 20, 2008Xerox CorporationPhase change inks containing colorant compounds
EP1961793A1Jan 25, 2008Aug 27, 2008Xerox CorporationPhase change inks containing colorant compounds
EP1961794A1Jan 29, 2008Aug 27, 2008Xerox CorporationPhase change inks containing colorant compounds
EP1980593A2Feb 29, 2008Oct 15, 2008Xerox CorporationColourant compounds for phase change inks
EP1983032A1Feb 29, 2008Oct 22, 2008Xerox CorporationPhase change inks containing colorant compounds
EP1983033A1Feb 29, 2008Oct 22, 2008Xerox CorporationPhase change inks containing colourant compounds
EP1985667A2Feb 29, 2008Oct 29, 2008Xerox CorporationPyrazolone-azo colourant compounds
EP1985672A1Feb 29, 2008Oct 29, 2008Xerox CorporationPhase Change Ink Compositions
EP2028240A1Aug 7, 2008Feb 25, 2009Xerox CorporationPhase Change Ink Compositions
EP2107088A1Feb 25, 2009Oct 7, 2009Xerox CorporationPhase change inks containing Fischer-Tropsch Waxes
EP2169016A1Sep 10, 2009Mar 31, 2010Xerox CorporationPhase change inks
Classifications
U.S. Classification106/31.29, 106/31.61, 106/31.58, 106/272, 106/266, 346/99, 106/31.86
International ClassificationB41J2/01, B41J2/05, C09D11/00
Cooperative ClassificationC09D11/34
European ClassificationC09D11/34
Legal Events
DateCodeEventDescription
Mar 29, 2004FPAYFee payment
Year of fee payment: 12
Jan 16, 2001ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, COLORADO
Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:011523/0469
Effective date: 19980520
Owner name: HEWLETT-PACKARD COMPANY INTELLECTUAL PROPERTY ADMI
Mar 28, 2000FPAYFee payment
Year of fee payment: 8
Mar 28, 1996FPAYFee payment
Year of fee payment: 4
Sep 3, 1991ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, A CA CORP., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:YOU, YOUNG S.;MEYER, JOHN D.;REEL/FRAME:005824/0559
Effective date: 19910412