Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5175296 A
Publication typeGrant
Application numberUS 07/663,110
Publication dateDec 29, 1992
Filing dateMar 1, 1991
Priority dateMar 1, 1991
Fee statusPaid
Also published asCA2104781A1, CA2104781C, DE69213720D1, DE69213720T2, EP0575549A1, EP0575549B1, WO1992015581A1
Publication number07663110, 663110, US 5175296 A, US 5175296A, US-A-5175296, US5175296 A, US5175296A
InventorsJohn F. Gerster
Original AssigneeMinnesota Mining And Manufacturing Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Imidazo[4,5-c]quinolin-4-amines and processes for their preparation
US 5175296 A
Abstract
A process and intermediates for preparing 1-substituted-1H-imidazo[4,5-c]quinolin-4-amines. The process involves reacting a 1-substituted-1H-imidazo[4,5-c]quinoline-5N-oxide with an isocyanate and hydrolysing the product thereof. Also, a process for preparing the intermediates is disclosed.
Images(12)
Previous page
Next page
Claims(10)
I claim:
1. A process for preparing a 1H-imidazo-4,5-c]quinolin-4-amine, comprising the steps of:
(i) providing a 1H-imidazo[4,5-c]quinoline 5N-oxide having no functional groups other than the 5N-oxide that are reactive to organic isocyanates;
(ii) reacting the 1H-imidazo[4,5-c]quinoline 5N-oxide from step (i) with an organic isocyanate of the formula Ri --X--NCO, wherein Ri is an organic group substantially inert to quinoline N-oxides and X is a hydrolytically active functional group, to afford a 1H-imidazo[4,5-c]quinoline having a 4-substituent of the formula Ri --X--NH--;
(iii) hydrolysing the product of step (ii) to afford a 1H-imidazo[4,5-c]quinolin-4-amine; and
(iv) isolating the product of step (iii) or a pharmaceutically acceptable acid-addition salt thereof.
2. A process according to claim 1 for preparing a compound of Formula I: ##STR8## wherein R1 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; hydroxyalkyl of one to about six carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or benzoyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;
R2 is selected from the group consisting of hydrogen; straight chain or branched chain alkyl containing one to about eight carbon atoms; benzyl; (phenyl)ethyl; and phenyl; the benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of lower alkyl, lower alkoxy, halogen, and ##STR9## wherein Ra and Rb are independently selected from the group consisting of hydrogen, alkyl of one to about four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen; and Z is selected from the group consisting of alkoxy containing one to about four carbon atoms, alkylamido wherein the alkyl group contains one to about four carbon atoms, amino, substituted amino wherein the substituent is alkyl or hydroxyalkyl of one to about four carbon atoms, azido, chloro, hydroxy, 1-morpholino, 1-pyrrolidino, and thioalkyl of one to about four carbon atoms;
R is selected from the group consisting of lower alkoxy, halogen, and lower alkyl, and n is zero or one, or a pharmaceutically acceptable acid addition salt thereof, which process comprises the steps of:
(i) providing a compound of Formula II ##STR10## wherein R, n, and R2 are as defined above with the proviso that Z in R2 is other than amino, substituted amino, or hydroxy, and R5 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or aroyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;
(ii) reacting the compound of Formula II with an isocyanate of the formula Ri --X--NCO wherein X is a hydrolytically active functional group and Ri is an organic group substantially inert to quinoline N-oxides to afford a compound of Formula III ##STR11## wherein X, Ri, R, R2 R5, and n are as defined above with the proviso that Z in R2 is other than amino, substituted amino, and hydroxyl; and
(iii) hydrolysing the product of step (ii) to provide a compound of Formula I;
(iv) optionally converting or further elaborating the group Z in R2 ; and
(v) isolating the compound of Formula I from step (iv) or a pharmaceutically acceptable acid addition salt therof.
3. A process according to claim 1, wherein X is ##STR12##
4. A process for preparing a compound of Formula I: ##STR13##
5. A process according to claim 1 wherein the compound is 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine.
6. A process according to claim 4, wherein X is ##STR14## wherein Ri is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; hydroxyalkyl of one to about six carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or benzoyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;
R2 is selected from the group consisting of hydrogen; straight chain or branched chain alkyl containing one to about eight carbon atoms; benzyl; (phenyl)ethyl; and phenyl; the benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of lower alkyl, lower alkoxy, halogen, and ##STR15## wherein Ra and Rb are independently selected from the group consisting of hydrogen, alkyl of one to about four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen; and Z is selected from the group consisting of alkoxy containing one to about four carbon atoms, alkylamido wherein the alkyl group contains one to about four carbon atoms, amino, substituted amino wherein the substituent is alkyl or hydroxyalkyl of one to about four carbon atoms, azido, chloro, hydroxy, 1-morpholino, 1-pyrrolidino, and thioalkyl of one to about four carbon atoms;
R is selected from the group consisting of lower alkoxy, halogen, and lower alkyl, and n is zero or one, or a pharmaceutically acceptable acid addition salt thereof, which process comprises the steps of:
(i) providing a compound of Formula III ##STR16## wherein X is a hydrolytically active functional group, Ri is an organic group substantially inert to quinoline N-oxides, R, R2, and n are as defined above with the proviso that Z in R2 is other than amino, substituted amino, and hydroxyl, and R5 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or aroyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms; and
(ii) hydrolysing the compound of Formula III to provide a compound of Formula I;
(iii) optionally converting or further elaborating the group Z in R2 ; and
(iv) isolating the compound of Formula I from step (iii) or a pharmaceutically acceptable acid addition salt thereof.
7. A process for preparing a 1H-imidazo[4,5-c]quinoline having a 4-substituent of the formula Ri --X--NH--, wherein Ri is an organic group substantially inert to quinoline N-oxides, and X is a hydrolytically active functional group, comprising the steps of:
(i) providing a 1H-imidazo[4,5-c]quinoline 5N-oxide having no functional groups other than the 5N-oxide that are reactive to organic isocyanates; and
(ii) reacting the compound from step (i) with a compound of the formula Ri --X--NCO, wherein Ri and X are as defined above.
8. A process according to claim 7 for preparing a compound of the formula ##STR17## wherein R5 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or aroyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;
R6 is selected from the group consisting of hydrogen; straight chain or branched chain alkyl containing one to about eight carbon atoms; benzyl; (phenyl)ethyl; and phenyl; the benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of lower alkyl, lower alkoxy, halogen, and ##STR18## wherein Ra and Rb are independently selected from the group consisting of hydrogen, alkyl of one to about four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen; and G is selected from the group consisting of alkoxy containing one to about four carbon atoms, alkylamido wherein the alkyl group contains one to about four carbon atoms, azido, chloro, 1-morpholino, 1-pyrrolidino, and thioalkyl of one to about four carbon atoms;
R is selected from the group consisting of lower alkoxy, halogen, and lower alkyl, and n is zero or one;
X is a hydrolytically active functional group; and
Ri is an organic group substantially inert to quinoline N-oxides, comprising the steps of
(i) providing a compound of Formula II ##STR19## wherein R, n, R5, and R6 are as defined above; (ii) reacting the compound of Formula II with an isocyanate of the formula Ri --X--NCO wherein X is a hydrolytically active functional group and Ri is an organic group substantially inert to quinoline N-oxides.
9. A compound of the formula ##STR20## wherein X is a hydrolytically active functional group, Ri is an organic group substantially inert to quinoline N-oxides, and wherein
R5 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or aroyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;
R6 is selected from the group consisting of hydrogen; straight chain or branched chain alkyl containing one to about eight carbon atoms; benzyl; (phenyl)ethyl; and phenyl; the benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of lower alkyl, lower alkoxy, halogen, and ##STR21## wherein Ra and Rb are independently selected from the group consisting of hydrogen, alkyl of one to about four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen; and G is selected from the group consisting of alkoxy containing one to about four carbon atoms, alkylamido wherein the alkyl group contains one to about four carbon atoms, azido, chloro, 1-morpholino, 1-pyrrolidino, and thioalkyl of one to about four carbon atoms;
R is selected from the group consisting of lower alkoxy, halogen, and lower alkyl; and
n is zero or one.
10. A compound according to claim 9, wherein X is ##STR22##
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to processes and intermediates for preparing 1H-imidazo[4,5-c]quinolines. In another aspect this invention relates to processes and intermediates for preparing 1-substituted-1H-imidazo[4,5-c]quinolin-4-amines.

2. Description of the Related Art

The synthesis of 1H-imidazo[4,5-c]quinolin-4-amines has been described in U.S. Pat. Nos. 4,689,338 (Gerster) and U.S. Pat. No. 4,929,624 (Gerster et al.). The methods described therein involve the step of heating the 4-chloro compound in the presence of ammonium hydroxide or ammonia under pressure (e.g., in a sealed reactor) to afford the 4-amino compound.

The reaction of phenyl isocyanate with heteroaromatic 6-memberd ring N-oxides has been reported in "Organic Chemistry: A series of Monographs, Chemistry of the Heterocyclic N-oxides." A. R. Katritsky and J. Kagowski. Alfred T. Bloomquist, Ed., Academic Press, 1971. The reaction is said to afford the α-anilino derivative.

SUMMARY OF THE INVENTION

This invention provides a process for preparing a 1H-imidazo[4,5-c]quinolin-4-amino, comprising the steps of:

(i) providing a 1H-imidazo[4,5-c]quinoline 5N-oxide having no functional groups other than the 5N-oxide that are reactive to organic isocyanates;

(ii) reacting the 1H-imidazo[4,5-c]quinoline N-oxide from step (i) with an organic isocyanate of the formula R1 --X--NCO, wherein Ri is an organic group substantially inert to quinoline N-oxides and X is a hydrolytically active functional group, to afford a 1H-imidazo[4,5-c]quinoline having a 4-substituent of the formula Ri --X--NH--;

(iii) hydrolysing the product of step (ii) to afford a 1H-imidazo[4,5-c]quinolin-4-amine; and

(iv) isolating the product of step (iii) or a pharmaceutically acceptable acid-addition salt thereof.

This invention also provides a process for preparing a compound of Formula I ##STR1## wherein

R1 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; hydroxyalkyl of one to about six carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or benzoyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;

R2 is selected from the group consisting of hydrogen; straight chain or branched chain alkyl containing one to about eight carbon atoms; benzyl; (phenyl)ethyl; and phenyl; the benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of lower alkyl, lower alkoxy, halogen, and ##STR2## wherein Ra and Rb are independently selected from the group consisting of hydrogen, alkyl of one to about four carbon atoms, phenyl, and substituted phenyl wherein the substituent is selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen; and Z is selected from the group consisting of alkoxy containing one to about four carbon atoms, alkylamido wherein the alkyl group contains one to about four carbon atoms, amino, substituted amino wherein the substituent is alkyl or hydroxyalkyl of one to about four carbon atoms, azido, chloro, hydroxy, 1-morpholino, 1-pyrrolidino, and thioalkyl of one to about four carbon atoms;

R is selected from the group consisting of lower alkoxy, halogen, and lower alkyl; and n is zero or one; or a pharmaceutically acceptable acid addition salt thereof, which process comprises the steps of:

(i) providing a compound of Formula II ##STR3## wherein R, n, and R2 are as defined above with the proviso that Z in R2 is other than amino, substituted amino, or hydroxy, and R5 is selected from the group consisting of: straight chain or branched chain alkyl containing one to about ten carbon atoms and substituted straight chain or branched chain alkyl containing one to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; straight chain or branched chain alkenyl containing two to about ten carbon atoms and substituted straight chain or branched chain alkenyl containing two to about ten carbon atoms, wherein the substituent is selected from the group consisting of cycloalkyl containing three to about six carbon atoms and cycloalkyl containing three to about six carbon atoms substituted by straight chain or branched chain alkyl containing one to about four carbon atoms; alkoxyalkyl wherein the alkoxy moiety contains one to about four carbon atoms and the alkyl moiety contains one to about six carbon atoms; acyloxyalkyl wherein the acyloxy moiety is alkanoyloxy of two to about four carbon atoms or aroyloxy, and the alkyl moiety contains one to about six carbon atoms; benzyl; (phenyl)ethyl; and phenyl; said benzyl, (phenyl)ethyl, or phenyl substituent being optionally substituted on the benzene ring by one or two moieties independently selected from the group consisting of alkyl of one to about four carbon atoms, alkoxy of one to about four carbon atoms, and halogen, with the proviso that when said benzene ring is substituted by two of said moieties, then the moieties together contain no more than six carbon atoms;

(ii) reacting the compound of Formula II with an isocyanate of the formula Ri --X--NCO, wherein X is a hydrolytically active functional group and Ri is an organic group substantially inert to quinoline N-oxides to afford an intermediate of Formula III ##STR4## wherein X, Ri, R, R2, R5, and n are as defined above with the proviso that Z in R2 is other than amino, substituted amino, or hydroxy;

(iii) hydrolysing the product of step (ii) to provide a compound of Formula I;

(iv) optionally converting or further elaborating the group Z in R2 ; and

(v) isolating the compound of Formula I from step (iv) or a pharmaceutically acceptable acid addition salt thereof.

This invention also provides intermediate compounds of Formula III above and a process for preparing such intermediates.

The processes of this invention allow an N-oxide of Formula II to be aminated directly without chlorination and subsequent use of the high pressure conditions used in previous syntheses of imidazo[4,5-c]quinolin-4-amines.

DETAILED DESCRIPTION OF THE INVENTION

For the purpose of the instant specification and claims, the term "lower" when used in connection with "alkyl" or "alkoxy" designates straight chain or branched chain groups containing one to about four carbon atoms.

The process of this invention is illustrated in the Reaction Scheme below, wherein X, Ri, R, n, R1, R2, and R5 are as defined above. ##STR5## The Reaction Scheme begins with a 4-hydroxyquinoline of Formula IV. Many 4-hydroxyquinolines of Formula IV are commercially available. The others are known and/or can be prepared readily by those skilled in the art. Step 1 involves nitration of a 4-hydroxyquinoline to provide a 3-nitro-4-hydroxyquinoline of Formula V. Conventional conditions for such reactions are well known. Preferred conditions in the instance where n is zero, which afford a product of Formula V in superior yield compared with conditions used in the prior art, involve heating at about 125 C.-130 C. in propionic acid in the presence of nitric acid. Preferred conditions in other instances will depend upon the particular 4-hydroxyquinoline used in step 1, and those skilled in the art will be able to select suitable conditions.

In step 2, a 3-nitro-4-hydroxyquinoline is chlorinated at the 4-position to provide a 3-nitro-4chloroquinoline of Formula VI. Some compounds of Formula VI are known and disclosed, e.g., in U.S. Pat. No. 3,700,674 (Diehl et al.) and references cited therein, and U.S. Pat. No. 4,689,338 (Gerster), both patents being incorporated herein by reference. The others can be prepared as shown in step 2. Step 2 can be carried out by reacting a compound of Formula V in an inert solvent (e.g., methylene chloride) with a chlorinating agent (e.g., phosphorus oxychloride). Preferred conditions involve chlorination in methylene chloride with a Vilsmeier reagent prepared from thionyl chloride and N,N-dimethylformamide. In such a reaction, the compound of Formula V is suspended in methylene chloride, and a slight molar excess of thionyl chloride and N,N-dimethylformamide is added to the suspension. Heating to reflux facilitates the chlorination.

Step 3 involves reacting a compound of Formula VI in an inert solvent with an amine of the formula R1 NH2 to provide a compound of Formula VII. Some compounds of Formula VII are disclosed in U.S. Pat. No. 4,689,338 (Gerster). The others can be prepared as shown in step 3. The reaction of step 3 is preferably carried out in the presence of a tertiary amine catalyst (such as triethylamine), and it is preferred to run the reaction without isolation of the chloro compound from step 2.

Step 4 involves several reactions including: (i) reduction of the nitro group of the compound of Formula VII, and (ii) reaction of the resulting 3-amino compound with a carboxylic acid or an equivalent thereof in order to provide a cyclized imidazo[4,5-c]quinoline.

The reduction in step (4) is preferably carried out using a conventional heterogeneous hydrogenation catalyst such as platinum on carbon. The reduction can be carried out conveniently on a Paar apparatus in an inert solvent such as toluene, ethyl acetate, or a lower alkanol.

In part (ii) of step 4, a 3-amino compound is reacted with (a) a 1,1-dialkoxyalkyl alkanoate such as diethoxymethyl acetate, or (b) a carboxylic acid that will introduce the desired R2 group, or (c) a trialkyl ortho ester of the formula R2 C(Oalkyl)3, wherein "alkyl" is an alkyl group containing one to about four carbon atoms, or (d) a combination of such a carboxylic acid with such a trialkyl ortho ester to provide an imidazo[4,5-c]-quinoline. The reaction can be carried out by heating, e.g., at about 130 C., in the presence of an acid, preferably an alkanoic acid having one more carbon atom than R2.

An alternative to part (ii) of step 4 involves a reaction similar to that described above but involving formic acid or a trialkylorthoformate to form a 2-hydrogen substituted intermediate 1H-imidazo[4,5-c]quinoline. This compound is then deprotonated at the 2-position by a strong base (e.g., an alkyllithium such as n-butyllithium) and reacted with a compound of the formula ##STR6##

In instances wherein a primary or secondary hydroxyl group is present in the cyclized compound, part (ii) of step 4 also involves protecting the hydroxyl group with a removable protecting group such as an alkanoyloxy group (e.g., acetoxy) or an aroyloxy group (e.g., benzoyloxy). The protecting group can later be removed as appropriate when it will no longer interfere with subsequent reactions. Suitable protecting groups and reactions for their placement and removal are well known to those skilled in the art. See, for example, U.S. Pat. No. 4,689,338 (Gerster), Examples 115-123.

Part (iii) of step (4) provides an intermediate of Formula II. The quinoline nitrogen is oxidized with a conventional oxidizing agent that is capable of forming N-oxides. Preferred oxidizing agents include peroxyacids (such as peroxyacetic acid) and hydrogen peroxide. Preferred conditions involve mild heating (e.g., at about 50 C.-60 C.) in an ethanolic solution of peroxyacetic acid.

Some compounds of Formula II are disclosed in U.S. Pat. Nos. 4,689,338 and 4,698,348 (Gerster). The others can be prepared as described in connection with step 4 herein.

A 1H-imidazo[4,5-c]quinolin-4-amine is prepared in step (5) of the Reaction Scheme. Step (5) involves: (a) reacting a compound of Formula II with an isocyanate to afford an intermediate of Formula III; (b) hydrolysing the intermediate; (c) optionally converting or further elaborating the group Z in R2 ; and (d) isolating the compound of Formula I from step (d) or a pharmaceutically acceptable acid addition salt thereof.

Part (a) of step (5) involves reacting an N-oxide with an isocyanate wherein the isocyanato group is bonded to a hydrolytically active functional group. The term "hydrolytically active functional group" as used herein designates any functional group that is capable of being subjected to a nucleophilic displacement reaction in step (5)(b) of the Reaction Scheme Exemplary hydrolytically active functional groups include carbonyl ##STR7## A particular class of such isocyanates is isocyanates of the formula Ri --X--NCO, wherein Ri is an organic group substantially inert to quinoline N-oxides under the conditions of step (5)(a) and X is a hydrolytically active functional group. Suitable Ri groups are easily selected by those skilled in the art. Preferred groups Ri include alkyl, aryl, alkenyl, and combinations thereof. Particular preferred isocyanates include aroyl isocyanates such as benzoylisocyanate. The reaction of the isocyanate with the N-oxide is carried out under substantially anhydrous conditions by adding the isocyanate to a solution of the N-oxide in an inert solvent such as dichloromethane. The resulting 4-substituted compound of Formula III can be isolated by removal of the solvent.

Step (5)(b) of the Reaction Scheme involves hydrolysis of a compound of Formula III. The term "hydrolysis" as used herein designates not only nucleophilic displacement with water but also displacement with other nucleophilic compounds. Such a reaction can be carried out by general methods well known to those skilled in the art, e.g., by heating in the presence of a nucleophilic solvent such as water or a lower alkanol optionally in the presence of a catalyst such as an alkali metal hydroxide or lower alkoxide.

In instances wherein there are hydroxyl protecting groups present in the compound of Formula III, they too can be removed in step (5)(b). A hydroxyl-containing compound of Formula I can be converted or further elaborated by methods well known to those skilled in the art to afford a further compound of Formula I. For example, reaction with thionyl chloride will provide a compound of Formula I wherein Z is chloro. Reaction of this compound with a nucleophile such as sodium azide, pyrrolidine, methanethiol, or morpholine will afford a compound of Formula I wherein Z is azido, 1-pyrrolidino, thiomethyl, or 1-morpholino, respectively. Reduction of an azido compound provides a compound of Formula I wherein Z is amino. Such an amino compound can be acylated to form a compound wherein Z is alkylamido.

Some compounds of Formula I can be prepared by a similar reaction scheme wherein the final desired group Z is introduced directly in step (4) and carried on through the process of the invention.

The product compound of Formula I can be isolated by the conventional means disclosed in U.S. Pat. No. 4,689,338 (Gerster), such as, for example, removal of the solvent and recrystallization from an appropriate solvent (e.g., N,N-dimethylformamide) or solvent mixture, or by dissolution in an appropriate solvent (e.g., methanol) and re-precipitation by addition of a second solvent in which the compound is insoluble.

The compounds of Formula I can be used in the form of acid addition salts such as hydrochlorides, dihydrogen sulfates, trihydrogen phosphates, hydrogen nitrates, methane sulfonates and salts of other pharmaceutically acceptable acids. Pharmaceutically acceptable acid-addition salts of compounds of Formula I are generally prepared by reaction of the respective compound with an equimolar amount of a relatively strong acid, preferably an inorganic acid such as hydrochloric, sulfuric or phosphoric acid or an organic acid such as methanesulfonic acid in a polar solvent. Isolation of the salt is facilitated by the addition of a solvent in which the salt is insoluble (e.g., diethyl ether).

Some of the 1H-imidazo[4,5-c]quinolin-4-amines prepared by the process of this invention are disclosed in U.S. Pat. Nos. 4,689,338 (Gerster) and 4,929,624 (Gerster et al.) as antiviral agents. The process as described above is illustrated in Example 1 below for the synthesis of 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine. The exemplified process affords the final product in a 40% overall yield from 4-hydroxyquinoline.

In the following Examples, all reactions were run with stirring under an atmosphere of dry nitrogen unless otherwise indicated. The particular materials and amounts thereof recited in the Example, as well as other conditions and details, should not be construed to unduly limit the invention.

EXAMPLE 1 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine Part A

4-Hydroxyquinoline (26.2 g, 0.18 mol) was added to propionic acid (250 mL) and the solution was heated to about 125 C. Nitric acid (16.0 mL of a 70 percent aqueous solution, 0.36 mol) was added dropwise with stirring. When the addition was complete, the mixture was stirred at about 125 C. for 10 minutes, then allowed to cool to room temperature. The mixture was diluted with ethanol. The precipitated solid was filtered, washed sequentially with ethanol, water, and ethanol, and dried to afford 3-nitro-4-hydroxyquinoline (27.7 g, 86%) as a light yellow powder.

Part B

The compound 3-nitro-4-hydroxyquinoline (19.0 g, 0.10 mol) was suspended in dichloromethane (200 mL). Thionyl chloride (8.1 mL, 0.11 mol) and N,N-dimethylformamide (8.5 mL, 0.11 mol) were added. The reaction mixture was then heated for 3.5 hours at reflux, during which time a small amount of solid precipitated. The reaction mixture was then cooled to -15 C. and a solution of isobutylamine (15.1 mL, 0.15 mol), and triethylamine (20.9 mL, 0.15 mol) in dichloromethane (100 mL) was added in a slow stream with vigorous swirling. During the addition the temperature of the reaction mixture rose to 20 C. The resulting solution was heated at reflux for 30 minutes, cooled, and the solvent was removed at reduced pressure to afford a yellow solid product. The product was slurried in water, filtered, washed with water, and dried partially. The partially dried product was then slurried in ethanol (75 mL), filtered, washed successively with a small amount of ethanol and a small amount of diethyl ether, and dried at reduced pressure to afford a yellow crystalline solid product. A second crop of product was obtained by evaporating the ethanol filtrate. The total amount of N-(2-methylpropyl)-3-nitro-4-quinolinamine was 23.3 g.

Part C

N-(2-methylpropyl)-3-nitro-4-quinolinamine (61.3 g, 0.25 mol) was placed in a Paar apparatus along with 5% Pt/C (1.5 g), magnesium sulfate (60 g), ethyl acetate (750 mL), and formic acid (400 mL). The mixture was placed under a hydrogen atmosphere (about 50 psi) and hydrogenated. The catalyst was removed by filtration and the solvent was evaporated to afford the crude product. The crude product was dissolved in 98% formic acid (400 mL) and refluxed for 1 hour. The resulting solution was evaporated to dryness and the resulting solid was dissolved in ethanol (400 mL). Peroxyacetic acid (63 mL of an acetic acid solution containing 32% peroxyacetic acid based on the total weight of the solution, 0.3 mol) was added and the solution was heated at 56 C. for about 0.5 hour. The solution was then cooled and the solvents were removed at reduced pressure. The residue was then co-evaporated with heptane (3300 mL) to afford a solid with spectral properties identical to those of an authentic sample of 1-(2-methylpropyl)imidazo[4,5-c]quinoline-5N-oxide.

Part D

1-(2-Methylpropyl)-1H-imidazo-[4,5-c]quinoline-5N-oxide (7.3 g, 0.0303 mol) was dissolved in dichloromethane (250 mL) and benzoyl isocyanate (5.0 g, 0.0306 mol) was dissolved in dichloromethane and added to the stirred solution. The reaction solution warmed spontaneously and refluxed briefly. The solution was then refluxed on the steam bath for 15 min and diluted with hexane until turbid. A crystalline solid formed and was filtered from the mixture, washed with dichloromethane/hexane, and dried. A yield of 8.1 g of colorless crystalline solid was obtained. A second crop of 1.4 g was obtained from the filtrate. A combined yield of 9.5 g of N-benzoyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine (91.1%) was obtained. Melting point 193 C.-196 C..

______________________________________Analysis      Calc'd  Found______________________________________C             73.23%  % C:        73.29H              5.85%  % H:         5.8N             16.27%  % N:        16.3______________________________________
Part E

N-Benzoyl-1-(2-methylpropyl)-1H-imidazol[4,5-c]quinolin-4-amine (5.0 g, 0.0145 mol) and sodium methoxide (10 drops of a 25% by weight solution in methanol) were mixed in methanol (50 mL) and the mixture was heated at reflux for 75 minutes. The mixture was cooled to room temperature, and a solid formed. The solid was filtered from the mixture, washed sequentially with water and methanol, and dried. A crude yield of colorless product of 3.3 g (94.3%) was obtained. Spectral properties of the product corresponded to those of an authentic sample.

EXAMPLE 2 4-Amino-1-(2-methylpropyl)α-phenyl-1H-imidazo[4,5-c]quinoline-2-methanol Part A

3-Amino-4-(2-methylpropylamino)quinoline (43.5 g; 0.20 mole) and 300 mL of formic acid were combined and heated on a steam bath for several hours. The reaction mixture was concentrated under vacuum, diluted with water, basified with ammonium hydroxide then extracted twice with ether. The ether extracts were treated with activated charcoal then combined for a total volume of 1200 mL. The volume was reduced to 500 mL, cooled, then filtered to provide 31.1 g of a light green crystalline solid 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline.

1-(2-Methylpropyl)-1H-imidazo[4,5-c]quinoline (4 g; 0.017 mole) was dissolved in 50 mL of tetrahydrofuran then cooled to -78 C. A 7.75 mL portion of n-butyl lithium (2.5M in hexanes) was added dropwise to the cooled solution. At 15 minutes post addition, benzaldehyde (2.7 mL; 0.027 mole) was added and the reaction mixture was allowed to warm slightly. The reaction was quenched with water then diluted with ethyl ether. The ether was separated, dried with magnesium sulfate then concentrated under vacuum. The resulting residue was purified by silica gel chromatography using 5% methanol in methylene chloride as the eluent to give an oily yellow solid. This material was recrystallized from methylene chloride/hexane to provide 1-(2-Methylpropyl)-α-phenyl-1H-imidazo[4,5-c]quinoline-2-methanol as a white crystalline solid, m.p. 160-166 C. Analysis: Calc'd: C, 76.1; H, 6.4; N, 12.7; Found: C, 75.9; H, 6.3; N, 12.7.

Part B

1-(2-Methylpropyl)-α-phenyl-1H-imidazo[4,5-c]-quinoline-2-methanol (3 g; 9 mmole) was dissolved in 50 mL of methylene chloride then combined with acetic anhydride (1.3 mL; 13.5 mmole) and triethylamine (1.6 mL; 11.8 mole) and stirred at room temperature overnight. The reaction mixture was diluted with methylene chloride, washed sequentially with water and saturated sodium bicarbonate solution, dried over magnesium sulfate and concentrated under vacuum. The resulting residue was purified by silica gel flash chromatography (50% ethyl acetate in methylene chloride as eluent) to provide 1-(2-methylpropyl)-α-phenyl-1H-imidazo[4,5-c]quinoline-2-methyl acetate as a white solid. The structure was confirmed by nuclear magnetic resonance spectroscopy.

Part C

1-(2-Methylpropyl)-α-phenyl-1H-imidazo[4,5-c]quinoline-2-methyl acetate (3 g; 8 mmole) was dissolved in 50 mL of ethyl acetate then combined with peracetic acid (2.2 g; 8.8 mmole) and heated at reflux for about an hour. The reaction mixture was allowed to cool and then was stirred at room temperature for several days. The resulting precipitate was collected, rinsed with ethyl acetate and dried to provide 2.6 g of 2-(α-acetoxybenzyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline 5N oxide as a solid. The structure was confirmed by nuclear magnetic resonance spectroscopy.

Part D

2-(α-Acetoxybenzyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline 5N oxide (2.6 g; 6.7 mmole) was dissolved in about 40 mL of methylene chloride, combined with benzoyl isocyanate (1.2 g; 7.3 mmole) and heated at reflux for about one hour. The reaction mixture was diluted with methylene chloride, washed with water, dried over magnesium sulfate and concentrated under vacuum. The residue was taken up in methanol, combined with a catalytic amount of 25% sodium methoxide in methanol, and heated at reflux for several hours. The reaction product was purified by silica gel chromatography using 2-5% methanol in methylene chloride then recrystallized from ethyl acetate-hexane. The recrystallized material was co-evaporated twice with methylene chloride to provide about 0.5 g of 4-amino-1-(2-methylpropyl)-α-phenyl-1H-imidazo[4,5-c]quinoline-2-methanol as a solid, m.p. 125-140 C. Analysis: Calc'd: C, 72.8; H, 6.4; N, 16.2; Found: C, 71.9; H, 5.6; N, 15.6.

EXAMPLE 3 4-Amino-α-(4-chlorophenyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2-methanol Part A

Using the method of Example 2, Part A, 2.5 g of 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline was reacted with 4-chlorobenzaldehyde to provide 3.1 g of α-(4-chlorophenyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2-methanol as a yellow solid. The structure was confirmed by nuclear magnetic resonance spectroscopy.

Part B

Using the method of Example 2, Part B, 2.6 g (7.1 mmole) of α-(4-chlorophenyl)-1H-imidazo[4,5-c]quinoline-2-methanol was reacted with acetic anhydride to provide α-(4-chlorophenyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2-methyl acetate as a thick oil. The structure was confirmed by nuclear magnetic resonance spectroscopy.

Part C

Using the method of Example 2, Part C, 2.9 g (7.1 mmole) of α-(4-chlorophenyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2-methyl acetate was oxidized with peracetic acid to provide 2-(α-acetoxy-4-chlorobenzyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline 5N oxide as an oil.

Part D

Using the method of Example 2, Part D, 3.3 g (7.8 mmole) of 2-(α-acetoxy-4-chlorobenzyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline 5N oxide was reacted with benzoyl isocyanate then hydrolyzed to provide 0.8 g of 4-amino-α-(4-chlorophenyl)-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2-methanol as a solid, m.p. 140-145 C. Analysis: Calculated: C, 66.2; H, 5.6; N, 14.7; Found: C, 65.6; H, 5.5; N, 14.4.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4689338 *Nov 15, 1985Aug 25, 1987Riker Laboratories, Inc.1H-Imidazo[4,5-c]quinolin-4-amines and antiviral use
US4929624 *Mar 23, 1989May 29, 1990Minnesota Mining And Manufacturing CompanyOlefinic 1H-imidazo(4,5-c)quinolin-4-amines
US4988815 *Oct 26, 1989Jan 29, 1991Riker Laboratories, Inc.3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines
Non-Patent Citations
Reference
1 *Angewandte Chemie International Edition in English 1963,2, 565 (Huisgen, Oct. 1963).
2 *Chem. Ber. 1989, 102,926 (Seidl et al.).
3 *Chemical Abstracts, vol. 103 (No. 23), Abst. No. 196,090s Dec. 9, 1985.
4 *Chemical Abstracts, vol. 108, (No. 9), Abst. No. 75,403 v Feb. 29, 1988.
5Chemical Abstracts, vol. 108, (No. 9), Abst. No. 75,403-v Feb. 29, 1988.
6 *J. Pharm. Soc. Jap 1967, 87 164 (Ijima).
7 *J. Pharm. Soc. Jap. 1962, 82, 1093 (Hayashi et al).
8 *J. Pharm. Soc. Jap. 1966, 86, 576 (Hayashi et al.).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5352784 *Jul 15, 1993Oct 4, 1994Minnesota Mining And Manufacturing CompanyFused cycloalkylimidazopyridines
US5444065 *Jul 20, 1994Aug 22, 1995Minnesota Mining And Manufacturing CompanyFused cycloalkylimidazopyridines as inducer of interferon α biosynthesis
US5446153 *Sep 8, 1994Aug 29, 1995Minnesota Mining And Manufacturing CompanyIntermediates for imidazo[4,5-c]pyridin-4-amines
US5494916 *Nov 4, 1994Feb 27, 1996Minnesota Mining And Manufacturing CompanyImidazo[4,5-C]pyridin-4-amines
US5605899 *Dec 12, 1994Feb 25, 1997Minnesota Mining And Manufacturing Company1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5627281 *Jul 3, 1996May 6, 1997Minnesota Mining And Manufacturing CompanyIntermediate compounds of fused cycloalkylimidazopyridines
US5644063 *May 31, 1995Jul 1, 1997Minnesota Mining And Manufacturing CompanyImidazo[4,5-c]pyridin-4-amine intermediates
US5648516 *May 31, 1995Jul 15, 1997Minnesota Mining And Manufacturing CompanyFused cycloalkylimidazopyridines
US5693811 *Jun 21, 1996Dec 2, 1997Minnesota Mining And Manufacturing CompanyProcess for preparing tetrahdroimidazoquinolinamines
US5741908 *Jun 21, 1996Apr 21, 1998Minnesota Mining And Manufacturing CompanyProcess for reparing imidazoquinolinamines
US5741909 *Jan 28, 1997Apr 21, 1998Minnesota Mining And Manufacturing Company1-substituted, 2-substituted 1H-imidazo 4,5-C!quinolin-4-amines
US5886006 *Mar 6, 1997Mar 23, 1999Minnesota Mining And Manufacturing CompanyFused cycloalkylimidazopyridines
US5977366 *Apr 14, 1998Nov 2, 19993M Innovative Properties Company1-substituted, 2-substituted 1H-imidazo[4,5-c] quinolin-4-amines
US5998619 *Apr 16, 1998Dec 7, 19993M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6150523 *Aug 17, 1999Nov 21, 20003M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6245776Jan 7, 2000Jun 12, 20013M Innovative Properties CompanyFormulations and methods for treatment of mucosal associated conditions with an immune response modifier
US6348462Aug 27, 1999Feb 19, 20023M Innovative Properties Company1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US6376669Nov 2, 2000Apr 23, 20023M Innovative Properties CompanyDye labeled imidazoquinoline compounds
US6437131Oct 4, 2000Aug 20, 20023M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6465654Oct 9, 2001Oct 15, 20023M Innovative Properties CompanyProcess for preparing 1-substituted, 2-substituted 1H-imidazo[4, 5-c]quinoline-4-amines
US6486168Sep 29, 2000Nov 26, 20023M Innovative Properties CompanyFormulations and methods for treatment of mucosal associated conditions with an immune response modifier
US6525064Jun 7, 2002Feb 25, 20033M Innovative Properties CompanySulfonamido substituted imidazopyridines
US6534654Jun 26, 2002Mar 18, 20033M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6545016Jun 7, 2002Apr 8, 20033M Innovative Properties CompanyAmide substituted imidazopyridines
US6545017Jun 7, 2002Apr 8, 20033M Innovative Properties CompanyUrea substituted imidazopyridines
US6608201Sep 10, 2002Aug 19, 20033M Innovative Properties CompanyProcess for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US6613902Jan 28, 2003Sep 2, 20033M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6624305Feb 6, 2003Sep 23, 20033M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6630588Feb 19, 2002Oct 7, 20033M Innovative Properties CompanyDye labeled imidazoquinoline compounds
US6660735Jun 7, 2002Dec 9, 20033M Innovative Properties CompanyUrea substituted imidazoquinoline ethers
US6664265Jun 7, 2002Dec 16, 20033M Innovative Properties CompanyAmido ether substituted imidazoquinolines
US6667312Jun 7, 2002Dec 23, 20033M Innovative Properties CompanyThioether substituted imidazoquinolines
US6677347Jun 7, 2002Jan 13, 20043M Innovative Properties CompanySulfonamido ether substituted imidazoquinolines
US6677348Jun 7, 2002Jan 13, 20043M Innovative Properties CompanyAryl ether substituted imidazoquinolines
US6677349Apr 28, 2003Jan 13, 20043M Innovative Properties CompanySulfonamide and sulfamide substituted imidazoquinolines
US6686472May 13, 2003Feb 3, 20043M Innovative Properties CompanyProcess for preparing 1-substituted, 2-substituted 1-H-imidazo(4,5-c)quinolin-4-amines
US6696465Dec 17, 2002Feb 24, 20043M Innovative Properties CompanySulfonamido substituted imidazopyridines
US6699878Oct 7, 2002Mar 2, 20043M Innovative Properties CompanyImidazonaphthyridines
US6706728Sep 10, 2002Mar 16, 20043M Innovative Properties CompanySystems and methods for treating a mucosal surface
US6716988Feb 4, 2003Apr 6, 20043M Innovative Properties CompanyUrea substituted imidazopyridines
US6720333Feb 4, 2003Apr 13, 20043M Innovative Properties CompanyAmide substituted imidazopyridines
US6720334Feb 4, 2003Apr 13, 20043M Innovative Properties CompanyUrea substituted imidazopyridines
US6720422Feb 4, 2003Apr 13, 20043M Innovative Properties CompanyAmide substituted imidazopyridines
US6743920May 12, 2003Jun 1, 20043M Innovative Properties CompanyProcess for imidazo[4,5-c]pyridin-4-amines
US6747040Apr 2, 2003Jun 8, 20043M Innovative Properties CompanyImidazonaphthyridines
US6780873Jan 28, 2003Aug 24, 20043M Innovative Properties CompanyUrea substituted imidazoquinolines
US6784188Feb 20, 2003Aug 31, 20043M Innovative Properties CompanyUrea substituted imidazoquinolines
US6790961Dec 9, 2003Sep 14, 20043M Innovative Properties CompanyProcess for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-C]quinolin-4-amines
US6797716Apr 3, 2003Sep 28, 20043M Innovative Properties CompanyImidazonaphthyridines
US6797718Jun 6, 2003Sep 28, 20043M Innovative Properties CompanyEther substituted imidazopyridines
US6818650Sep 25, 2003Nov 16, 20043M Innovative Properties Company1H-imidazo dimers
US6825350Jun 15, 2001Nov 30, 20043M Innovative Properties CompanySulfonamide and sulfamide substituted imidazoquinolines and methods for the treatment of periodontal disease using these and other immune response modifiers
US6878719Jan 7, 2004Apr 12, 20053M Innovative Properties CompanySulfonamido substituted imidazopyridines
US6888000Dec 12, 2003May 3, 20053M Innovative Properties CompanySulfonamide and sulfamide substituted imidazoquinolines
US6894165Apr 14, 2004May 17, 20053M Innovative Properties CompanyImidazonaphthyridines
US6897221Feb 17, 2004May 24, 20053M Innovative Properties CompanyUrea substituted imidazoquinolines
US6897314Jul 21, 2003May 24, 20053M Innovative Properties CompanyProcess for preparing imidazoquinolinamines
US6903113Feb 4, 2004Jun 7, 20053M Innovative Properties CompanyUrea substituted imidazopyridines
US6916925Jul 22, 2003Jul 12, 20053M Innovative Properties Co.Dye labeled imidazoquinoline compounds
US6921826Oct 29, 2003Jul 26, 20053M Innovative Properties Co.Thioether substituted imidazoquinolines
US6924293Sep 23, 2003Aug 2, 20053M Innovative Properties CompanySulfonamide and sulfamide substituted imidazoquinolines
US6943255May 28, 2004Sep 13, 20053M Innovative Properties CompanyProcess for imidazo[4,5-c]pyridin-4-amines
US6949646Dec 3, 2004Sep 27, 20053M Innovative Properties Co.Imidazonaphthyridines
US6949649Oct 29, 2003Sep 27, 20053M Innovative Properties Co.Thioether substituted imidazoquinolines
US6953804Oct 29, 2003Oct 11, 20053M Innovative Properties Co.Aryl ether substituted imidazoquinolines
US6969722Feb 4, 2004Nov 29, 20053M Innovative Properties CompanyAmide substituted imidazopyridines
US6989389Oct 29, 2003Jan 24, 20063M Innovative Properties Co.Aryl ether substituted imidazoquinolines
US7026482Oct 27, 2004Apr 11, 2006Gerster John FProcess for preparing imidazoquinolinamines
US7030129Feb 20, 2003Apr 18, 20063M Innovative Properties CompanyMethod of reducing and treating UVB-induced immunosuppression
US7030131Apr 16, 2004Apr 18, 2006Crooks Stephen LSulfonamide substituted imidazoquinolines
US7038051Jul 25, 2005May 2, 20063M Innovative Properties CompanyImidazonaphthyridines
US7038053Jul 8, 2005May 2, 20063M Innovative Properties CompanyProcess for imidazo[4,5-c]pyridin-4-amines
US7078523Oct 7, 2003Jul 18, 20063M Innovative Properties CompanyUrea substituted imidazoquinoline ethers
US7091214Dec 18, 2003Aug 15, 20063M Innovative Properties Co.Aryl substituted Imidazoquinolines
US7098221Aug 10, 2005Aug 29, 20063M Innovative Properties CompanyAmide substituted imidazopyridines
US7112677Oct 8, 2004Sep 26, 20063M Innovative Properties Company1H-imidazo dimers
US7115622Feb 28, 2005Oct 3, 20063M Innovative Properties CompanyAmido ether substituted imidazoquinolines
US7125890Aug 11, 2004Oct 24, 20063M Innovative Properties CompanyEther substituted imidazopyridines
US7132429Feb 28, 2005Nov 7, 20063M Innovative Properties CompanySulfonamido ether substituted imidazoquinolines
US7157453Jan 20, 2005Jan 2, 20073M Innovation Properties CompanyUrea substituted imidazoquinolines
US7163947Sep 3, 2004Jan 16, 20073M Innovative Properties Company1-Amino 1H-imidazoquinolines
US7179253Mar 12, 2004Feb 20, 20073M Innovative Properties CompanyMethod of tattoo removal
US7199131Apr 7, 2005Apr 3, 20073M Innovative Properties CompanySulfonamide and sulfamide substituted imidazoquinolines
US7214675May 19, 2005May 8, 20073M Innovative Properties CompanyUrea substituted imidazoquinoline ethers
US7220758Jul 24, 2006May 22, 20073M Innovative Properties CompanyEther substituted imidazopyridines
US7226928Jun 14, 2002Jun 5, 20073M Innovative Properties CompanyMethods for the treatment of periodontal disease
US7276515May 19, 2005Oct 2, 2007Coley Pharmaceutical Group, Inc.Thioether substituted imidazoquinolines
US7288550May 19, 2005Oct 30, 20073M Innovative Properties CompanyThioether substituted imidazoquinolines
US7299453Nov 14, 2002Nov 20, 2007International Business Machines CorporationTesting measurements
US7323568Dec 12, 2005Jan 29, 2008Chemagis Ltd.Process for preparing Imiquimod
US7335773Feb 13, 2006Feb 26, 2008Graceway Pharmaceuticals, LlcIntermediates for imidazonaphthyridines
US7375180Feb 12, 2004May 20, 20083M Innovative Properties CompanyMethods and compositions related to IRM compounds and Toll-like receptor 8
US7387271Dec 30, 2003Jun 17, 20083M Innovative Properties CompanyImmunostimulatory combinations
US7393859May 19, 2004Jul 1, 2008Coley Pharmaceutical Group, Inc.Amide substituted imidazoquinolines
US7427629Aug 14, 2003Sep 23, 20083M Innovative Properties CompanyImmunostimulatory compositions and methods of stimulating an immune response
US7485432Feb 27, 2004Feb 3, 20093M Innovative Properties CompanySelective modulation of TLR-mediated biological activity
US7544697Apr 1, 2005Jun 9, 2009Coley Pharmaceutical Group, Inc.Pyrazolopyridines and analogs thereof
US7579359Sep 1, 2005Aug 25, 20093M Innovative Properties Company1-alkoxy 1H-imidazo ring systems and methods
US7598382Jan 13, 2006Oct 6, 2009Coley Pharmaceutical Group, Inc.Aryl substituted imidazoquinolines
US7612083May 19, 2005Nov 3, 2009Coley Pharmaceutical Group, Inc.Urea substituted imidazoquinoline ethers
US7629027Oct 14, 2005Dec 8, 20093M Innovative Properties CompanyMethod for making chromonic nanoparticles
US7648997Aug 12, 2004Jan 19, 2010Coley Pharmaceutical Group, Inc.Hydroxylamine substituted imidazoquinolines
US7659398Feb 14, 2007Feb 9, 2010Chemagis Ltd.Imiquimod production process
US7678918Dec 6, 2007Mar 16, 20103M Innovative Properties CompanyIntermediates for imidazonaphthyridines
US7687628Sep 30, 2004Mar 30, 2010Taro Pharmaceuticals U.S.A., Inc.Method of preparing 4-amino-1H-imidazo(4,5-c)quinolines and acid addition salts thereof
US7696159Jan 15, 2008Apr 13, 2010Graceway Pharmaceuticals, LlcTreatment for basal cell carcinoma
US7699057Mar 12, 2004Apr 20, 20103M Innovative Properties CompanyMethods for treating skin lesions
US7718716Oct 14, 2005May 18, 20103M Innovative Properties CompanyChromonic nanoparticles containing bioactive compounds
US7799800Aug 12, 2004Sep 21, 20103M Innovative Properties CompanyLipid-modified immune response modifiers
US7807661Dec 8, 2005Oct 5, 20103M Innovative Properties CompanySilver ion releasing articles and methods of manufacture
US7879849Jun 8, 2009Feb 1, 20113M Innovative Properties CompanyPyrazolopyridines and analogs thereof
US7884207Jun 17, 2005Feb 8, 20113M Innovative Properties CompanySubstituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
US7888349Dec 22, 2004Feb 15, 20113M Innovative Properties CompanyPiperazine, [1,4]Diazepane, [1,4]Diazocane, and [1,5]Diazocane fused imidazo ring compounds
US7897597Aug 27, 2004Mar 1, 20113M Innovative Properties CompanyAryloxy and arylalkyleneoxy substituted imidazoquinolines
US7897609Jun 17, 2005Mar 1, 20113M Innovative Properties CompanyAryl substituted imidazonaphthyridines
US7897767Nov 12, 2004Mar 1, 20113M Innovative Properties CompanyOxime substituted imidazoquinolines
US7906506Jul 12, 2007Mar 15, 20113M Innovative Properties CompanySubstituted chiral fused [1,2] imidazo [4,5-c] ring compounds and methods
US7915281Jun 17, 2005Mar 29, 20113M Innovative Properties CompanyIsoxazole, dihydroisoxazole, and oxadiazole substituted imidazo ring compounds and method
US7923429Jul 15, 2008Apr 12, 20113M Innovative Properties CompanyTreatment for CD5+ B cell lymphoma
US7923560Apr 9, 2004Apr 12, 20113M Innovative Properties CompanyDelivery of immune response modifier compounds
US7939526Dec 3, 2004May 10, 20113M Innovative Properties CompanySulfone substituted imidazo ring ethers
US7943609Dec 29, 2005May 17, 20113M Innovative Proprerties CompanyChiral fused [1,2]imidazo[4,5-C] ring compounds
US7943610Mar 31, 2006May 17, 20113M Innovative Properties CompanyPyrazolopyridine-1,4-diamines and analogs thereof
US7943636Mar 31, 2006May 17, 20113M Innovative Properties Company1-substituted pyrazolo (3,4-C) ring compounds as modulators of cytokine biosynthesis for the treatment of viral infections and neoplastic diseases
US7943771Jan 24, 2007May 17, 2011Chemagis Ltd.Imiquimod production process
US7968562Jul 14, 2008Jun 28, 20113M Innovative Properties CompanyPharmaceutical formulations comprising an immune response modifier
US7968563Feb 10, 2006Jun 28, 20113M Innovative Properties CompanyOxime and hydroxylamine substituted imidazo[4,5-c] ring compounds and methods
US8017779Jun 15, 2005Sep 13, 20113M Innovative Properties CompanyNitrogen containing heterocyclyl substituted imidazoquinolines and imidazonaphthyridines
US8026366Jun 17, 2005Sep 27, 20113M Innovative Properties CompanyAryloxy and arylalkyleneoxy substituted thiazoloquinolines and thiazolonaphthyridines
US8034938Dec 29, 2005Oct 11, 20113M Innovative Properties CompanySubstituted chiral fused [1,2]imidazo[4,5-c] ring compounds
US8080662Mar 29, 2010Dec 20, 2011Taro Pharmaceuticals U.S.A., Inc.Method of preparing 4-amino-1H-imidazo (4,5-c) quinolines and acid addition salts thereof
US8088788Mar 14, 2007Jan 3, 20123M Innovative Properties CompanySubstituted fused[1,2] imidazo[4,5-c] ring compounds and methods
US8088790Nov 3, 2006Jan 3, 20123M Innovative Properties CompanyHydroxy and alkoxy substituted 1H-imidazoquinolines and methods
US8110582Mar 4, 2004Feb 7, 20123M Innovative Properties CompanyProphylactic treatment of UV-induced epidermal neoplasia
US8143270Sep 1, 2005Mar 27, 20123M Innovative Properties Company2-amino 1H-in-imidazo ring systems and methods
US8158794Feb 22, 2006Apr 17, 20123M Innovative Properties CompanyHydroxyalkyl substituted imidazoquinoline compounds and methods
US8178539Sep 6, 2007May 15, 20123M Innovative Properties CompanySubstituted 3,4,6,7-tetrahydro-5H-1,2a,4a,8-tetraazacyclopenta[cd]phenalenes and methods
US8178677Feb 22, 2006May 15, 20123M Innovative Properties CompanyHydroxyalkyl substituted imidazoquinolines
US8188111Sep 8, 2006May 29, 20123M Innovative Properties CompanyAmide and carbamate derivatives of alkyl substituted N-[4-(4-amino-1H-imidazo[4,5-c]quinolin-1-yl)butyI]methanesulfonamides and methods
US8207162Apr 20, 2011Jun 26, 20123M Innovative Properties CompanyChiral fused [1,2]imidazo[4,5-c] ring compounds
US8221771Aug 5, 2004Jul 17, 20123M Innovative Properties CompanyFormulations containing an immune response modifier
US8263594Jan 18, 2011Sep 11, 20123M Innovative Properties CompanyAryloxy and arylalkyleneoxy substituted imidazoquinolines
US8329197Jul 29, 2010Dec 11, 20123M Innovative Properties CompanyEx vivo uses of immunostimulatory combinations
US8329721Mar 14, 2007Dec 11, 20123M Innovative Properties CompanyHydroxy and alkoxy substituted 1H-imidazonaphthyridines and methods
US8343497Apr 22, 2009Jan 1, 2013The Brigham And Women's Hospital, Inc.Targeting of antigen presenting cells with immunonanotherapeutics
US8343498Apr 22, 2009Jan 1, 2013Massachusetts Institute Of TechnologyAdjuvant incorporation in immunonanotherapeutics
US8343993Feb 22, 2006Jan 1, 20133M Innovative Properties CompanyHydroxyalkyl substituted imidazonaphthyridines
US8350034Aug 2, 2011Jan 8, 20133M Innovative Properties CompanySubstituted chiral fused [1,2]imidazo[4,5-C] ring compounds
US8354424Mar 14, 2006Jan 15, 2013Medicis Pharmaceutical CorporationMethod of treating actinic keratosis
US8357374Feb 7, 2008Jan 22, 2013The Regents Of The University Of CaliforniaConjugates of synthetic TLR agonists and uses therefor
US8377957Nov 29, 2011Feb 19, 20133M Innovative Properties CompanyHydroxy and alkoxy substituted 1H-imidazoquinolines and methods
US8378102Feb 8, 2006Feb 19, 20133M Innovative Properties CompanyOxime and hydroxylamine substituted thiazolo[4,5-c] ring compounds and methods
US8426457Mar 12, 2004Apr 23, 2013Medicis Pharmaceutical CorporationMethods of improving skin quality
US8436176Dec 18, 2005May 7, 2013Medicis Pharmaceutical CorporationProcess for preparing 2-methyl-1-(2-methylpropyl)-1H-imidazo[4,5-c][1,5]naphthyridin-4-amine
US8461174Dec 30, 2005Jun 11, 20133M Innovative Properties CompanyTreatment for cutaneous metastases
US8476292Sep 8, 2006Jul 2, 20133M Innovative Properties CompanyAmide and carbamate derivatives of N-{2-[4-amino-2-(ethoxymethyl)-1H-imidazo[4,5-c] quinolin-1-Yl]-1,1-dimethylethyl}methanesulfonamide and methods
US8541438Dec 21, 2010Sep 24, 20133M Innovative Properties CompanySubstituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
US8546383May 25, 2012Oct 1, 20133M Innovative Properties CompanyChiral fused [1,2]imidazo[4,5-c] ring compounds
US8562998Oct 9, 2009Oct 22, 2013President And Fellows Of Harvard CollegeTargeting of antigen presenting cells with immunonanotherapeutics
US8591905Apr 22, 2009Nov 26, 2013The Brigham And Women's Hospital, Inc.Nicotine immunonanotherapeutics
US8598192Nov 12, 2004Dec 3, 20133M Innovative Properties CompanyHydroxylamine substituted imidazoquinolines
US8637028Oct 9, 2009Jan 28, 2014President And Fellows Of Harvard CollegeAdjuvant incorporation in immunonanotherapeutics
US8658666Feb 10, 2006Feb 25, 20143M Innovative Properties CompanySubstituted imidazoquinolines and imidazonaphthyridines
US8673932Aug 12, 2004Mar 18, 20143M Innovative Properties CompanyOxime substituted imidazo-containing compounds
US8691837Nov 24, 2004Apr 8, 20143M Innovative Properties CompanySubstituted imidazo ring systems and methods
US8697873Mar 24, 2005Apr 15, 20143M Innovative Properties CompanyAmide substituted imidazopyridines, imidazoquinolines, and imidazonaphthyridines
US8709483Sep 26, 2008Apr 29, 2014Massachusetts Institute Of TechnologySystem for targeted delivery of therapeutic agents
US8729088Feb 11, 2010May 20, 2014The Regents Of The University Of CaliforniaToll-like receptor modulators and treatment of diseases
US8735421Dec 23, 2004May 27, 20143M Innovative Properties CompanyImidazoquinolinyl sulfonamides
US8778963Nov 24, 2004Jul 15, 20143M Innovative Properties CompanyHydroxylamine and oxime substituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
US8790655Jan 8, 2013Jul 29, 2014The Regents Of The University Of CaliforniaConjugates of synthetic TLR agonists and uses therefor
US8802153Jul 25, 2013Aug 12, 2014Massachusetts Institute Of TechnologySystem for targeted delivery of therapeutic agents
US8802853Dec 17, 2004Aug 12, 20143M Innovative Properties CompanyArylalkenyl and arylalkynyl substituted imidazoquinolines
US8835394Oct 18, 2011Sep 16, 2014Medicis Pharmaceutical CorporationTreatment for basal cell carcinoma
US8846697Apr 23, 2007Sep 30, 2014The Regents Of The University Of CaliforniaPurine analogs
US8846710Feb 22, 2006Sep 30, 20143M Innovative Properties CompanyMethod of preferentially inducing the biosynthesis of interferon
US8871782Oct 1, 2004Oct 28, 20143M Innovative Properties CompanyAlkoxy substituted imidazoquinolines
US8906381Oct 9, 2009Dec 9, 2014Massachusetts Institute Of TechnologyImmunonanotherapeutics that provide IGG humoral response without T-cell antigen
US8932595Oct 9, 2009Jan 13, 2015Massachusetts Institute Of TechnologyNicotine immunonanotherapeutics
US8940755Dec 2, 2004Jan 27, 20153M Innovative Properties CompanyTherapeutic combinations and methods including IRM compounds
US8961477Aug 25, 2004Feb 24, 20153M Innovative Properties CompanyDelivery of immune response modifier compounds
US9006264Sep 9, 2013Apr 14, 20153M Innovative Properties CompanySubstituted imidazoquinolines, imidazopyridines, and imidazonaphthyridines
EP2269632A2Aug 14, 2003Jan 5, 20113M Innovative Properties Co.Immunostimulatory compositions and methods of stimulating an immune response
EP2572714A1Dec 30, 2003Mar 27, 20133M Innovative Properties CompanyImmunostimulatory Combinations
EP2572715A1Dec 30, 2003Mar 27, 20133M Innovative Properties CompanyImmunostimulatory Combinations
WO2006091567A2 *Feb 22, 2006Aug 31, 20063M Innovative Properties CoHydroxyalkyl substituted imidazoquinoline compounds and methods
WO2013013055A1Jul 19, 2012Jan 24, 2013Rubigo Therapeutics, Inc.System for drug delivery and monitoring
WO2013164754A2Apr 29, 2013Nov 7, 2013Pfizer Inc.Prostate-associated antigens and vaccine-based immunotherapy regimens
Classifications
U.S. Classification546/82, 544/124, 552/1
International ClassificationC07D471/04
Cooperative ClassificationC07D471/04
European ClassificationC07D471/04
Legal Events
DateCodeEventDescription
May 11, 2007ASAssignment
Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS, AS SECOND LI
Free format text: SECOND LIEN GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:GRACEWAY PHARMACEUTICALS, LLC;CHESTER VALLEY PHARMACEUTICALS, LLC;REEL/FRAME:019280/0054
Effective date: 20070503
May 10, 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS FIRST LIEN COLLATERAL AG
Free format text: FIRST LIEN GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:GRACEWAY PHARMACEUTICALS, LLC;CHESTER VALLEY PHARMACEUTICALS, LLC;REEL/FRAME:019265/0712
Effective date: 20070503
Owner name: CHESTER VALLEY PHARMACEUTICALS, LLC, PENNSYLVANIA
Free format text: RELEASE OF FIRST LIEN SECURITY AGREEMENT IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019265/0696
Effective date: 20070503
Owner name: CHESTER VALLEY PHARMACEUTICALS, LLC, PENNSYLVANIA
Free format text: RELEASE OF SECOND LIEN SECURITY AGREEMENT IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019265/0704
Effective date: 20070503
Owner name: GRACEWAY PHARMACEUTICALS, LLC, TENNESSEE
Free format text: RELEASE OF FIRST LIEN SECURITY AGREEMENT IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019265/0696
Effective date: 20070503
Owner name: GRACEWAY PHARMACEUTICALS, LLC, TENNESSEE
Free format text: RELEASE OF SECOND LIEN SECURITY AGREEMENT IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019265/0704
Effective date: 20070503
Mar 23, 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS SECOND LIEN COLLATERAL A
Free format text: SECOND LIEN GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:GRACEWAY PHARMACEUTICALS, LLC;CHESTER VALLEY PHARMACEUTICALS, LLC;REEL/FRAME:019055/0032
Effective date: 20061229
Mar 21, 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS FIRST LIEN COLLATERAL AG
Free format text: FIRST LIEN GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:GRACEWAY PHARMACEUTICALS, LLC;CHESTER VALLEY PHARMACEUTICALS, LLC;REEL/FRAME:019035/0859
Effective date: 20061229
Feb 22, 2007ASAssignment
Owner name: 3M COMPANY, MINNESOTA
Free format text: MERGER;ASSIGNOR:MINNESOTA MINING AND MANUFACTURING COMPANY;REEL/FRAME:018917/0659
Effective date: 20020408
Owner name: GRACEWAY PHARMACEUTICALS, LLC, TENNESSEE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:3M COMPANY;REEL/FRAME:018917/0665
Effective date: 20061229
Jun 29, 2004FPAYFee payment
Year of fee payment: 12
Mar 30, 2000FPAYFee payment
Year of fee payment: 8
Mar 25, 1996FPAYFee payment
Year of fee payment: 4
Jan 23, 1996CCCertificate of correction
Mar 1, 1991ASAssignment
Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, SAINT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GERSTER, JOHN F.;REEL/FRAME:005636/0556
Effective date: 19910301