Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5179372 A
Publication typeGrant
Application numberUS 07/676,659
Publication dateJan 12, 1993
Filing dateMar 28, 1991
Priority dateJun 19, 1990
Fee statusPaid
Publication number07676659, 676659, US 5179372 A, US 5179372A, US-A-5179372, US5179372 A, US5179372A
InventorsRoderick M. P. West, Todd Williams
Original AssigneeInternational Business Machines Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Video Random Access Memory serial port access
US 5179372 A
Abstract
A Video Random Access Memory device wherein full and efficient use of a serial access memory portion provides a simple and efficient means of avoiding Mid-Line Reloads. Selected parts of two different rows in a random access memory portion are transferred simultaneously to the serial access memory portion via addressable transfer gates under the control of address/control logic.
Images(5)
Previous page
Next page
Claims(6)
We claim:
1. A display system comprising a display means, a serial memory means transferring data to said display means in a serial format, and a random memory means comprising a plurality of cells arranged in rows and columns and providing data from two different ones of said rows of said random memory to fill said serial memory means in an unshifted parallel format by column wrapped data transfers.
2. A display system comprising a display means, a first memory means, and a display adaptor providing display data from said first memory means to said display means, said display adaptor comprising a random access memory section having a plurality of memory cells arranged in X rows and N columns addressed by row and column address signals, a serial access memory section having N memory cells receiving parallel data from said random access memory section and transmitting serial data to said display means, and means responsive to an incoming row address signal to access two of said plurality of rows of memory cells of said random access memory section and responsive to an incoming column address signal to access a plurality of selected bits from each of said two of said plurality of rows of memory cells of said random access memory section to provide N bits of parallel data to said serial access memory section.
3. The display system of claim 2, wherein said N memory cells of said serial access memory section are selectively coupled to at least a respective one of said columns of said random access memory section.
4. The display system of claim 3, wherein said display adaptor further comprises a tap pointer that accesses a selected one of said N memory cells of serial access memory section to start a serial display data transfer to said display means.
5. The display system of claim 4, wherein said tap pointer access a selected one of said N memory cells of said serial access memory section coupled to a selected one of said N columns of said random access memory section that is addressed by said incoming column address signal.
6. The display system of claim 5, wherein said tap pointer accesses a selected one of said N memory cells of said serial access memory section coupled to another one of said N columns of said random access memory section other than said selected one addressed by said incoming address signal.
Description

This is a divisional of copending application Ser. No. 07/540,546 filed on Jun. 19, 1990.

BACKGROUND OF THE INVENTION

A) Technical Field

The present invention relates to memory devices capable of high speed serial data transfer to a peripheral device, such as a raster display.

B) Background Art

Video Random Access Memories (VRAMs) are a type of memory commonly used in video displays for computer systems. A VRAM is essentially a conventional dynamic random access memory (DRAM) with the addition of a second port where data may be accessed serially. A VRAM consists of a random access memory (RAM) portion and a serial access memory (SAM) portion with transfer gates which allow data to pass between the RAM and the SAM. The SAM array usually has the memory capacity of one row of the RAM array. A full row of memory data may be passed between RAM and SAM in a single data transfer access. The RAM port and the SAM port may be operated asynchronously and independently except when the data transfer between the RAM and the SAM is taking place.

This independent and asynchronous operation of the two ports finds application in the video displays of computer systems where the RAM port is used to update the contents of display memory and the serial port is used to provide data to be rastered onto the display. The RAM port may be operated at the frequency of the computer system and the SAM port at a frequency dictated by the requirements of the raster display Since the SAM array usually has the capacity of a single row of display data, it must be continually reloaded with new rows of display data during the time of the display frame. In general, each new row of display data is obtained from a row whose index is one greater than that of the previous row. The reloading of the SAM array with new rows of display data from the RAM array is achieved by performing data transfer cycles at the RAM port. These data transfer cycles between the RAM array and the SAM array are the only interruption to the normal RAM access cycles at the RAM port. They may be separated into two distinct types. The first is data transfer when the SAM port is inactive, with no data passing to the raster display and with the serial clock stopped. This is usually associated with reloading of the SAM during blanking of the display frame. The second is data transfer when the SAM port is active, with data passing to the raster display. Since in this case the serial clock is running, the data transfer cycle at the RAM port requires accurate synchronization with the serial clock in order to maintain the required seamless flow of data to the raster display from the SAM port. This second situation is often referred to as "Real-Time Data Transfer" or "Mid-Line Reload."

In the design of a display memory subsystem, the control and timing of such mid-line reloads presents a major problem. A "Mid-Line Reload" is a critically timed real-time access, requiring synchronization between the RAM and the SAM ports, and can be very wasteful of RAM port bandwidth, a crucial aspect in many display memory subsystems. Additionally, such critically timed real time accesses may require potentially complex and high-speed circuitry to synchronize and control them. Thus, workers in the art have attempted to completely avoid mid-line reloads, so as to circumvent the critical timings and/or complex circuitry associated therewith. The conventional method of avoiding mid-line reloads involves a number of restrictions upon how the contents of display memory are mapped onto the display screen. These restrictions include the following:

(1) use of a fixed start address for the display data on the first horizontal scan line of the display frame;

(2) use of a fixed address increment to generate the start address of each subsequent horizontal scan-line; and

(3) use of a horizontal scan-line length which requires an amount of display data not greater than the capacity of the SAM arrays of the VRAMs in the display memory subsystem.

In the prior art, all of these restrictions must be satisfied in order to avoid a mid-line reload. Note that these restrictions cannot be applied to a general purpose graphics adapter or display memory subsystem.

Second generation VRAMs were enhanced with the ability to transfer half a row of random access memory into half of the SAM while the other half of the SAM is being scanned out to the display. This means of avoiding real-time data transfers is found in a 1M bit multiport DRAM manufactured by the Toshiba Corporation, and is generally described in U.S. Pat. Nos. 4,825,411 and 4,855,959. In these so-called "Split Register" VRAMs, the SAM array divided into two halves, either of which can be loaded independently by so-called "Split Register Data Transfers" whereby one half of the SAM is loaded while the other half is active. Typically an output status pin is provided to indicate the half of the SAM being scanned out.

While split-register VRAMs alleviate mid-line reloads to some extent, they do not make full and efficient use of the SAM array capacity and can potentially result in twice as many data transfer accesses.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to make full and efficient use of the SAM and to thereby provide a simple and efficient means by which, under certain circumstances, these "mid-line reloads" can be avoided.

Where system constraints prevent the total avoidance of "Mid-Line Reloads", or where, for whatever reason, it is advantageous to use "Mid-Line Reloads," it is another object of the invention to eliminate their real-time nature and thus the need for such critical timing. By removing the need for real-time VRAM data transfers, the invention eliminates the need for the potentially complex and high-speed circuitry required to synchronize and control such data transfers, and eliminates the potentially wasteful use of RAM port bandwidth in the synchronization of such data transfers.

The foregoing and other objects of the present invention are realized by VRAM comprising at least one RAM portion having a first plurality of memory cells interconnected in a plurality of rows and a plurality of columns; a SAM portion comprising a second plurality of memory cells; and means for transferring data between said RAM and said SAM, wherein data from portions of at least two rows of said RAM is substantially simultaneously transferred to said SAM.

According to another feature of the invention, the video RAM comprises a random access memory portion having a plurality of memory cells arranged within rows and columns; a serial access memory portion; a serial access means allowing external access to the serial access memory portions; and control logic for controlling the data transfer between the random access memory portion and the serial access memory portion, the control logic simultaneously coupling a first selected set of columns of a first row of the random access memory portion to the serial access memory portion, and a second selected set of columns of a second row of the random access memory portion to the serial access memory portion.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present invention will become more apparent upon a review of the description of the best mode for carrying out the invention as rendered below. In the description to follow, reference shall be made to the following Drawings, in which:

FIG. 1 (Prior Art) is a block diagram of a conventional VRAM,

FIG. 2 (Prior Art) is a timing diagram for a conventional Read Data Transfer Cycle with the Serial Clock inactive,

FIG. 3 (Prior Art) is a timing diagram for a conventional Read Data Transfer Cycle with the Serial Clock active. This is the so-called "Real-Time Data Transfer",

FIG. 4 is a map of the serial access memory after a column wrapped read data transfer of the invention,

FIG. 5 is a block diagram of a video random access memory of the invention in which the RAM portion is segmented into two segments,

FIG. 6 is a timing diagram for a first form of column wrapped read data transfer with the serial clock inactive,

FIG. 7 is a timing diagram for a second form of column wrapped read data transfer with the serial clock active,

FIG. 8 is a map of the serial access memory before and after a type 2 column wrapped data transfer with the serial clock active, and

FIG. 9 is a block diagram of a display system employing a memory according to the invention.

DESCRIPTION OF THE BEST MODE FOR CARRYING OUT THE INVENTION

The structure of a conventional VRAM is shown by FIG. 1. It comprises a RAM array 1, a SAM array 2, address/control logic 3, and transfer gates 4. The RAM array is connected to the primary RAM port 5 of the VRAM and behaves in a manner identical to that of a DRAM, under the control of the address/control logic. The SAM array is connected to the secondary (SAM or Serial) port 6 of the VRAM and may be accessed serially under the control of an external asynchronous clock 7, the Serial Clock. The serial access to the SAM is controlled by the Tap Pointer (TAP) (8), which generates an address into the SAM from a counter which increments on each cycle of the Serial Clock. The Tap Pointer (TAP) is capable of being loaded with an initial address, under the control of the address/control logic. The address/control logic (3) supervises the address multiplexing and the data flow on the RAM port (5) and provides all the control and global timing functions of the VRAM. The transfer gates (4) allow memory data to pass between the RAM array (1) and the SAM array (2), under the control of the address/control logic (3).

The read data transfer cycles used in conventional VRAMs are shown by FIGS. 2 and 3. A Read Data Transfer cycle is indicated by DT/OE set to a low level at the falling edge of the Row Address Strobe (RAS). At the falling edge of the RAS the row address (R) is obtained from the address input and row R is activated. At the falling edge of the Column Address Strobe (CAS), the column address (C) is obtained from the address input. Subsequently, the actual RAM to SAM data transfer occurs at the rising edge of DT/OE. At the data transfer, the SAM is loaded with the contents of RAM array row R and the Tap Pointer (TAP) is loaded with the column address C. On the first rising edge of the Serial Clock after the actual data transfer, the new contents of the SAM are available at the SAM port, starting at the SAM location given by the Tap Pointer value at the time of the first Serial Clock rising edge. The first item of serial data is "R;C", the data item at row R and column C. "R;C:C+4" refers to 5 data items at row R and columns C through C+4. This notation will be used throughout the description. Each subsequent rising edge of the Serial Clock causes the Tap Pointer to increment and present the contents of the SAM serially at the SAM port: "R;C" is followed by "R;C+1", then by "R;C+2" and so on. If the read data transfer is performed with the serial clock inactive as is shown by FIG. 2, then the timing of the transfer is not critical since data is not being passed to the display. However, if the Read Data Transfer is performed with the Serial Clock running as is shown by FIG. 3, then the data transfer, signalled by the rising edge of DT/OE, must be correctly timed to occur during the correct Serial Clock cycle so as to maintain the correct sequence of data at the SAM port.

If the Tap Pointer reaches the last location in the SAM, then on the next rising edge of the Serial Clock its value wraps back to zero to address the start of the SAM and will continue to increment from zero for each subsequent Serial Clock cycle. This is generally undesirable since the sequence of data presented at the SAM port is then discontinuous, jumping from the end of the row back to the start of the same row.

In a memory system according to an embodiment of the present invention, at the falling edge of RAS, the row address (R) is obtained from the address input and two rows (R and R+1) are activated. At the falling edge of CAS, the column address (C) is obtained from the address input. At the data transfer, data is transferred between the two RAM array rows (R and R+1) and the SAM. Data is transferred between RAM array row R, column locations C to the row end, and SAM locations C to the end of the SAM. Additionally, data is transferred between RAM array row R+1, column locations 0 to C-1, and SAM locations 0 to C-1. In other words, when the Tap Pointer wraps back to zero, it will address a new row R+1. This may be expressed as:

SAM(C:END)=R;C:END

SAM(0:C-1)=R+1;0:C-1

which may be combined in a single expression as:

SAM(0:END)=R+1;0:C-1∥R;C:END.

In these expressions the parameter END is used for the last column address of a row and the last address of the SAM. The diadic operator "∥" implies concatenation. This form of data transfer we shall designate Column Wrapped Data Transfer (CWDT). The column address (C) forms the boundary of the CWDT.

Thus, after a CWDT Read Data Transfer, the SAM contains a full row of continuous data from address R;C to R+1;C-1, starting at SAM(C). The data is continuous in RAM address space starting at the CWDT boundary with R;C at SAM(C) and wrapping around the end of the SAM through to R+1;C-1 at SAM(C-1). This is shown diagrammatically as the map of the SAM and its contents shown by FIG. 4.

The CWDT function may be used as an alternative to, or in addition to the conventional data transfer accesses available in current VRAMs. For a VRAM providing both CWDT and conventional data transfers, a function pin or by another suitable means can be used to distinguish between them. In the embodiment described here it is assumed that the CWDT function is used in place of conventional VRAM data transfers.

It is advantageous that the RAM array be segmented into at least two segments such that at least one row address bit (including the least significant bit) is used to select a segment and the remainder of the row address bits are used to select a row within each segment. Such memory segmentation is employed in large memories in order to reduce the loading on individual rows and delays while reducing both variation in data rates and power consumption. For a memory in accordance with the invention, the segmentation of the memory also enables the simplification of the simultaneous activation of a plurality of rows by placing logically sequential rows in physically separate segments.

FIG. 5 is a block diagram of a VRAM with the RAM array segmented into two physically separate segments. One segment contains all even rows and the other contains all odd rows. Each segment has a separate set of transfer gates (9, 10) to allow memory data to pass between the RAM array segments (11, 12) and the SAM array (13), under the control of the address/control logic (14). The RAM port (15) operation of the VRAM is unchanged, and its SAM port operation (16) is only changed by the use of the CWDT function.

With reference to FIG. 5, the CWDT data transfer is achieved by the address/control logic (14) activating two rows (R and R+1 in separate segments) and selecting which transfer gates to open, allowing selective data transfer between the two rows and the SAM. For a CWDT data transfer with row address R and column address C, the address/control logic selects transfer gates (C:END) for the segment containing row R and transfer gates (0:C-1) for the segment containing row R+1. In this way the CWDT boundary is quantised at single column granularity and this requires that the column address (C) be fully decoded for the selection of transfer gates. In many cases however, it would be sufficient to quantise the CWDT boundary at higher granularity (e.g. at 2, 4, 8, 16, 32... column boundaries). This reduces the demand on the decoding of the column address in the formation of the CWDT boundary and transfer gate selection. The invention has beneficial application even when the CWDT boundary granularity is extremely coarse. If only the most significant 3 bits of C are decoded the transfer gates are divided into 8 separate blocks along the row length. In the most extreme form, only the most significant bit of C is used to select transfer gates divided into 2 separate blocks.

Although CWDT will be discussed in relation to Read Data Transfers (RAM to SAM), as used in a display memory subsystem, it also finds application in relation to Write Data Transfers (SAM to RAM) found in some current VRAMs. The application of CWDT to Write Data Transfers will not be discussed but is within the scope of the present invention, as will be apparent to those skilled in the art.

The present invention provides for two forms of CWDT. The two forms differ only in whether or not the Tap Pointer (17) is updated. The first form of CWDT, designated CWDT#1, is similar to a conventional Read Data Transfer in that, at the time of data transfer, the Tap Pointer is loaded with the column address (C) obtained at the falling edge of CAS. The second form of CWDT, designated CWDT#2, differs from a conventional Read Data Transfer in that, at the time of data transfer, the Tap Pointer remains unchanged. Both forms of CWDT may be used with the Serial Clock either inactive or running. It is considered that CWDT#1 is more likely to be used with the Serial Clock inactive and CWDT#2 is more likely to be used with the Serial Clock running. CWDT#1 updates both the contents of the SAM and the Tap Pointer, therefore, if it is used with the Serial Clock running, the data transfer must be accurately timed with respect to the Serial Clock cycles. CWDT#2 updates only the contents of the SAM. When CWDT#2 is used with the Serial Clock running, the data transfer need not be accurately timed with respect to the Serial Clock cycles.

FIGS. 6 and 7 are timing diagrams illustrating the two forms of CWDT. FIG. 6 illustrates CWDT#1, by a Read Data Transfer with the Serial Clock inactive. FIG. 7 illustrates CWDT#2, by a Read Data Transfer with the Serial Clock active. In this embodiment of the invention the two forms of CWDT are distinguished by the level of CAS at the rising edge of DT/OE. If CAS is at a low active level at the rising edge of DT/OE then the Tap Pointer is updated, and is CWDT#1 shown by FIG. 6. If CAS is at a high inactive level at the rising edge of DT/OE then the Tap Pointer is not updated, and is CWDT#2 shown by FIG. 7.

As in conventional VRAMs, a Read Data Transfer cycle is indicated by DT/OE set to a low level at the falling edge of RAS. At the falling edge of RAS, the row address (R) is obtained from the address input and two rows (R and R+1 in separate segments) are activated. At the falling edge of CAS, the column address (C) is obtained from the address input. The column address (C) forms the boundary of the CWDT. Subsequently, the actual RAM to SAM data transfer occurs at the rising edge of DT/OE. The level of the CAS at the rising edge of DT/OE determines whether the Tap Pointer (TAP) is to be loaded with the column address C, hence whether the CWDT is a CWDT#1 or a CWDT#2. This is one particular means of control of the CWDT function. Other means of control can be devised, with the relative timings, polarities and operative functions of control inputs varied. The actual operation of CWDT accesses will depend on a number of factors, including whether the CWDT feature is offered as an alternative to or in addition to conventional data transfer accesses.

At the data transfer, the SAM is loaded with R+1;0:C-1∥R;C:END, the contents of RAM array rows R and R+1 divided at the CWDT boundary (C), and the Tap Pointer (TAP) is loaded with the column address C if the CWDT access is a CWDT#1. On the first rising edge of the Serial Clock after the actual data transfer, the new contents of the SAM are available at the SAM port, starting at the SAM location R;C given by the Tap Pointer value at the time of the first Serial Clock rising edge. Each subsequent rising edge of the Serial Clock, causes the Tap Pointer to increment and present the contents of the SAM serially at the SAM port: R;C is followed by R;C+1, R;C+2 and so on. When the Tap Pointer reaches the last location in the SAM, then on the next rising edge of the Serial Clock its value wraps back to zero to address the start of the SAM and will continue to increment from zero for each subsequent Serial Clock cycle. The serial data sequence around the time of the Tap Pointer wrapping back is R;END-1, R;END, R+1;0, R+1;1, R+1;2 and so on. Thus the serial data sequence moves across the row boundary in a seamless and continuous manner in RAM address space.

For a CWDT#2 Read Data Transfer (as in FIG. 7), where the Tap Pointer has not been updated and the Serial Clock is active, in order to keep the serial data sequence seamless and avoid any critical timing of the data transfer, the data transferred to the SAM must be the same as and overlap the previous SAM data in the region of the Tap Pointer at the time of the actual data transfer. To illustrate this, in FIG. 7, the data in the SAM prior to the data transfer is R;0:C+8∥R-1;C+9:END. This data was loaded into the SAM by a previous CWDT, with a row address of R-1 and a column address of C+9. At the data transfer, the SAM is loaded with R+1;0:C-1∥R;C:END. The data in SAM locations SAM(C:C+8) is unchanged by the data transfer and remains as R;C:C+8. This region of unchanged data is termed the "Overlap Region".

This is be shown diagrammatically by the maps of the SAM and its contents shown by FIG. 8 and by the following table:

______________________________________       Data contents   Data contentsSAM locations       before transfer after transfer______________________________________(0:C - 1)   R;0:C - 1       R + 1;0:C - 1(C:C + 8)   R;C:C + 8       R;C:C + 8(C + 9:END) R - 1;C + 9:END R;C + 9:END.______________________________________

In the timing diagram (FIG. 7), the actual data transfer is shown to occur when the Tap Pointer has a value of C+4. On the first rising edge of the Serial Clock after the actual data transfer, the new contents of the SAM are available at the SAM port, starting with R;C+4. The CWDT#2 data transfer does not alter or affect the incrementing sequence of the Tap Pointer. Here, the data transfer need not be critically timed within the Serial Clock stream, provided that at the moment of data transfer the Tap Pointer is anywhere within the "Overlap Region" SAM (C:C+8); that is, critical timings are not a concern because the data within the Overlap Region has not changed as a function of CWDT operations. The choice of the size of the Overlap Region must be based on system constraints to ensure seamless serial data. Thus, in the example of FIG. 7, the serial data sequence can proceed in a seamless manner and continuously from R-1;C+9 through to R+1;C-1, nearly two full rows linked by a single CWDT#2 access; a sequence which can be extended by further CWDT#2 accesses. This is achieved without any real-time data transfers.

Note that a Mid-Line Reload using a conventional real-time read data transfer has a "Transfer Window" confined to a single Serial Clock cycle; the CWDT#2 read data transfer has a Transfer Window as wide as the Overlap Region.

As an extension to the CWDT data transfer accesses described above, it would be possible to apply different values to the CWDT boundary and the update of the Tap Pointer. At the falling edge of CAS, the CWDT boundary is obtained from the address input. Provided that CAS is at an active low level (i.e. CWDT#1), the value used to update the Tap Pointer is obtained from the address input at the rising edge of DT/OE. In this manner, the CWDT boundary and the Tap Pointer can be set at different values.

FIG. 9 is a block diagram of a display system employing a memory according to the invention. It shows a workstation consisting of a Central Processing Unit (CPU) 20, a Read Only Store (ROS) 22, a Random Access Memory 24, a disk drive for data storage 26, a user interface 28 which may be a keyboard and/or a mouse, a display device 30 connected via a display adapter 32. These units are connected together by a system bus 34. The display adapter 32 contains a display memory which employs a VRAM, according to the invention, wherein the RAM portion is updated via the RAM port, and the serial access port is used to provide data to be rastered onto the display, 30. It should be noted that this is only one possible embodiment of a display system according to the invention. Many other types are possible, including mainframe data processing systems with a number of users wherein there is a display device and display adapter for each user.

The invention simply and efficiently achieves full utilization of the SAM portion in a VRAM. Every CWDT read data transfer loads the SAM with data that is continuous in RAM address space starting at the CWDT boundary and of a length equal to the full capacity of the SAM. By starting at the CWDT boundary, the serial data sequence can move in a seamless manner across a row address boundary, providing sequential data up to the full capacity of the SAM before a further data transfer is required. A conventional read data transfer does not permit the serial data sequence to move across row address boundaries without a real-time data transfer. A conventional read data transfer can only utilize the full capacity of the SAM, in a manner appropriate to a display memory subsystem, when the column address is 0.

The invention eliminates the need for "Mid-Line Reloads" in a display memory subsystem, by utilizing the full capacity of the SAM. Additionally, the invention reduces the number of VRAM data transfers required for each display frame. Where system constraints prevent the total avoidance of "Mid-Line Reloads", or where it is advantageous to use "Mid-Line Reloads", the CWDT#2 data transfer provides a means of eliminating the real-time nature of the "Mid-Line Reload". By removing the need for real-time VRAM data transfers, CWDT eliminates the need for the potentially complex and high speed circuity required to synchronize and control such data transfers, and eliminates the potentially wasteful use of RAM port bandwidth in the synchronization of such data transfers.

While the invention has been described with reference to a particular embodiment, various modifications can be made to the foregoing structures and teachings without departing from the spirit and scope of the invention. It is an advantage of the invention that CWDT may be used as an alternative to, or in addition to the conventional data transfer accesses available in current VRAMs. Although CWDT has been discussed in relation to Read Data Transfers (RAM to SAM), as used in a display memory subsystem, it also finds application in relation to the Write Data Transfers (SAM to RAM) found in some current VRAMs.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4688032 *Jun 24, 1986Aug 18, 1987Tokyo Shibaura Denki Kabushiki KaishaImage display control apparatus
US4729119 *May 21, 1984Mar 1, 1988General Computer CorporationApparatus and methods for processing data through a random access memory system
US4825411 *Jun 24, 1987Apr 25, 1989Mitsubishi Denki Kabushiki KaishaDual-port memory with asynchronous control of serial data memory transfer
US4833657 *Oct 24, 1986May 23, 1989Kabushiki Kaisha ToshibaSemiconductor frame buffer memory
US4855959 *Jul 6, 1987Aug 8, 1989Nec CorporationDual port memory circuit
US5001672 *May 16, 1989Mar 19, 1991International Business Machines CorporationDual-port memory
EP0398510A2 *Apr 23, 1990Nov 22, 1990International Business Machines CorporationVideo random access memory
EP0427114A2 *Oct 31, 1990May 15, 1991Micron Technology, Inc.High speed bit mask register architecture
Non-Patent Citations
Reference
1"Continuous Read Row Addressable Random Access Memory Has Data Divided into Segments that can be Independently Loaded into Read-Out Shift Register to Provide Long Continuous Data Stream", Derwent Pub. Ltd., London, GB; AN 89-308294, & Intl. Tech. Disc. No. 16, Sep. 1989.
2"Row Addressable Random Access Memory for Video Monitor Storage, Allows Serial Read-Out to Begin at Arbitrary Column Location, While Retaining Column Redundancy", Derwent Pub. Ltd., London, GB, AN 89-308298, & Intl. Tech. Disc. No. 20, Sep. 1989.
3 *Continuous Read Row Addressable Random Access Memory Has Data Divided into Segments that can be Independently Loaded into Read Out Shift Register to Provide Long Continuous Data Stream , Derwent Pub. Ltd., London, GB; AN 89 308294, & Intl. Tech. Disc. No. 16, Sep. 1989.
4 *Row Addressable Random Access Memory for Video Monitor Storage, Allows Serial Read Out to Begin at Arbitrary Column Location, While Retaining Column Redundancy , Derwent Pub. Ltd., London, GB, AN 89 308298, & Intl. Tech. Disc. No. 20, Sep. 1989.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5268682 *Oct 7, 1991Dec 7, 1993Industrial Technology Research InstituteResolution independent raster display system
US5295254 *Sep 30, 1991Mar 15, 1994Kabushiki Kaisha ToshibaSemiconductor memory device cell array divided into a plurality of blocks
US5321425 *Feb 19, 1992Jun 14, 1994Industrial Technology Research InstituteResolution independent screen refresh strategy
US5325502 *May 15, 1991Jun 28, 1994Micron Technology, Inc.Integrated video random access memory circuit
US5422998 *Nov 15, 1993Jun 6, 1995Margolin; JedVideo memory with flash fill
US5457654 *Jul 26, 1994Oct 10, 1995Micron Technology, Inc.Memory circuit for pre-loading a serial pipeline
US5523979 *Apr 13, 1995Jun 4, 1996Cirrus Logic, Inc.Semiconductor memory device for block access applications
US5553229 *Mar 6, 1995Sep 3, 1996Margolin; JedRow addressable graphics memory with flash fill
US5581733 *Jun 22, 1994Dec 3, 1996Kabushiki Kaisha ToshibaData transfer control of a video memory having a multi-divisional random access memory and a multi-divisional serial access memory
US5603012 *Mar 7, 1995Feb 11, 1997Discovision AssociatesStart code detector
US5612922 *Jul 5, 1995Mar 18, 1997Micron Technology, Inc.Memory device
US5621866 *Jul 22, 1993Apr 15, 1997Fujitsu LimitedImage processing apparatus having improved frame buffer with Z buffer and SAM port
US5625571 *Mar 7, 1995Apr 29, 1997Discovision AssociatesPrediction filter
US5631672 *Jul 7, 1995May 20, 1997International Business Machines CorporationSelf-timed real-time data transfer in video-RAM
US5657287 *May 31, 1995Aug 12, 1997Micron Technology, Inc.Enhanced multiple block writes to adjacent blocks of memory using a sequential counter
US5678017 *Mar 24, 1995Oct 14, 1997Micron Technology, Inc.Automatic reloading of serial read operation pipeline on last bit transfers to serial access memory in split read transfer operations
US5703793 *Jun 7, 1995Dec 30, 1997Discovision AssociatesVideo decompression
US5740460 *Jun 7, 1995Apr 14, 1998Discovision AssociatesPipelined video decoder system
US5761741 *Jun 7, 1995Jun 2, 1998Discovision AssociatesTechnique for addressing a partial word and concurrently providing a substitution field
US5768561 *Mar 7, 1995Jun 16, 1998Discovision AssociatesFor use with a video decompression system
US5768629 *Jun 7, 1995Jun 16, 1998Discovision AssociatesToken-based adaptive video processing arrangement
US5784631 *Mar 7, 1995Jul 21, 1998Discovision AssociatesHuffman decoder
US5793663 *Oct 17, 1996Aug 11, 1998Oak Technology IncorporatedMultiple page memory
US5798719 *Jun 7, 1995Aug 25, 1998Discovision AssociatesParallel Huffman decoder
US5801973 *Jun 7, 1995Sep 1, 1998Discovision AssociatesMethod for operating a state machine
US5805914 *Jun 7, 1995Sep 8, 1998Discovision AssociatesData pipeline system and data encoding method
US5809270 *Sep 25, 1997Sep 15, 1998Discovision AssociatesIn a pipeline system
US5821885 *Jun 7, 1995Oct 13, 1998Discovision AssociatesVideo decompression
US5828907 *Jun 7, 1995Oct 27, 1998Discovision AssociatesToken-based adaptive video processing arrangement
US5829007 *Jun 7, 1995Oct 27, 1998Discovision AssociatesTechnique for implementing a swing buffer in a memory array
US5835740 *Jun 7, 1995Nov 10, 1998Discovision AssociatesIn a video decoding and decompressing system
US5878273 *Jun 7, 1995Mar 2, 1999Discovision AssociatesSystem for microprogrammable state machine in video parser disabling portion of processing stages responsive to sequence-- end token generating by token generator responsive to received data
US5893167 *Nov 27, 1996Apr 6, 1999Toda; HarukiData transfer control of a video memory having a multi-divisional random access memory and a multi-divisional serial access
US5901111 *Aug 7, 1997May 4, 1999Micron Technology, Inc.Enhanced multiple block writes to adjacent block of memory using a sequential counter
US5956519 *May 1, 1997Sep 21, 1999Discovision AssociatesPicture end token in a system comprising a plurality of pipeline stages
US5956741 *Oct 15, 1997Sep 21, 1999Discovision AssociatesInterface for connecting a bus to a random access memory using a swing buffer and a buffer manager
US5978592 *Oct 8, 1997Nov 2, 1999Discovision AssociatesVideo decompression and decoding system utilizing control and data tokens
US5984512 *Jun 7, 1995Nov 16, 1999Discovision AssociatesMethod for storing video information
US6005811 *Feb 19, 1998Dec 21, 1999Oak Technology, IncorporatedMethod for operating a memory
US6018354 *Jun 7, 1995Jan 25, 2000Discovision AssociatesMethod for accessing banks of DRAM
US6018776 *Oct 21, 1997Jan 25, 2000Discovision AssociatesSystem for microprogrammable state machine in video parser clearing and resetting processing stages responsive to flush token generating by token generator responsive to received data
US6029235 *Aug 7, 1997Feb 22, 2000Micron Technology, Inc.Automatic reloading of serial read pipeline on last bit transfers to serial access memory
US6034674 *Jun 16, 1997Mar 7, 2000Discovision AssociatesBuffer manager
US6035126 *Jun 7, 1995Mar 7, 2000Discovision AssociatesData pipeline system and data encoding method
US6038380 *Jul 31, 1997Mar 14, 2000Discovision AssociatesData pipeline system and data encoding method
US6047112 *Mar 7, 1995Apr 4, 2000Discovision AssociatesTechnique for initiating processing of a data stream of encoded video information
US6067417 *Oct 7, 1997May 23, 2000Discovision AssociatesPicture start token
US6072745 *Oct 14, 1999Jun 6, 2000Oak Technology, IncorporatedMethod for operating a memory
US6079009 *Sep 24, 1997Jun 20, 2000Discovision AssociatesCoding standard token in a system compromising a plurality of pipeline stages
US6112017 *Nov 11, 1997Aug 29, 2000Discovision AssociatesPipeline processing machine having a plurality of reconfigurable processing stages interconnected by a two-wire interface bus
US6122726 *Dec 3, 1997Sep 19, 2000Discovision AssociatesData pipeline system and data encoding method
US6134637 *Mar 30, 1999Oct 17, 2000Kabushiki Kaisha ToshibaData transfer control of a video memory having a multi-divisional random access memory and a multi-divisional serial access memory
US6134639 *Aug 31, 1999Oct 17, 2000Micron Technology, Inc.Automatic reloading of serial read pipeline on last bit transfers to serial access memory
US6217234Jun 7, 1995Apr 17, 2001Discovision AssociatesApparatus and method for processing data with an arithmetic unit
US6263422Jun 7, 1995Jul 17, 2001Discovision AssociatesPipeline processing machine with interactive stages operable in response to tokens and system and methods relating thereto
US6300963 *Nov 21, 1994Oct 9, 2001Texas Instruments IncorporatedSingle-frame display memory for spatial light modulator
US6326999Aug 17, 1995Dec 4, 2001Discovision AssociatesData rate conversion
US6330666Oct 7, 1997Dec 11, 2001Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including start codes and methods relating thereto
US6389521Sep 6, 2000May 14, 2002Kabushiki Kaisha ToshibaData transfer control of a video memory having a multi-divisional random access memory and a multi-divisional serial access memory
US6405297Aug 15, 2000Jun 11, 2002Micron Technology, Inc.Automatic reloading of serial read pipeline on last bit transfers to serial access memory
US6417859Jun 1, 1999Jul 9, 2002Discovision AssociatesMethod and apparatus for displaying video data
US6435737Jun 7, 1995Aug 20, 2002Discovision AssociatesData pipeline system and data encoding method
US6697930Feb 7, 2001Feb 24, 2004Discovision AssociatesMultistandard video decoder and decompression method for processing encoded bit streams according to respective different standards
US6799246Dec 16, 1997Sep 28, 2004Discovision AssociatesMemory interface for reading/writing data from/to a memory
US6892296Feb 1, 2001May 10, 2005Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including a standard-independent stage and methods relating thereto
US6910125Feb 6, 2001Jun 21, 2005Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including a decoder with token generator and methods relating thereto
US6950930Feb 5, 2001Sep 27, 2005Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including pipeline processing and methods relating thereto
US7095783Oct 12, 2000Aug 22, 2006Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including start codes and methods relating thereto
US7149811Jan 30, 2001Dec 12, 2006Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including a reconfigurable processing stage and methods relating thereto
US7230986Oct 10, 2001Jun 12, 2007Discovision AssociatesMultistandard video decoder and decompression system for processing encoded bit streams including a video formatter and methods relating thereto
Classifications
U.S. Classification345/537, 365/230.05, 345/554, 365/230.09, 365/221
International ClassificationG09G5/395, G09G5/39
Cooperative ClassificationG09G2360/126, G09G5/395
European ClassificationG09G5/395
Legal Events
DateCodeEventDescription
Jul 28, 2004REMIMaintenance fee reminder mailed
Jun 28, 2004FPAYFee payment
Year of fee payment: 12
Jun 28, 2000FPAYFee payment
Year of fee payment: 8
Jun 17, 1996FPAYFee payment
Year of fee payment: 4