Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5229979 A
Publication typeGrant
Application numberUS 07/804,705
Publication dateJul 20, 1993
Filing dateDec 13, 1991
Priority dateDec 14, 1990
Fee statusPaid
Also published asWO1992010916A1
Publication number07804705, 804705, US 5229979 A, US 5229979A, US-A-5229979, US5229979 A, US5229979A
InventorsJerry I. Scheinbeim, Brian A. Newman
Original AssigneeRutgers, The State University Of New Jersey
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrostrictive driving device, process for sonic wave projection and polymer materials for use therein
US 5229979 A
Abstract
The provided invention is a novel electrostrictive driving device which comprises a sonic wave projector element having alternating electrodes and polymer material film layers. The device provides when subjected to a high bias voltage and a superimposed A.C. voltage, a high Angstroms/Volt response. Also, provided is a process for projecting sonic waves using the electrostrictive driving device of this invention.
Images(2)
Previous page
Next page
Claims(30)
What is claimed is:
1. An electrostrictive driving device comprising
1) an element for sonic wave projection, said element having one or more polymeric film layers which provide said sonic wave projection, said polymeric film layers being free of additives which substantially interfere with the electrostrictive thickness response providing said sonic wave projection, electrode layers in intimate contact with said one or more polymeric material layers and separating said polymeric material layers provided there is more than one of said layers, and a support for the film layer-electrode layer combination;
2) positive and negative terminals electrically connected to said element;
3) a DC bias voltage source electrically connected to said terminals capable of providing a high bias voltage to said polymeric material film layers; and
4) superimposed upon the DC circuit an AC source which causes said element to provide effective sonic wave projection;
said device capable of producing an electrostrictive thickness response greater than about 1 Angstrom/V.
2. A device of claim 1 wherein the polymeric material of the film layer has a modulus in the range of about 107 to about 108 N/m2.
3. A device of claim 1 wherein the polymeric material of the film layer has a sensitivity greater than 3 Angstroms/V.
4. A device of claim 1 wherein the polymeric material of the film layer has a sensitivity of at least 5 Angstroms/V.
5. A device of claim 4 wherein the polymeric material is polyurethane.
6. A device of claim 4 wherein the polymeric material is polyurea.
7. A device of claim 4 wherein the polymeric material is a polymer having a combination of urethane and urea groups.
8. A device of claim 4 wherein the thickness of the film layers is in the range of about 10 to about 100 microns.
9. A device of claim 8 wherein the thickness of the film layers is about 25 microns.
10. A sonic wave projection element for use in an electrostrictive driving device having one or more polymeric film layers wherein the film is made of a polymeric material capable of providing an electrostrictive thickness response under high DC bias having a sensitivity of more than 1 Angstrom/V, said polymeric film layers being free of additives which substantially interfere with the electrostrictive thickness response to provide said sonic wave projection, electrode layers in intimate contact with said one or more polymer material layers and separating said polymeric material layers provided there is more than one of said layers and a support for said polymer material layer-electrode layer combination.
11. An element of claim 10 wherein the polymeric material of the film layer has a modulus in the range of about 107 to about 108 N/m2.
12. An element of claim 10 wherein the polymeric material of the film layer has a sensitivity of at least 5 Angstroms/V.
13. An element of claim 12 wherein the polymeric material is selected from the group consisting of polyurethane, polyurea and polymers having a combination of urethane and urea groups.
14. An element of claim 13 wherein the modulus of the polymeric material is about 107 N/m2.
15. An element of claim 10 wherein the thickness of the film layers is in the range of about 10 to about 100 microns.
16. An element of claim 10 wherein the polymeric material is free of any substantial amount of crystallinity.
17. An element of claim 10 wherein the thickness of the film layers is in the range of about 25 microns.
18. A process for sonic wave projection using an electrostrictive driving device comprising
1) an element for sonic wave projection, said element having one or more polymeric film layers which provide said sonic wave projection, said polymeric film layers being free of additives which substantially interfere with the electrostrictive thickness response providing said sonic wave projection, electrode layers in intimate contact with said one or more polymeric material layers and separating said polymeric material layers provided there is more than one of said layers, and a support for the film layer-electrode layer combination;
2) positive and negative terminals electrically connected to said element;
3) a DC bias voltage source electrically connected to said terminals capable of providing a high bias voltage to said polymeric material film layers; and
4) superimposed upon the DC circuit an AC source which causes said element to provide effective sonic wave projection;
said device capable of producing an electrostrictive thickness response of at least about 1 Angstrom/V.
19. An element of claim 15 wherein the high bias voltage applied is in the range of from about 300 to about 1000 volts.
20. A process of claim 18 wherein the polymeric material of the film layer of the device used has a modulus in the range of about 107 to about 108 N/m2.
21. A process of claim 18 wherein the polymeric material of the film layer of the device used has a sensitivity greater than 1 Angstrom/V.
22. A process of claim 18 wherein the polymeric material of the film layer of the device used has a sensitivity of at least 5 Angstroms/V.
23. A process of claim 21 wherein the polymeric material of the device used is polyurethane.
24. A process of claim 22 wherein the polymeric material of the device used is polyurea.
25. A process of claim 22 wherein the polymeric material of the device used is a polymer having a combination of urethane and urea groups.
26. A process of claim 22 wherein the thickness of the film layers in the device used is in the range of about 10 to about 100 microns.
27. A process of claim 26 wherein the thickness of the film layers in the device used is about 25 microns.
28. A device of claim 1 wherein said polymeric material is nonpiezoelectric.
29. A process of claim 18 wherein the sonic wave projection is acoustic.
30. A process of claim 18 wherein the bias voltage applied is in the range of about 300 to about 1000 volts.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application 07/627,260 filed Dec. 14, 1990, now abandoned.

TECHNICAL FIELD

This invention relates to an electrostrictive driving device utilizing an element comprising a film layer or layers of a polymeric material. The film of the element in operation has a high bias voltage to which is applied an alternating voltage whereby is generated a highly effective sonic wave projection. Also, provided is a process for sonic wave generation using the device.

BACKGROUND ART

Piezoelectric driving devices for sonic wave generation are generally known. Such devices are utilized for various purposes such as components of speakers of high fidelity sound systems, as devices used to generate acoustic signals for detection of objects in a defined path, such as detection of objects underwater, for example, objects such as submarines, ships and the like.

In such devices, a common piezoelectric material for use in making the element for sonic wave generation is a ceramic, referred to as a PZT material or a P (lead) Z (zirconium) T (titanium) alloy or material. One used is referred to as PZT4.

It would be economically preferable to utilize a polymeric piezoelectric material for this use. Efficiencies of making the element and other advantages would be realized using such polymeric material provided such materials would effectively provide high and useful piezoelectric driving or sonic wave projection, as desired.

Piezoelectric polymeric materials with sufficient high driving amplitudes are not known at the present. The invention proposed uses an electrostrictive polymeric material which can be made to provide sufficient driving amplitudes.

SUMMARY OF INVENTION

Provided by this invention are sonic wave generation elements of an electrostrictive driving device using polymeric material. The material is required to have a low modulus of about 107 to about 108 N/m2, an apparent piezoelectric response with a sensitivity greater than about 1 Angstrom/V. A variety of polymeric materials can be used for this purpose. A suitable polymeric material for use is a poly(vinylidene fluoride) (PVF2) which is in solution. A suitable solvent for PVF2 has been found to be tricresyl phosphate (TCP). The solvent may be varied greatly depending upon the polymeric material used and other factors. Also, the polymeric material can also be greatly varied. Combinations of polymeric materials can be used in making the element. Also, polymeric materials can be used wherein no or low amounts of solvents are used. The variations can be used so long as the desired element can be made using films of the polymeric materials.

The film of the sonic wave projecting element is subjected to a high bias voltage wherein E2 is proportional to thickness strain. It is desired that the element generates at least about 3 Angstroms/volt, preferably at least about 5 Angstroms (10-10 m, rms) per volt. It is desired that the polymeric material modulus, N/m2, be from about 107 to about 108 N/m2 and have a sensitivity of at least about 6 Angstroms/V.

The polymeric material present in the element as a film is electrostrictive.

In the process of sonic wave projection or generation using the electrostrictive driving device of this invention, a bias voltage is applied of about 300 to about 1000, suitably about 500. A greater or lesser bias voltage might be selected in selected circumstances.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of an electrostrictive driving device of this invention.

FIG. 2 is a graph showing the results of measured values of the "thickness" piezoelectric constant, dT, for polymeric materials of this invention wherein said materials are poly(vinylidene fluoride) solutions. The data is shown as dB//1 Angstrom, rms (10-10 m, rms)/volt vs DC Bias, Volts.

DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED EMBODIMENTS

The process can be carried out by first dissolving the polymeric material to be used in the required amount of a suitable solvent or solvents to form a solution. For example, if poly(vinylidene fluoride) is selected as the material, a suitable solvent such as tricresylphosphate can be used. It has been found that about five parts of a poly(vinylidene fluoride), which is suitable for use in making the sonic wave generation element, is an acceptable amount to dissolve in 95 parts of tricresyl phosphate. Another suitable solvent for making the polymeric material film for the element can be used if desired. The mixture is heated to about 190 C. to aid dissolution. It has been found that a capacitor grade poly(vinylidene fluoride) as sold by Kureha Kagoku Kogko Kabishiki Kaisha is suitable.

The solvent content in the solution is reduced prior to use in making the film for the element. For example, in the case of poly(vinylidene fluoride)/tricresylphosphate solution, the solvent content can be reduced from 95 parts to 50 parts or below such as to 26.5 parts, providing the poly(vinylidene fluoride) remains in solution.

It has been found suitable to reduce the TCP content to about 60 to about 35 percent in the polymeric material based on the weight of the polymeric material.

The solvent is suitably reduced by evaporation as known to those skilled in the art.

Polymeric materials which can be used in this invention can vary widely so long as they have a capability of providing the desired properties of the polymeric material film of the sonic wave generation element of this invention. As mentioned above, a preferred material is poly(vinylidene fluoride). Copolymers of vinylidene fluoride are also desirable materials, such as vinylidene fluoride copolymers with vinyl fluoride, trifluoroethylene, tetrafluoroethylene, vinyl chloride, methylmethacrylate, and others. The vinylidene fluoride content can vary in the range of from about 30 percent to about 95 percent based on the total polymer weight. Other polymers which can be used are polyvinylchloride polyesters such as polymethylacrylate, polymethylmethacrylate, and the like, vinylidene cyanide/vinyl acetate copolymers, vinylidene cyanide/vinyl benzoate copolymers, vinidene cyanide/isobutylene copolymers, vinylidene cyanide/methyl methacrylate copolymers, polyvinylfluoride, polyacrylonitrile, polycarbonate, and nylons such as Nylon-7 and Nylon-11, natural polymers such as cellulose and proteins, synthetic polymers such as derivatives of cellulose, such as esters and ethers, poly-gamma-(-methyl-L-glutamate), certain polymers having a rubbery character such as polyurethane rubbers, silicone rubbers, polyurea rubbers, rubbers having combination of urethane and urea groups or the like.

A variety of suitable solvents can be used depending upon the polymeric material used, cost and safety consideration, equipment used, and other factors. In the use of poly(vinylidene fluoride) material, tricresylphosphate has been found to be a suitable solvent. It is also suitable for use when many copolymers of vinylidene fluoride are used. Dibutyl phthalate can also be used as the solvent for these vinylidene polymers. In the use of nylon-7 and nylon-11, 2-ethyl-1,3-hexanediol can be used. Other solvents can be used depending upon the polymer material used and other factors and will be suggested to those skilled in the art.

The term solution as used herein has its usual meaning of a mixture of two or more elements or compounds which appear to be homogeneous even to the highest possible magnification of visible light. The Encyclopedia of Chemistry, 2nd Ed., George L. Clark, Reinhold Publishing Corporation, New York, N.Y., 1966, page 989.

Measurements of dieletric constant and dynamic mechanical modulus, and other measurements, are determined in conventional manner. Sensitivity values, Angstroms/V, of polymeric materials of the films used in making the sonic wave generation elements of the electrostrictive driving devices of this invention can be determined by measuring the change in the thickness of a free standing film by use of an interferometer on each side of the film to measure the displacement of each film surface during the application of the electrostrictive process. Such a measuring system is generally described by W. Y. Pan and L. E. Cross, Rev. Sci. Instrum. 60(8), August 1989. Also, the sensitivity values can be measured using certain optical probes which measure accurately the distances from the probe to the surface of the film during the operation of the process.

A certain amount of crystallinity in the polymeric material, usually a relatively small amount, can be advantageous.

Certan additives or dopants can be incorporated into the polymeric materials of this invention to provide certain additional properties so long as their presence does not substantially interfere with the desired properties of the polymeric materials provided by this invention.

Referring to FIG. 1, the electrostrictive driver 10 comprises a DC bias voltage power source 12, an AC power source 14, the sonic wave projector 16 and circuit 18 electrically connecting said elements in series. Sonic wave projector 16 (shown in cross section) has electrodes 22 and electrostrictive polymer material films 20 which are in intimate contact with each other in alternating manner as shown.

The electrodes can be made of any suitable conductive material, such as metallic materials. It has been found suitable to use such metals as aluminum, copper, gold and other suitable metals. The thickness of the electrodes can vary depending upon the application, the sonic wave desired to be projected, and other factors. It has been found in illustration that the electrodes can suitably be made of aluminum foil having a thickness of 20-30 microns. It has additionally been found in illustration that the electrodes can be made of gold of a thickness of about 1000 Angstroms, which can be formed by deposit using evaporation upon the polymer material film layers 20.

The thickness of the polymer material film layers 22 can also vary in thickness. For example, it has been found that polymer material film layers 22 can suitably have a thickness in the range of about 10 to about 100 microns, with about 25 microns often being suitable.

The number of polymer material layers and the separating electrode 20 layers can vary widely depending upon the nature and magnitude of the sonic wave projection desired. For example, only one polymer material layer 20 and one electrode layer can be used in combination. Also, the number of polymer material layers can be increased to 5 to 10 or more, depending upon the type and magnitude of sonic wave generation desired and other factors.

The height and width of the electrodes and polymer material film layers will be readily selected by those skilled in the art.

The sonic waves projected can be acoustic.

The combination of electrodes and polymer material film layers will be attached to the support 24 by using non-electroconductive means.

The bias voltage used can be varied in order to obtain the desired magnitude of Angstrom/volt response. The voltage must be sufficiently high to provide sufficient sonic output.

The DC bias voltage and AC sources and the conductive circuit will be selected within the skill of the art to provide effective functioning of the electrostrictive driver of this invention.

Additionally, other necessary support elements for the effective functioning of the electrostrictive driver will be readily apparent to those skilled in the art.

Referring to FIG. 2, this is a graph showing the response of two polymer materials of this invention, materials 1 and 2, as compared to two other materials, 3 and 4.

Material 3 is a standard ceramic PZT alloy material as described above. Material 4 material is a polarized poly(vinylidene chloride) material sold under the designation Pennwalt 1000S.

Material 1 is a polymer material which has 35 percent PVF2 and 65 percent TCP. Material 2 is another polymer material which has 60 percent PVF2 and 40 percent TCP. The graph shows a response at 500 volts D.C. bias, of greater than 6 Angstroms/Volt for Material 1 and greater than 4 Angstroms/Volt for Material 2. The response for control Material 4 is unsatisfactory and the present standard Material 3 shows greater than 5 Angstroms/Volt. Materials 3 and are used as conventional piezoelectrics and require no bias voltage.

Also, effective polymeric materials having no or low amounts of solvent can be used to make the films of the sonic wave generation elements, as stated above. For example, polyurethane polymers, polyurea polymers, and polymers having a combination of urethane and urea groups can be desirably used, for example, such polymers having a modulus, N/m2, of from about 107 to about 108 N/m2.

In operation, the D.C. bias source provides a suitable bias voltage, such as 500 volts. This can be varied upwardly or lowered, depending upon the polymer material layers and electrodes used, the sonic wave projected, and other factors.

Also, the A.C. source is engaged to superimpose upon the D.C. bias voltage to provide the desired sonic wave projection.

If only static displacement or changes in thickness are desired, only the D.C. bias field is necessary to obtain the required electrostrictive strain. This would be the type of operation envisaged for actuator or other appropriate applications.

EXAMPLE 1

Five parts of Kureha capacitor grade poly(vinylidene fluoride) (PVF2) film are dissolved in 95 parts of tricresylphosphate at 185 C. The solution is transferred to a tray and placed into a vacuum oven. The oven is maintained at a vacuum of about 10-3 torr and at a temperature within the range of 150-200 C. until a PVF2 and 30 percent by weight of tricresylphosphate.

Samples of the polymeric composition are taken when the percentage of TCP reaches about 65 and about 40 percent, respectively, and at other useful percentages.

EXAMPLE 2

Five parts of Kynar copolymer VF2 VF3 (80% VF2) film produced by Pennwalt Corporation are dissolved in 95 parts of tricresylphosphate at 240 C. The solution is transferred to a tray and placed into a vacuum oven. The oven is maintained at a vacuum of about 10-3 torr and at a temperature within the range of 100-120 C. until a copolymer solution is obtained having about 70 percent by weight of copolymer and 30 percent by weight of tricresylphosphate.

Samples of the polymeric material are taken when the solvent content is about 65 and about 40 percent, respectively, at other useful percentages.

EXAMPLE 3

One part by weight of Nylon 11 is dissolved in four parts of 2-ethyl-hexane 1,3 diol at 150 C. The solution is transferred to a tray and placed in a vacuum oven. The oven is maintained at a vacuum of about 10-3 torr and at a temperature of 50 C. until Nylon 11 solution is obtained having about 50% by weight of Nylon 11.

Samples of the polymeric material are taken at various solvent contents.

EXAMPLE 4

One part by weight of Nylon 7 is dissolved in four parts of 2-ethyl-hexane 1,3 diol at 170 C. The solution is transferred to a tray and placed in a vacuum oven. The oven is maintained at a vacuum of about 10-3 torr and at a temperature of 50 C. until Nylon 7 solution is obtained having about 50% by weight of Nylon 7.

Samples of the polymeric material are taken at various solvent contents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3801839 *Dec 1, 1972Apr 2, 1974Rion CoMechanical to electrical transducer device
US4257686 *Dec 14, 1978Mar 24, 1981Itek CorporationMultiple layer piezoelectric wavefront modulator
US4933479 *Oct 26, 1989Jun 12, 1990Idemitsu Petrochemical Co., Ltd.Crosslinked polyphosphazenes as piezoelectric materials
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5396166 *Aug 27, 1992Mar 7, 1995The United States Of America As Represented By The Secretary Of The NavyFiber optic interferometric electric field and voltage sensor utilizing an electrostrictive transducer
US5608692 *Feb 8, 1994Mar 4, 1997The Whitaker CorporationMulti-layer polymer electroacoustic transducer assembly
US5826864 *Feb 26, 1997Oct 27, 1998Gte Internetworking IncorporatedActive vibration mount
US6335856Apr 5, 1999Jan 1, 2002L'etat Francais, Represente Par Le Delegue Ministeriel Pour L'armementTriboelectric device
US6343129Jul 19, 1999Jan 29, 2002Sri InternationalElastomeric dielectric polymer film sonic actuator
US6495642Mar 5, 2001Dec 17, 2002Rutgers, The State UniversityProcess for preparing electrostrictive polymers and resulting polymers and articles
US6545384Jul 20, 2000Apr 8, 2003Sri InternationalElectroactive polymer devices
US6583533Nov 15, 2001Jun 24, 2003Sri InternationalElectroactive polymer electrodes
US6768246 *Feb 23, 2001Jul 27, 2004Sri InternationalBiologically powered electroactive polymer generators
US6781284Jul 20, 2000Aug 24, 2004Sri InternationalElectroactive polymer transducers and actuators
US6847153May 30, 2002Jan 25, 2005The United States Of America As Represented By The Secretary Of The NavyPolyurethane electrostriction
US6911764Feb 7, 2001Jun 28, 2005Sri InternationalEnergy efficient electroactive polymers and electroactive polymer devices
US6960865May 21, 2004Nov 1, 2005The United States Of America As Represented By The Secretary Of The NavyPolyurethane electrostriction
US7034432Jul 20, 2000Apr 25, 2006Sri InternationalElectroactive polymer generators
US7062055Oct 26, 2001Jun 13, 2006Sri InternationalElastomeric dielectric polymer film sonic actuator
US7064472Mar 18, 2003Jun 20, 2006Sri InternationalElectroactive polymer devices for moving fluid
US7199501Jan 18, 2006Apr 3, 2007Sri InternationalElectroactive polymers
US7224106Jan 18, 2006May 29, 2007Sri InternationalElectroactive polymers
US7259503Jan 18, 2006Aug 21, 2007Sri InternationalElectroactive polymers
US7320457Mar 5, 2003Jan 22, 2008Sri InternationalElectroactive polymer devices for controlling fluid flow
US7362032Mar 14, 2006Apr 22, 2008Sri InternationalElectroactive polymer devices for moving fluid
US7368862Jan 24, 2006May 6, 2008Sri InternationalElectroactive polymer generators
US7394182Dec 21, 2006Jul 1, 2008Sri InternationalElectroactive polymer devices for moving fluid
US7468575Jul 9, 2007Dec 23, 2008Sri InternationalElectroactive polymer electrodes
US7537197Jul 29, 2007May 26, 2009Sri InternationalElectroactive polymer devices for controlling fluid flow
US7608989Oct 27, 2009Sri InternationalCompliant electroactive polymer transducers for sonic applications
US7703742Apr 15, 2009Apr 27, 2010Sri InternationalElectroactive polymer devices for controlling fluid flow
US7898159Sep 22, 2009Mar 1, 2011Sri InternationalCompliant electroactive polymer transducers for sonic applications
US7911115Mar 22, 2011Sri InternationalMonolithic electroactive polymers
US7923064Jul 9, 2007Apr 12, 2011Sri InternationalElectroactive polymer manufacturing
US7971850Mar 25, 2010Jul 5, 2011Sri InternationalElectroactive polymer devices for controlling fluid flow
US8508109Mar 8, 2011Aug 13, 2013Sri InternationalElectroactive polymer manufacturing
US8624468Nov 10, 2009Jan 7, 20143M Innovative Properties CompanyElectromechanical materials and devices including the same
US8699740 *Jul 22, 2011Apr 15, 2014Fortune Grand Technology Inc.Headphone sound-generating structure and method of assembling same
US8712559Feb 9, 2011Apr 29, 2014The Board Of Trustees Of The University Of IllionoisAdaptive control for uncertain nonlinear multi-input multi-output systems
US8981621Feb 1, 2012Mar 17, 2015Ronald E. PelrineElectroactive polymer manufacturing
US9195058Mar 22, 2012Nov 24, 2015Parker-Hannifin CorporationElectroactive polymer actuator lenticular system
US9231186Mar 30, 2010Jan 5, 2016Parker-Hannifin CorporationElectro-switchable polymer film assembly and use thereof
US20010035723 *Feb 23, 2001Nov 1, 2001Pelrine Ronald E.Biologically powered electroactive polymer generators
US20020122561 *Oct 26, 2001Sep 5, 2002Pelrine Ronald E.Elastomeric dielectric polymer film sonic actuator
US20030214199 *Mar 5, 2003Nov 20, 2003Sri International, A California CorporationElectroactive polymer devices for controlling fluid flow
US20040008853 *Mar 18, 2003Jan 15, 2004Sri International, A California CorporationElectroactive polymer devices for moving fluid
US20040124738 *Jun 4, 2003Jul 1, 2004Sri International, A California CorporationElectroactive polymer thermal electric generators
US20060113878 *Jan 18, 2006Jun 1, 2006Sri InternationalElectroactive polymers
US20060113880 *Jan 18, 2006Jun 1, 2006Sri International, A California CorporationElectroactive polymers
US20060158065 *Mar 14, 2006Jul 20, 2006Sri International A California CorporationElectroactive polymer devices for moving fluid
US20060238066 *Jan 24, 2006Oct 26, 2006Sri InternationalElectroactive polymer generators
US20060238079 *Jan 18, 2006Oct 26, 2006Sri International, A California CorporationElectroactive polymers
US20070164641 *Dec 21, 2006Jul 19, 2007Sri InternationalElectroactive polymer devices for moving fluid
US20070200467 *Feb 20, 2007Aug 30, 2007Sri InternationalCompliant electroactive polymer transducers for sonic applications
US20080136052 *Jul 9, 2007Jun 12, 2008Sri InternationalElectroactive polymer manufacturing
US20080191585 *Jul 9, 2007Aug 14, 2008Sri InternationalElectroactive polymer electrodes
US20080245985 *Jul 29, 2007Oct 9, 2008Sri InternationalElectroactive polymer devices for controlling fluid flow
US20090200501 *Apr 15, 2009Aug 13, 2009Sri InternationalElectroactive polymer devices for controlling fluid flow
US20100013356 *Jan 21, 2010Sri InternationalCompliant electroactive polymer transducers for sonic applications
US20100026143 *Feb 4, 2010Sri InternationalMonolithic electroactive polymers
US20100176322 *Mar 25, 2010Jul 15, 2010Sri InternationalElectroactive polymer devices for controlling fluid flow
US20110155307 *Jun 30, 2011Sri InternationalElectroactive polymer manufacturing
US20110196514 *Aug 11, 2011Chengyu CaoAdaptive control for uncertain nonlinear multi-input multi-output systems
US20130022225 *Jul 22, 2011Jan 24, 2013Fortune Grand Technology Inc.Headphone sound-generating structure and method of assembling same
WO1998035529A2 *Feb 6, 1998Aug 13, 1998Sri InternationalElastomeric dielectric polymer film sonic actuator
WO1998035529A3 *Feb 6, 1998Dec 10, 1998Joseph S EckerleElastomeric dielectric polymer film sonic actuator
WO2000054549A2 *Mar 9, 2000Sep 14, 2000New Transducers LimitedVibration exciters for driving bending wave panels
WO2000054549A3 *Mar 9, 2000Dec 14, 2000New Transducers LtdVibration exciters for driving bending wave panels
WO2001066613A1 *Mar 5, 2001Sep 13, 2001Rutgers, The State UniversityProcess for preparing electrostrictive polymers and resulting polymers and articles
Classifications
U.S. Classification367/157, 310/311, 310/334, 367/140, 310/800, 29/25.35, 367/163
International ClassificationH04R17/08, H04R17/00, B06B1/06
Cooperative ClassificationY10T29/42, Y10S310/80, B06B1/0611, H04R17/005, B06B1/0688, H04R17/08
European ClassificationB06B1/06C2, H04R17/00B, B06B1/06F
Legal Events
DateCodeEventDescription
Dec 13, 1991ASAssignment
Owner name: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY, NEW J
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SCHEINBEIM, JERRY I.;NEWMAN, BRIAN A.;REEL/FRAME:006450/0966
Effective date: 19911211
Dec 6, 1996FPAYFee payment
Year of fee payment: 4
Dec 29, 2000FPAYFee payment
Year of fee payment: 8
Aug 9, 2002ASAssignment
Owner name: DIIETRO, VITO J., DISTRICT OF COLUMBIA
Free format text: CONFIRMATORY LICENSE;ASSIGNOR:RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY;REEL/FRAME:013153/0956
Effective date: 20020313
Dec 21, 2004FPAYFee payment
Year of fee payment: 12