Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5258389 A
Publication typeGrant
Application numberUS 07/973,807
Publication dateNov 2, 1993
Filing dateNov 9, 1992
Priority dateNov 9, 1992
Fee statusPaid
Publication number07973807, 973807, US 5258389 A, US 5258389A, US-A-5258389, US5258389 A, US5258389A
InventorsMark Goulet, William H. Parsons, Peter J. Sinclair, Frederick Wong, Matthew J. Wyvratt
Original AssigneeMerck & Co., Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
US 5258389 A
Abstract
O-Aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives of the general structural Formula I: ##STR1## have been prepared from suitable precursors by alkylation and/or arylation at C-42 and/or C-31. These compounds are useful in a mammalian host for the treatment of autoimmune diseases and diseases of inflammation, infectious diseases, the prevention of rejection of foreign organ transplants and the treatment of solid tumors.
Images(21)
Previous page
Next page
Claims(12)
What is claimed is:
1. A compound of formula I: ##STR12## or a pharmaceutically acceptable salt thereof, wherein: R1 and R2 are independently selected from:
(1) hydrogen;
(2) phenyl;
(3) substituted phenyl in which the substituents are X, Y and Z;
(4) 1- or 2- naphthyl;
(5) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z;
(6) biphenyl;
(7) substituted biphenyl in which the substituents are X, Y and Z;
(8) C1-10 alkyl;
(9) substituted C1-10 alkyl in which one or more substituent(s) is(are) selected from:
(a) hydroxy,
(b) oxo,
(c) C1-6 -alkoxy,
(d) phenyl-C1-3 alkoxy,
(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,
(f) --OCO--CL alkyl,
(g) --NR6 R7, wherein R6 and R7 are independently selected from
(i) hydrogen,
(ii) C1-10 alkyl unsubstituted or substituted with one or more of the substituent(s) selected from:
(a') phenyl, which is unsubstituted or substituted with X, Y and Z,
(b') --OH,
(c') C1-6 alkoxy,
(d') --CO2 H)
(e') --CO2 -C1-6 alkyl,
(f') --C3-7 cycloalkyl, and
(g') --OR11,
(iii)C3-10 alkenyl unsubstituted or substituted with one or more of the substituent(s) selected from:
(a') phenyl, which is unsubstituted or substituted with X, Y and Z,
(b') --OH,
(C') C1-6 alkoxy,
(d') --CO2 H,
(e') --CO2 --C1-6 alkyl,
(f') --C3-7 cycloalkyl, and
(g') --OR11,
(iv)or where R6 and R7 and the N to which they are attached can form a 3-7-membered saturated heterocyclic ring, unsubstituted or substituted with C1-6 alkyl or phenyl, the ring being selected from the group consisting of: aziridine, morpholine, thiomorpholine, thiomorpholine-oxide, thiomorpholine-dioxide, piperidine, pyrrolidine, and piperizine,
(h) --NR6 CO--C1-6 alkyl--R7, wherein R6 is as defined above,
(i) --NR6 CO2 --C1-6 alkyl--R7,
(j) --NR6 CONR6 R7,
(k) --OCONR6 R7,
(l) --COOR6,
(m) --CHO,
(n) phenyl,
(o) substituted phenyl in which the substituents are X, Y and Z,
(p) phenyloxy,
(q) substituted phenyloxy in which the substituents are X, Y and Z,
(r) 1- or 2- naphthyl,
(s) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z,
(t) biphenyl
(u) substituted biphenyl in which the substituents are X, Y and Z;
(v) --OR11, and
(w) --S(O)p --C1-6 alkyl;
(10) C3-10 alkenyl;
(11) substituted C3-10 alkenyl in which one or more substituent(s) is(are) selected from:
(a) hydroxy,
(b) oxo,
(c) C1-6 alkoxy,
(d) phenyl-C1-3 alkoxy,
(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,
(f) --OCO--C1-6 alkyl,
(g) --NR6 R7, wherein R6 and R7 are as defined above
(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,
(i) --COOR6, wherein R6 is as defined above,
(j) --CHO,
(k) phenyl,
(l) substituted phenyl in which the substituents are X, Y and Z,
(m) 1- or 2-naphthyl,
(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,
(o) biphenyl,
(p) substituted biphenyl in which the substituents are X, Y and Z,
(q) --OR11, and
(r) --S(O) p--C1-6 alkyl;
(12) C3-10 alkynyl;
(13) substituted C3-10 alkynyl in which one or more substituent(s) is(are) selected from:
(a) hydroxy,
(b) oxo,
(c) C1-6 alkoxy,
(d) phenyl-C alkoxy,
(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,
(f) --OCO--C1-6 alkyl,
(g) --NR6 R , wherein R and R are as defined above,
(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,
(i) --COOR6, wherein R6 is as defined above,
(j) --CHO,
(k) phenyl,
(l) substituted phenyl in which the substituents are X, Y and Z,
(m) 1- or 2-naphthyl,
(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,
(o) biphenyl,
(p) substituted biphenyl in which the substituents are X, Y and Z, and
(q) --OR11 ;
with the proviso that R1 and R2 are not simultaneously hydrogen;
R11 is selected from:
(a) --PO(OH)O- M+, wherein M+ is a positively charged inorganic or organic counterion,
(b) --SO3 - M+,
(c) --CO(CH2)q CO2 - M+, wherein q is 1-3, and
(d) --CO--C1-6 alkyl-NR6 R7, wherein R6 and R7 are as defined above and the alkyl is unsubstituted or substituted with one or more substituents selected from:
(i) hydroxy,
(ii) C1-6 alkoxy,
(iii) --NR16 R17, wherein R16 and R17 are independently selected from:
(a') hydrogen, and
(b') C1-6 alkyl,
(iv) --COOR6, wherein R6 is as defined above,
(v) phenyl,
(vi) substituted phenyl in which the substituents are X, Y and Z,
(vii) --SH, and
(viii) --S--C1-6 alkyl;
X, Y and Z independently are selected from:
(a) hydrogen,
(b) C1-7 alkyl,
(c) C2-6 alkenyl,
(d) halogen,
(e) --(CH2)m --NR6 R7, wherein R6 and R7 are as defined above, and m is 0 to 2,
(f) --CN,
(g) --CHO,
(h) --CF3)
(i) --SR8, wherein R8 is hydrogen, C1-6 alkyl, trifluoromethyl, or phenyl,
(j) --SOR8, wherein R8 is as defined above,
(k) --SO2 R8, wherein R8 is as defined above,
(l) --CONR6 R7, wherein R6 and R7 are as defined above,
(m) R9 O(CH2)m - wherein R9 is hydrogen, C1-3 alkyl, hydroxy-C2-3 alkyl, trifluoromethyl, phenyl or naphthyl and m is as defined above,
(n) --CH(OR12)(OR13), wherein R12 and R13 are C1-3 alkyl or taken together form an ethyl or propyl bridge,
(o) ##STR13## wherein R9 and m are as defined above, and (p) ##STR14## wherein R9 and m are as defined above, and (q) --OR11 ;
or any two of adjacent X, Y and Z can be joined to form a ring selected from the group consisting of: dioxolanyl, dihydrofuranyl, dihydropyranyl, and dioxanyl.
2. The compound of claim 1 wherein:
R1 and R2 are independently selected from:
(1) hydrogen;
(2) methyl;
(3) phenyl;
(4) substituted phenyl in which the substituents are X, Y and Z;
(5) 1- or 2- naphthyl;
(6) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z;
(7) biphenyl; and
(8) substituted and biphenyl in which the substituents are X, Y and Z;
with the proviso that R1 and R2 are not simultaneously hydrogen;
X, Y and Z are independently, selected from:
(a) hydrogen,
(b) C1- 7 alkyl,
(c) C2-6 alkenyl,
(d) halogen,
(e) --(CH2)m -NR6 R7, wherein R6 and R7 are, independently selected from
(i) hydrogen, or
(ii) C1-6 alkyl unsubstituted or substituted with phenyl, and
m is 0 to 2,
(f) --CN,
(g) --CHO,
(h) --CF3,
(i) --SR8, wherein R8 is hydrogen, C1-6 alkyl, trifluoromethyl, or phenyl,
(j) --SOR8, wherein R8 is as defined above,
(k) --SO2 R8, wherein R8 is as defined above,
(l) --CONR6 R7, wherein R6 and R7 are as defined above,
(m) R9 O(CH2)m - wherein R9 is hydrogen, C1-3 alkyl, hydroxy-C2-3 alkyl, trifluoromethyl, phenyl or naphthyl and m is as defined above,
(n) --CH(OR12)(OR13), wherein R12 and R13 are C1-3 alkyl or taken together form an ethyl or propyl bridge,
(o) ##STR15## wherein R9 and m are as defined above, and (p) ##STR16## wherein R9 and m are as defined above, and (q) --OR11 ;
or any two of adjacent X, Y and Z can be joined to form a ring selected from the group consisting of: dioxolanyl, dihydrofuranyl, dihydropyranyl, and dioxanyl.
3. The compound of claim 1 wherein:
R1 and R2 are independently selected from:
(1) hydrogen;
(2) C1-10 alkyl;
(3) substituted C1-10 alkyl in which one or more substituent(s) is(are) selected from:
(a) hydroxy,
(b) oxo,
(c) C1-6 -alkoxy,
(d) phenyl-C1-3 alkoxy,
(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,
(f) --OCO--C1-6 alkyl,
(g) --NR6 R7, wherein R6 and R7 are independently selected from
(i) hydrogen,
(ii) C1-10 alkyl unsubstituted or substituted with one or more of the substituent(s) selected from:
(a') phenyl, which is unsubstituted or substituted with X, Y and Z,
(b') --OH,
(c') C1-6 alkoxy,
(d') --CO2 H,
(e') --CO2 --C1-6 alkyl,
(f') --C3-7 cycloalkyl, and
(g') --OR11,
(iii)C3-10 alkenyl unsubstituted or substituted with one or more of the substituent(s) selected from:
(a') phenyl, which is unsubstituted or substituted with X, Y and Z,
(b') --OH, alkoxy,
(c') C1-6 alkoxy,
(d') --CO2 H,
(e') --CO2 --C1-6 alkyl,
(f') --C3-7 cycloalkyl, and
(g') --OR11,
(iv)or where R6 and R7 and the N to which they are attached can form a 3-7-membered saturated heterocyclic ring, unsubstituted or substituted with C1-6 alkyl or phenyl, the ring being selected from the group consisting of: aziridine, morpholine, thiomorpholine, thiomorpholine-oxide, thiomorpholine-dioxide, piperidine, pyrrolidine, and piperazine,
(h) --NR6 CO--C1-6 alkyl-R7, wherein R6 is as defined above,
(i) --NR6 CO2 --C1-6 alkyl-R7,
(j) --NR6 CONR6 R7,
(k) --OCONR6 R7,
(l) --COOR6,
(m) --CHO,
(n) phenyl,
(o) substituted phenyl in which the substituents are X, Y and Z,
(p) phenyloxy,
(q) substituted phenyloxy in which the substituents are X, Y and Z,
(r) 1- or 2- naphthyl,
(s) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z,
(t) biphenyl
(u) substituted biphenyl in which the substituents are X, Y and Z;
(v) --OR11, and
(w) --S(O)p --C1-6 alkyl;
(4) C3-10 alkenyl;
(5) substituted C3-10 alkenyl in which one or more substituent(s) is(are) selected from:
(a) hydroxy,
(b) oxo,
(c) C1-6 alkoxy,
(d) phenyl-C1-3 alkoxy,
(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,
(f) --OCO--C1-6 alkyl,
(g) --NR6 R7, wherein R6 and R7 are as defined above
(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,
(i) --COOR6, wherein R6 is as defined above,
(j) --CHO,
(k) phenyl,
(l) substituted phenyl in which the substituents are X, Y and Z,
(m) 1- or 2-naphthyl,
(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,
(o) biphenyl,
(p) substituted biphenyl in which the substituents are X, Y and Z,
(q) --OR11, and
(r) --S(O)p --C1-6 alkyl;
(6) C3-10 alkynyl;
(7) substituted C3-10 alkynyl in which one or more substituent(s) is(are) selected from:
(a) hydroxy,
(b) oxo,
(c) C1-6 alkoxy,
(d) phenyl-C1-3 alkoxy,
(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,
(f) --OCO--C1-6 alkyl,
(g) --NR6 R7, wherein R6 and R7 are as defined above,
(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,
(i) --COOR6, wherein R6 is as defined above,
(j) --CHO,
(k) phenyl,
(l) substituted phenyl in which the substituents are X, Y and Z,
(m) 1- or 2-naphthyl,
(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,
(o) biphenyl,
(p) substituted biphenyl in which the substituents are X, Y and Z, and
(q) --OR11 ;
with the proviso that R1 and R2 are not simultaneously hydrogen;
R11 is selected from:
(a) --PO(OH)O- M+, wherein M+ is a positively charged inorganic or organic counterion,
(b) --SO3 - M+,
(c) --CO(CH2)q CO2 - M+, wherein q is 1-3, and
(d) --CO--C1-6 alkyl-NR6 R7, wherein R6 and R7 are as defined above and the alkyl is unsubstituted or substituted with one or more substituents selected from:
(i) hydroxy,
(ii) C1-6 alkoxy,
(iii) --NR16 R17, wherein R16 and R17 are independently selected from:
(a') hydrogen, and
(b') C1-6 alkyl,
(iv) --COOR6, wherein R6 is as defined above,
(v) phenyl,
(vi) substituted phenyl in which the substituents are X, Y and Z,
(vii) --SH, and
(viii) --S--C1-6 alkyl; X, Y and Z independently are selected from:
(a) hydrogen,
(b) C1-7 alkyl,
(c) C2-6 alkenyl,
(d) halogen,
(e) --(CH2)m --NR6 R7, wherein R6 and R7 are as defined above, and m is 0 to 2,
(f) --CN,
(g) --CHO,
(h) --CF3,
(i) --SR8, wherein R8 is hydrogen, C1-6 alkyl, trifluoromethyl, or phenyl,
(j) --SOR8, wherein R8 is as defined above,
(k) --SOR2 R8, wherein R8 is as defined above,
(l) --CONR6 R7, wherein R6 and R7 are as defined above,
(m) R9 O(CH2)m - wherein R9 is hydrogen, C1-3 alkyl, hydroxy-C2-3 alkyl, trifluoromethyl, phenyl or naphthyl and m is as defined above,
(n) --CH(OR12)(OR13), wherein R12 are C1-3 alkyl or taken together form an ethyl or propyl bridge,
(o) ##STR17## wherein R9 and m are as defined above, and (p) ##STR18## wherein R9 and m are as defined above, and (q) --OR11 ;
or any two of adjacent X, Y and Z can be joined to form a ring selected from the group consisting of: dioxolanyl, dihydro-furanyl, dihydropyranyl, and dioxanyl.
4. A compound which is: ##STR19## wherein R1 and R2 are selected from the following combinations of substituents:
______________________________________R1              R2______________________________________a) ##STR20##          Hb) ##STR21##          Hc) ##STR22##          Hd) ##STR23##          He) ##STR24##          Hf) ##STR25##          Hg) ##STR26##          Hh) ##STR27##          Hi) ##STR28##          Hj)   H                     ##STR29##k)   H                     ##STR30##l)   H                     ##STR31##m) ##STR32##          Hn) ##STR33##          Ho) ##STR34##          Hp) ##STR35##          Hq) ##STR36##          Hr) ##STR37##           H.______________________________________
5. A compound which is: ##STR38## wherein R1 and R2 are selected from the following combinations of substituents:
______________________________________R1           R2______________________________________a)  ##STR39##      Hb)    H                  ##STR40##c)  ##STR41##      Hd)    H                  ##STR42##e)  ##STR43##      Hf)    H                  ##STR44##g)  ##STR45##      Hh)  ##STR46##      Hi)    H                  ##STR47##j)  ##STR48##      Hk)    H                  ##STR49##l)  ##STR50##      Hm)    H                  ##STR51##n)  ##STR52##      Ho)    H                  ##STR53##p)  ##STR54##      Hq)    H                  ##STR55##r)  ##STR56##      Hs)    H                  ##STR57##t)  ##STR58##      Hu)    H                  ##STR59##v)  ##STR60##      Hw)    H                  ##STR61##x)  ##STR62##      Hy)    H                  ##STR63##z)  ##STR64##      Haa)  ##STR65##      Hbb)  ##STR66##      Hcc)  ##STR67##      Hdd)  ##STR68##      Hee)  ##STR69##      Hff)  ##STR70##      Hgg)  ##STR71##      Hhh)   H                  ##STR72##ii)  ##STR73##      Hjj)  ##STR74##      Hkk)   H                  ##STR75##______________________________________
6. The compound of claim 1 which is: 42-O-phenyl rapamycin.
7. A pharmaceutical composition comprising a pharmaceutical carrier and a therapeutically effective amount of the compound of claim 1.
8. A method for the treatment of immunoregulatory disorders or diseases comprising the administration to a mammalian species in need of such treatment of an effective amount of the compound of claim 1.
9. A method for the treatment of resistance to transplantation comprising the administration to a mammalian species in need of such treatment of an effective amount of the compound of claim 1.
10. A method for the treatment of inflammatory comprising the administration to a mammalian species in need of such treatment of an effective amount of the compound of claim 1.
11. A method for the treatment of autoimmune diseases comprising the administration to a mammalian species in need of such treatment of an effective amount of the compound of claim 1.
12. A method for the treatment of fungal infections comprising the administration to a mammalian species in need of such treatment of an effective amount of the compound of claim 1.
Description
SUMMARY OF THE INVENTION

The present invention is related to O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives which are useful in a mammalian host for the treatment of autoimmune diseases (such as juvenile-onset or recent-onset diabetes mellitus, multiple sclerosis, rheumatoid arthritis, liver disease, posterior uveitis, allergic encephalomyelitis, and glomerulonephritis), diseases of inflammation, infectious diseases (particularly fungal infections), the prevention of rejection of foreign organ transplants, e.g. bone marrow, kidney, liver, heart, skin, small-bowel, and pancreatic-islet-cell transplants, and the treatment of solid tumors.

More particularly, this invention relates to compounds of the general structural Formula I: ##STR2## wherein R1 and R2 are hereinafter defined.

This invention also relates to pharmaceutical compositions containing the compounds, and to a method of use of the present compounds and other agents for the treatment and prevention of certain afflictions, diseases and illnesses.

BACKGROUND OF THE INVENTION

Rapamycin characterized by Findlay and coworkers in 1978 is a 35-membered macrolide isolated from S. hygroscopicus (Can. J. Chem., 1978, 56, 2491, J. Antibiotics, 1975, 28, 721, U.S. Pat. No. 3,929,992, issued Dec. 30, 1975, U.S. Pat. No. 3,993,749, issued Nov. 23, 1975. Rapamycin has been found to have antifungal activity, particularly against Candida albicans, both in vitro and in vivo (J. Antibiotics, 1978, 31, 539).

Rapamycin alone (U.S. Pat. No. 4,885,171) or in combination with picibanil (U.S. Pat. No. 4,401,653) has been shown to have antitumor activity. R. Martel et al. (Can, J. Physiol. Pharmacol, 55, 48 (1977) disclosed that rapamycin is effective in an experimental allergic encephalomyelitis model, a model for multiple sclerosis; in an adjuvant arthritis model, a model for rheumatoid arthritis; and effectively inhibited the formation of IgE-like antibodies.

The immunosuppressive effects of rapamycin have been disclosed (FASEB 3, 3411 (1989); Med. Sci. Res., 1989, 17, 877). Cyclosporin A and FK-506, other macrocyclic molecules, also have been shown to be effective as immunosuppressive agents, therefore useful in preventing transplant rejection (FASEB 3, 3411 (1989); FASEB 3, 5256 (1989); and Lancet 1183 (1978)).

Fujisawa United States patents (U.S. Pat. No. 4,929,611, issued May 29, 1990 and U.S. Pat. No. 4,956,352, issued Sept. 11, 1990) disclose the use of FK-506-type compounds in treating resistance to transplantation. A Sandoz European patent application (EPO Publication No. 0,315,978) discloses the use of FR-900506 and related compounds in the topical treatment of inflammatory and hyperproliferative skin diseases and of cutaneous manifestations of immunologically-mediated illness. A Fisons World patent application (PCT Publication WO 90/14826) discloses the use of FR-900506 and related compounds in the treatment of reversible obstructive airways disease, particularly asthma. A Fujisawa European patent application (EPO Publication No. 0,423,714) discloses the use of FK-506 and derivatives as hair revitalizing agents. Various studies have suggested the efficacy of FK-506 in the treatment of a number of ailments, including rheumatoid arthitis (C. Arita, et al., Clincial exp. Immunol., 1990, 82, 456-461; N. Inamura, et al., Clin. Immunol. Immunopathol. 1988, 46, 82-90), recent-onset diabetes (N. Murase, et al., Diabetes., 1990, 39, 1584-86; N. Murase, et al., Lancet, 1990, 336, 373-74), posterior uveitis (H. Kawashima, Invest. Ophthalmul, Vis. Sci., 1988, 29, 1265-71), hepatic injury associated with ischemia (M. Sake, et al., Life Sci., 1990, 47, 687-91) allergic encephalomyelitis (K, Deguchi, et al., Brain Nerve, 1990, 42, 391-97), glomerulonephritis (J. McCauley, et al., Lancet, 1990, 335, 674), systemic lupus erythematosus (K. Takabayashi, et al., Clin. Immunol, Immunopathol., 1989, 51, 110-117), multidrug resistance (M. Naito, et al., Cancer Chemother, Pharmacol., 1992, 29, 195-200), inflammation of mucosa and blood vessels (PCT Publication WO 91/17754), cytomegalovirus infection (UK Publication GB 2,247,620A), and idiopathic thrombocytophenic purpura and Basedow's disease (PCT Publication WO 91/19495).

Mono- and diacylated derivatives of rapamycin (esterified at the 31 and 42 positions) have been shown to be useful as antifungal agents (U.S. Pat. No. 4,316,885) and used to make water soluble prodrugs of rapamycin (U.S. Pat. No. 4,650,803). Reduction products of rapamycin have been prepared (U.S. Pat. Nos. 5,102,876 and 5,138,051). Derivatives of rapamycin at the 31 and 42 positions which have been disclosed include: carboxylic acid esters (PCT Patent Publication WO92/05179); carbamates (U.S. Pat. No. 5.118.678); amide esters (U.S. Pat. No. 5,118,677); fluorinated esters (U.S. Pat. No. 5,100,883); acetals (U.S. Pat. No. 5,151,413); and silyl ethers (U.S. Pat. No. 5,120,842). In addition, bicyclic derivatives of rapamycin connected via the 31, 42 positions (U.S. Pat. No. 5,120,725) and rapamycin dimers connected via the 42 position (U.S. No. Pat. 5,120,727) have been disclosed. Various aryl(lower alkyl) and heteroaryl derivatives of FK-506 type compounds have also been disclosed (UK Patent Publication No. GB 2,245,891A). O-Aryl, O-alkyl, O-alkenyl and O-alkynyl derivatives of FK-506 type compounds will have been disclosed (EPO Patent Publication No. 0,515,071).

DETAILED DESCRIPTION OF THE INVENTION A. Scope of the Invention

The novel compound of this invention has structural Formula I: ##STR3## or a pharmaceutically acceptable salt thereof, wherein: R1 and R2 are independently selected from:

(1) hydrogen;

(2) phenyl;

(3) substituted phenyl in which the substituents are X, Y and Z;

(4) 1- or 2- naphthyl;

(5) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z;

(6) biphenyl;

(7) substituted biphenyl in which the substituents are X, Y and Z;

(8) C1-10 alkyl;

(9) substituted C1-10 alkyl in which one or more substituent(s) is(are) selected from:

(a) hydroxy,

(b) oxo,

(c) C1-6 -alkoxy,

(d) phenyl-C1-3 alkoxy,

(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,

(f) --OCO--C1-6 alkyl,

(g) --NR6 R7, wherein R6 and R7 are independently selected from

(i) hydrogen,

(ii) C1-10 alkyl unsubstituted or substituted with one or more of the substituent(s) selected from:

(a') phenyl, which is unsubstituted or substituted with X, Y and Z,

(b') --OH,

(c') C1-6 alkoxy,

(d') --CO2 H,

(e') --CO2 --C1-6 alkyl,

(f') --C3-7 cycloalkyl, and

(g') --OR11,

(iii)C3-10 alkenyl unsubstituted or substituted with one or more of the substituent(s) selected from:

(a') phenyl, which is unsubstituted or substituted with X, Y and Z,

(b') --OH,

(c') C1-6 alkoxy,

(d') CO2 H,

(e') --CO2 --C1-6 alkyl,

(f') --C3-7 cycloalkyl, and

(g') --OR11,

(iv) or where R6 and R7 and the N to which they are attached can form an unsubstituted or substituted 3-7-membered saturated heterocyclic ring which can include one or two additional heteroatoms independently selected from the group consisting of O S(O)p, NR14, wherein R14 is hydrogen or C1-6 alkyl unsubstituted or substituted by phenyl, and p is 0, 1 or 2, the ring being selected from the group consisting of: aziridine, morpholine, thiomorpholine, thiomorpholine-oxide, thiomorpholine-dioxide, piperidine, pyrrolidine, and piperazine,

(h) --NR6 CO--C1-6 alkyl-R7, wherein R6 is as defined above,

(i) --NR6 CO2 --C1-6 alkyl-R7,

(j) --NR6 CONR6 R7,

(k) --OCONR R6 R7,

(l) --COOR6,

(m) --CHO,

(n) phenyl,

(o) substituted phenyl in which the substituents are X, Y and Z,

(p) phenyloxy,

(q) substituted phenyloxy in which the substituents are X, Y and Z,

(r) 1- or 2- naphthyl,

(s) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z,

(t) biphenyl

(u) substituted biphenyl in which the substituents are X, Y and Z.

(v) --OR11, and

(w) --S(O)p --C1-6 alkyl;

(10) C3-10 alkenyl;

(11) substituted C3-10 alkenyl in which one or more substituent(s) is(are) selected from:

(a) hydroxy,

(b) oxo,

(c) C1-6 alkoxy,

(d) phenyl-C1-3 alkoxy,

(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,

(f) --OCO--C1-6 alkyl,

(g) --NR6 R7, wherein R6 and R7 are as defined above

(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,

(i) --COOR6, wherein R6 is as defined above,

(j) --CHO,

(k) phenyl,

(l) substituted phenyl in which the substituents are X, Y and Z,

(m) 1- or 2-naphthyl,

(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,

(o) biphenyl,

(p) substituted biphenyl in which the substituents are X, Y and Z,

(q) --OR11, and

(r) --S(O)p --C1-6 alkyl;

(12) C3-10 alkyl;

(13) substituted C3-10 alkynyl in which one or more substituent(s) is(are) selected from:

(a) hydroxy,

(b) oxo,

(c) C1-6 alkoxy,

(d) phenyl-C1-3 alkoxy,

(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,

(f) --OCO--C1-6 alkyl,

(g) --NR6 R7, wherein R6 and R7 are as defined above,

(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,

(i) --COOR6 is as defined above,

(j) --CHO,

(k) phenyl,

(1) substituted phenyl in which the substituents are X, Y and Z,

(m) 1- or 2-naphthyl,

(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,

(o) biphenyl,

(p) substituted biphenyl in which the substituents are X, Y and Z, and

(q) --OR11 ;

with the proviso that R1 and R2 are not simultaneously hydrogen;

R11 is selected from:

(a) --PO(OH)O- M+, wherein M+ is a positively charged inorganic or organic counterion,

(b) --SO3 - M+,

(c) --CO(CH2)q CO2 - M+, wherein q is 1-3, and

(d) --CO--C1-6 alkyl--NR6 R7, wherein R6 and R7 are as defined above and the alkyl is unsubstituted or substituted with one or more substituents selected from:

(i) hydroxy,

(ii) C1-6 alkoxy,

(iii) --NR16 R17, wherein R16 and R17 are independently selected from:

(a') hydrogen, and

(b') C1-6 alkyl,

(iv) --COOR6, wherein R6 is as defined above,

(v) phenyl,

(vi) substituted phenyl in which the substituents are X, Y and Z,

(vii) --SH, and

(viii) --S--C1-6 alkyl;

X, Y and Z independently are selected from:

(a) hydrogen,

(b) C1-7 alkyl,

(c) C2-6 alkenyl,

(d) halogen,

(e) --(CH2)m --NR6 R7, wherein R6 and R7 are as defined above, and m is 0 to 2,

(f) --CN,

(g) --CHO,

(h) --CF3,

(i) --SR8, wherein R8 is hydrogen, C1-6 alkyl, trifluoromethyl, or phenyl,

(j) --SOR8, wherein R8 is as defined above,

(k) --SO2 R8, wherein R8 is as defined above,

(l) --CONR6 R7, wherein R6 and R7 are as defined above,

(m) R9 O(CH2)m - wherein R9 is hydrogen, C1-3 alkyl, hydroxy-C2-3 alkyl, trifluoromethyl, phenyl or naphthyl and m is as defined above,

(n) --CH(OR12)(OR13), wherein R12 and R13 are C1-3 alkyl or taken together form an ethyl or propyl bridge,

(o) ##STR4## wherein R9 and m are as defined above, and (p) ##STR5## wherein R9 and m are as defined above, and (q) --OR11 ;

or any two of adjacent X, Y and Z can be joined to form a ring having 5, 6 or 7 ring atoms, said ring atoms comprising 1 or 2 oxygen atoms, the remaining ring atoms being carbon, selected from the group consisting of: dioxolanyl, dihydrofuranyl, dihydropyranyl, and dioxanyl.

The compounds of the present invention have asymmetric centers and this invention includes all of the optical isomers and mixtures thereof.

In addition compounds with carbon-carbon double bonds may occur in Z- and E- forms with all isomeric forms of the compounds being included in the present invention.

When any variable (e.g., alkyl, aryl, R6, R7, R8, R9, R10, R11, etc.) occurs more than one time in any variable or in Formula I, its definition on each occurrence is independent of its definition at every other occurrence.

As used herein, the term "alkyll" includes those alkyl groups of a designated number of carbon atoms of either a straight, branched, or cyclic configuration. Examples of "alkyl" include methyl, ethyl, propyl, isopropyl, butyl, sec-and tert-butyl, pentyl, hexyl, heptyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, and the like. "Alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge, such as methoxy, ethoxy, propoxy, butoxy and pentoxy.

"Alkanoyl" is intended to include those alkylcarbonyl groups of specified number of carbon atoms, which are exemplified by formyl, acetyl, propanoyl and butyryl; "alkanoyloxy" is intended to include those alkylcarbonyl groups of specified number of carbon atoms attached through an oxygen bridge, which are exemplified by formyloxy, acetoxy, propionoyloxy, and butyryloxy. "Alkenyl" is intended to include hydrocarbon chains of a specified number of carbon atoms of either a straight- or branched-configuration and at least one unsaturation, which may occur at any point along the chain, such as ethenyl, propenyl, butenyl, pentenyl, dimethyl pentenyl, and the like, and includes E and Z forms, where applicable; and "arylalkyl" represents aryl groups as herein defined which are attached through a straight or branched chain alkyl group of from one to six carbon atoms, such as, for example, benzyl, phenethyl, 3,3-diphenylpropyl, and the like. "Halogen", as used herein, means fluoro, chloro, bromo and iodo.

As will be understood by those skilled in the art, pharmaceutically acceptable salts include, but are not limited to salts with inorganic acids such as hydrochloride, sulfate, phosphate, diphosphate, hydrobromide, and nitrate or salts with an organic acid such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluenesulfonate or palmoate, salicylate and stearate. Similarly pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium and ammonium (especially ammonium salts with -amines of the formula HNR6 R7). One embodiment of the present invention encompasses the compounds of Formula I wherein:

R1 and R2 are independently selected from:

(1) hydrogen;

(2) methyl;

(3) phenyl;

(4) substituted phenyl in which the substituents are X, Y and Z;

(5) 1- or 2- naphthyl;

(6) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z;

(7) biphenyl; and

(8) substituted and biphenyl in which the substituents are X, Y and Z;

with the proviso that R1 and R2 are not simultaneously hydrogen;

X, Y and Z are independently, selected from:

(a) hydrogen,

(b) C1-7 alkyl,

(c) C2-6 alkenyl,

(d) halogen,

(e) --(CH2)m --NR6 R7, wherein R6 and R are, independently selected from

(i) hydrogen, or

(ii) C1-6 alkyl unsubstituted or substituted with phenyl, and m is 0 to 2,

(f) --CN,

(g) --CHO,

(h) --CF3,

(i) --SR8, wherein R8 is hydrogen, C1-6 alkyl, trifluoromethyl, or phenyl,

(j) --SOR8, wherein R8 is as defined above,

(k) --SO2 R8, wherein R8 is as defined above,

(l) --CONR6 R7, wherein R6 and R7 are as defined above,

(m) R9 O(CH2)m - wherein R9 is hydrogen, C1-3 alkyl, hydroxy-C2-3 alkyl, trifluoromethyl, phenyl or naphthyl and m is as defined above,

(n) --CH(OR12)(OR13), wherein R12 and R13 are C1-3 alkyl or taken together form an ethyl or propyl bridge,

(o) ##STR6## wherein R9 and m are as defined above, and (p) ##STR7## wherein R9 and m are as defined above, and (q) --OR11 ;

or any two of adjacent X, Y and Z can be joined to form a ring having 5,6 or 7 ring atoms, said ring atoms comprising 1 or 2 oxygen atoms, the remaining ring atoms being carbon, selected from the group consisting of: dioxolanyl, dihydrofuranyl, dihydropyranyl, and dioxanyl.

Another embodiment of the present invention encompasses the compounds of Formula I wherein:

R1 and R2 are independently selected from:

(1) hydrogen;

(2) C1-10 alkyl; (3) substituted C1-10 alkyl in which one or more substituent(s) is(are) selected from:

(a) hydroxy,

(b) oxo,

(c) C1-6 -alkoxy,

(d) phenyl-C1-3 alkoxy,

(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,

(f) --OCO--C1-6 alkyl,

(g) --NR6 R7, wherein R6 and R7 are independently selected from

(i) hydrogen,

(ii) C1-10 alkyl unsubstituted or substituted with one or more of the substituent(s) selected from:

(a') phenyl, which is unsubstituted or substituted with X, Y and Z,

(b') --OH,

(c') C1-6 alkoxy,

(d') --CO2 H,

(e') --CO2 --C1-6 alkyl,

(f') --C314 7 cycloalkyl, and

(g') --OR11,

(iii)C3-10 alkenyl unsubstituted or substituted with one or more of the substituent(s) selected from:

(a') phenyl, which is unsubstituted or substituted with X, Y and Z,

(b') --OH,

(c') C1-6 alkoxy,

(d') --CO2 H,

(e') --CO2 --C1-6 alkyl,

(f') --C3-7 cycloalkyl, and

(g') --OR11,

(iv)or where R6 and R7 and the N to which they are attached can form an unsubstituted or substituted 3-7-membered saturated heterocyclic ring which can include one or two additional heteroatoms independently selected from the group consisting of O S(O)p, NR14, wherein R14 is hydrogen or C1-6 alkyl unsubstituted or substituted by phenyl, and p is 0, 1 or 2, the ring being selected from the group consisting of: aziridine, morpholine, thiomorpholine, thiomorpholine-oxide, thiomorpholine-dioxide, piperidine, pyrrolidine, and piperazine,

(h) --NR6 CO--C1-6 alkyl-R7, wherein R6 is as defined above,

(i) --NR6 CO2 --C1-6 alkyl-R7,

(j) --NR6 CONR6 R7,

(k) --OCONR6 R7,

(l) --COOR6,

(m) --CHO,

(n) phenyl,

(o) substituted phenyl in which the substituents are X, Y and Z,

(p) phenyloxy,

(q) substituted phenyloxy in which the substituents are X, Y and Z,

(r) 1- or 2- naphthyl,

(s) substituted 1- or 2- naphthyl in which the substituents are X, Y and Z,

(t) biphenyl

(u) substituted biphenyl in which the substituents are X, Y and Z;

(v) --OR11, and

(w) --S(O)p --C1-6 alkyl;

(4) C3-10 alkenyl;

(5) substituted C3-10 alkenyl in which one or more substituent(s) is(are) selected from:

(a) hydroxy,

(b) oxo,

(c) C1-6 alkoxy,

(d) phenyl-C1-3 alkoxy,

(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,

(f) --OCO--C1-6 alkyl,

(g) --NR6 R7, wherein R6 and R7 are as defined above

(h) --NR6 CO--C1-6 alkyl, wherein R6 is as defined above,

(i) --COOR6, wherein R6 is as defined above,

(j) --CHO,

(k) phenyl,

(l) substituted phenyl in which the substituents are X, Y and Z,

(m) 1- or 2-naphthyl,

(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,

(o) biphenyl,

(p) substituted biphenyl in which the substituents are X, Y and Z,

(q) --OR11, and

(r) --S(O)p --C1-6 alkyl;

(6) C3-10 alkynyl;

(7) substituted C3-10 alkynyl in which one or more substituent(s) is(are) selected from:

(a) hydroxy,

(b) oxo,

(c) C1-6 alkoxy,

(d) phenyl-C1-3 alkoxy,

(e) substituted phenyl-C1-3 alkoxy, in which the substituents on phenyl are X, Y and Z,

(f) --OCO-C1-6 alkyl,

(g) --NR6 R7, wherein R6 and R7 are as defined above,

(h) --NR6 CO-C1-6 alkyl, wherein R6 is as defined above,

(i) --COOR6, wherein R6 is as defined above,

(j) --CHO,

(k) phenyl,

(l) substituted phenyl in which the substituents are X, Y and Z,

(m) 1- or 2-naphthyl,

(n) substituted 1- or 2-naphthyl in which the substituents are X, Y and Z,

(o) biphenyl,

(p) substituted biphenyl in which the substituents are X, Y and Z, and

(q) --OR11 ;

with the proviso that R1 and R2 are not simultaneously hydrogen;

R11 is selected from:

(a) --PO(OH)O- M+, wherein M+ is a positively charged inorganic or organic counterion,

(b) --SO3 - M+,

(c) --CO(CH2)q CO2 - M+, wherein q is 1-3, and

(d) --CO-C1-6 alkyl-NR6 R7, wherein R6 and R7 are as defined above and the alkyl is unsubstituted or substituted with one or more substituents selected from:

(i) hydroxy,

(ii) C1-6 alkoxy,

(iii) --NR16 R17, wherein R16 and R17 are independently selected from:

(a') hydrogen, and

(b') C1-6 alkyl,

(iv) --COOR6, wherein R6 is as defined above,

(v) phenyl,

(vi) substituted phenyl in which the substituents are X, Y and Z,

(vii) --SH, and

(viii) --S-C1-6 alkyl;

X, Y and Z independently are selected from:

(a) hydrogen,

(b) C1-7 alkyl,

(c) C2-6 alkenyl,

(d) halogen,

(e) --(CH2)m --NR6 R7, wherein R6 and R7 are as defined above, and m is 0 to 2,

(f) --CN,

(g) --CHO,

(h) --CF3,

(i) --SR8, wherein R8 is hydrogen, C1-6 alkyl, trifluoromethyl, or phenyl,

(j) --SOR8, wherein R8 is as defined above,

(k) --SO2 R8, wherein R8 is as defined above,

(l) --CONR6 R7, wherein R6 and R7 are as defined above,

(m) R9 O(CH2)m - wherein R9 is hydrogen, C1-3 alkyl, hydroxy-C2-3 alkyl, trifluoromethyl, phenyl or naphthyl and m is as defined above,

(n) --CH(OR12)(OR13), wherein R12 and R13 are C1-3 alkyl or taken together form an ethyl or propyl bridge,

(o) ##STR8## wherein R9 and m are as defined above, and (p) ##STR9## wherein R9 and m are as defined above, and (q) --OR11 ;

or any two of adjacent X, Y and Z can be joined to form a ring having 5, 6 or 7 ring atoms, said ring atoms comprising 1 or 2 oxygen atoms, the remaining ring atoms being carbon, selected from the group consisting of: dioxolanyl, dihydrofuranyl, dihydropyranyl, and dioxanyl.

B. Preparation of Compounds Within the Scope of the Present Invention

The starting material for the preparation of the compounds of this invention is rapamycin: ##STR10##

The production and characterization of rapamycin is well know in the literature (see U.S. Pat. No. 3,929,992 issued Dec. 30, 1975; U.S. Pat. No. 3,993,749 issued Nov. 23, 1976). Analogs of rapamycin, such as 30-desmethylrapamycin (see PCT Patent Publication WO 92/14737) may also be employed as starting material to give analagous derivatives. The novel processes for preparing the novel compounds of the present invention are illustrated as follows, wherein R1 and R2 are as defined above unless otherwise indicated. It will be readily apparent to one of ordinary skill in the art reviewing the synthetic route depicted below that other compounds within Formula I can be synthesized by substitution of appropriate reactants and agents in the synthesis shown below. ##STR11##

Reaction Scheme A

Protection of the C-31 and/or the C-42 hydroxy group may be accomplished by methods known in the prior art for rapamycin (see e.g. U.S. Pat. No. 5,120,842) such as by treatment with: 2,6-lutidine and triisopropylsilyl trifluoromethanesulfonate in a solution of methylene chloride; 2,6-lutidine and t-butyldimethylsilyl trifluoromethanesulfonate in a solution of methylene chloride; pyridine and acetic anhydride in a solution of methylene chloride; pyridine and benzoyl chloride in a solution of methylene chloride; pyridine and p-nitrobenzoyl chloride in a solution of methylene chloride; imidazole and t-butyldiphenylsilyl chloride in a solution of methylene chloride; and the like. For example, as shown in Reaction Scheme A, rapamycin may be protected at C-42 as the t-butyldimethylsilyl ether by treatment with one equivalent of t-butyldimethylsilyl trifluoromethanesulfonate in methylene chloride to give the C-42-di-O-TBDMS macrolide. Treatment with two equivalents of TBDMS triflate followed by treatment with acetic acid or toluene-sulfonic acid in methanol results in selective removal of the C-42 ether to give the C-31-O-TBDMS macrolide.

Reaction Scheme B

As shown in Reaction Scheme B, a solution of rapamycin in an inert organic solvent such as methylene chloride, benzene, toluene, chloroform, or the like or mixtures thereof may be treated with a triarylbismuth diacetate reagent (wherein R1 is aryl) (prepared immediately prior to use by the addition of acetic acid to a suspension of a triarylbismuth carbonate in an inert organic solvent such as methylene chloride, chloroform or the like or mixtures thereof) in the presence of a catalytic amount of copper(II) acetate at a temperature of 20°-50° C., preferably room temperature, for a period of one hour to seven days, preferably one day, to give the 42-O-aryl rapamycin and/or the 31, 42-di-O-aryl rapamycin. Alternatively, the triarylbismuth(V) reagent may be prepared by treatment of a triarylbismuthine with a suitable oxidant such as peracetic acid, iodobenzene diacetate, bis(trifluoroacetoxy)iodobenzene and the like in an inert solvent such as methylene chloride, chloroform, benzene, toluene and the like. The triarylbismuth(V) reagent may be used without purification or may be purified by silica gel chromatography. Triarylbismuthines may be prepared by the reaction of an appropriate aryl Grignard reagent with bismuth trichloride in an inert organic solvent such as tetrahydrofuran, diethyl ether, or 1,4-dioxane, or mixtures thereof, at or near room temperature for a period of 1 to 48 hours. General procedures for the preparation and use of triaryl bismuth reagents may be found in Barton, D.H.E., et al., J. Chem. Soc. Chem. Commun., 1986, 65 and references cited therein.

Similarly, the 31-O-aryl compounds may be prepared by protecting the 42-alcohol of rapamycin with a protecting group, such as with a tert-butyl dimethylsilyl group, followed by arylation of the 31-position with a triaryl bismuth reagent. Removal of the protecting group provides the 31-O-aryl compounds. In the case of the tert-butyl dimethylsilyl protecting group, deprotection can be accomplished under mildly acidic conditions.

If desired, the 31-hydroxy-42-O-aryl rapamycin, or 31-O-aryl-42-hydroxy rapamycin may be treated with a different triarylbismuth diacetate reagent (prepared immediately prior to use by procedures analogous to those disclosed above), to give mixed 31-O-aryl-42-O-aryl macrolides.

Reaction Scheme C

As shown in Reaction Scheme C, a solution of the rapamycin in an inert organic solvent such as methylene chloride, chloroform, pentane, hexane, cyclohexane, heptane or the like or mixtures thereof is treated with an alkyl, alkenyl or alkynyl trichloroacetimidate reagent (prepared by the reaction of an appropriate sodium alkoxide with trichloroacetonitrile, such as described by Wessel, H.P., Iversen, T., Bundle, D.R., J. Chem. Soc., Perkin Trans. I, 1985, 2247) in the presence of a mild acid catalyst such as trifluoromethanesulfonic acid, p-toluenesulfonic acid, methane-sulfonic acid, benzenesulfonic acid, p-nitrobenzene-sulfonic acid, p-bromobenzenesulfonic acid, p-chlorobenzenesulfonic acid, or p-methoxybenzenesulfonic acid, or mixtures thereof at a temperature of 20°-50° C.,preferably room temperature, for a period of one hour to seven days, preferably one day, to give the 31- and/or 42-O-alkyl, -alkenyl or -alkynyl rapamycin derivative.

In addition, the procedure of Reaction Schemes A, B, and C may be combined to produce rapamycin derivatives bearing O-aryl, O-alkyl, O-alkenyl and/or O-alkynyl substituents at the 31 and 42 positions.

The procedures described in Reaction Scheme B may be conducted on the monosubstituted products of Reaction Scheme C (and visa versa) to obtain the mixed disubstituted compounds. In fact, within Reaction Schemes B and C, treatment of the monosubstituted product with a different reagent will afford the mixed disubstituted compounds.

Reaction Scheme E

As shown in Reaction Scheme E, the 42-hydroxy-3l-R2 O -macrolide or alternatively the 31-hydroxy-42-R1 O-macrolide (not depicted) (wherein R3 is protected hydroxy or hydrogen) may be reacted with an alkenyl trichloroacetimidate (wherein R1 is C3-10 alkenyl) under conditions described in Reaction Scheme C to give the C-42-O-alkenyl macrolide. Treatment with a stoichiometric amount of osmium tetraoxide in an inert organic solvent, such as diethyl ether or tetrahydrofuran, in the presence of an amine base, such as pyridine or 4-methylmorpholine N-oxide, at or near room temperature gives the corresponding glycol. Treatment of the glycol with sodium metaperiodate in a solution of tetrahydrofuran/water gives the aldehyde (wherein A is C1-8 alkyl). Alternatively, the alkenyl macrolide may be treated with sodium metaperiodate in the presence of a catalytic amount of osmium tetroxide in an organic solvent to give the aldehyde directly. The aldehyde may be further oxidized to the carboxylic acid by treatment with sodium chlorite in buffered, aqueous tert-butanol.

Reaction Scheme F

A variety of compounds may be prepared from the corresponding aldehyde as illustrated in Reaction Scheme F. The aldehyde may be reacted with a primary or secondary amine (wherein R6 and R7 are as defined above) in an organic solvent such as tetrahydrofuran to give an imine which is reduced in situ with a hydride reducing agent, such as potassium triphenyl borohydride or sodium cyanoborohydride, to give the macrolide bearing an amino alkoxy functionality at C-42. The aldehyde may also be reduced to the corresponding alcohol by treatment with a hydride reducing agent, such as potassium triphenyl borohydride or sodium cyanoborohydride in an organic solvent such as tetrahydrofuran. The alcohol may be further modified by utilizing the methods of Reaction Scheme B (wherein R1 is unsubstituted or substituted phenyl, naphthyl or biphenyl) or Reaction Scheme F (wherein R1 is unsubstituted or substituted alkyl, alkenyl or alkynyl) to give the corresponding ether. The procedures described in Reaction Scheme F are readily applicable to the preparation of compounds bearing analogous functionality at C-31.

Reaction Scheme G

Amide derivatives may be prepared from the carboxylic acid as illustrated in Reaction Scheme G. The carboxylic acid may be coupled with a primary or secondary amine, HNR6 R7 (wherein R6 and/or R7 are as defined) by any of the peptide coupling methods commonly used in the art, such as with BOP reagent, DCC/HOBT, or EDC/HOBT.

Reaction Scheme H

Hydroxy and keto derivatives may be prepared from the corresponding aldehyde as illustrated in Reaction Scheme H. The aldehyde is reacted with a nucleophilic organometallic reagent such as a Grignard reagent, an organolithium reagent, or an organocerium reagent in an organic solvent such as methylene chloride or tetrahydrofuran to give the substituted hydroxy compound. Removal of hydroxy protecting groups at other positions of the macrolide (if necessary) gives the macrolide bearing a substituted hydroxy alkoxy functionality at C-42. The alcohol may also be oxidized to the corresponding ketone by well known methods, such as with 4-methylmorpholine-N-oxide in the presence of tetrapropylammonium perruthenate catalyst under dehydrative conditions. Removal of hydroxy protecting groups (if necessary) gives the macrolide bearing a substituted keto alkoxy functionality at C-42. The procedures described in Reaction Scheme H are readily applicable to the preparation of compounds bearing analogous functionality at C-31.

Reaction Scheme I

Hydroxy macrolides (wherein R1 and/or R2 bear a hydroxy group) may be further derivatized by alkylation, acylation or phosphorylation to give ether, ester or phosphate derivatives (wherein R1 and/or R2 bear an --OR11 as defined above) by procedures well known to the practitioner of the art.

The object compounds of Formula I obtained according to the reactions as explained above can be isolated and purified in a conventional manner, for example, extraction, precipitation, fractional crystallization, recrystallization, chromatography, and the like.

It is to be noted that in the aforementioned reactions and the post-treatment of the reaction mixture therein, the stereoisomer(s) of starting and object compounds due to asymmetric carbon atom(s) or double bond(s) of the object compounds of Formula I may occasionally be transformed into the other stereoisomer(s), and such cases are also included within the scope of the present invention.

In the present invention, compounds with asymmetric centers may occur as racemates, as diastereomeric mixtures and as individual diastereomers, with all isomeric forms of the compounds being included in the present invention.

The compounds of the present invention are capable of forming salts with various inorganic and organic acids and bases and such salts are also within the scope of this invention. Examples of such acid addition salts (which are negative counterions defined herein as M-) include acetate, adipate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, ethanesulfonate, fumarate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, methanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, oxalate, pamoate, persulfate, picrate, pivalate, propionate, succinate, tartrate, tosylate, and undecanoate. Base salts (which are positive counterions defined herein as M+) include ammonium salts, alkali metal salts such as sodium, lithium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine and so forth. Also, the basic nitrogen-containing groups may be quaternized with such agents as: lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; aralkyl halides like benzyl bromide and others. The non-toxic physiologically acceptable salts are preferred, although other salts are also useful, such as in isolating or purifying the product.

The salts may be formed by conventional means, such as by reacting the free base form of the product with one or more equivalents of the appropriate acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is removed in vacuo or by freeze drying or by exchanging the anions of an existing salt for another anion on a suitable ion exchange resin.

C. Utility of the compounds within the scope of the invention

The compounds of Formula I may be employed as immunosuppressants or antimicrobial compounds by methods and in dosages known in the prior art for rapamycin. These compounds possess pharmacological activity such as immunosuppressive activity, antimicrobial activity, and the like, and therefore are useful for the treatment and prevention of the resistance to transplantation or transplantation rejection of organs or tissues such as heart, kidney, liver, duodenum, small-bowel, medulla ossium, skin, pancreatic islet-cell, etc., graft-versus-host diseases by medulla ossium transplantation, autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosis, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, allergic encephalomyelitis, glomerulonephritis, etc., and infectious diseases caused by pathogenic microorganisms, particularly fungal infections.

The compounds of Formula I are also useful for treating or preventing inflammatory and hyperproliferative skin diseases and cutaneous manifestations of immunologically-mediated illnesses such as: psoriasis, atopical dermatitiis, contact dermatitis and further eczematous dermatitises, seborrhoeic dermatitis, Lichen planus, Pemphigus, bullous Pemphigoid, Epidermolysis bullosa, urticaria, angioedemas, vasculitides, erythemas, acne, cutaneous eosinophilias or Alopecia areata. More particularly, the compounds of Formula I are useful in hair revitalizing, such as in the treatment or prevention of male pattern alopecia or alopecia senilis, by providing epilation prevention, hair germination, and/or a promotion of hair generation and hair growth.

The compounds of Formula I are further useful for treating or preventing reversible obstructive airways disease, including conditions such as asthma, including bronchial asthma, allergic asthma, intrinsic asthma, extrinsic asthma and dust asthma, particularly chronic or inveterate asthma (for example late asthma and airway hyperresponsiveness), bronchitis and the like. The compounds of Formula I may also be useful for treating hepatic injury associated with ischemia.

The compounds of Formula I are also useful for treating multidrug resistance of tumor cells, (i.e. enhancing the activity and/or sensitivity of chemotherapeutic agents), preventing or treating inflammation of mucosa or blood vessels, LTB4 -mediated diseases, gastric ulcers, vascular damage caused by ischemic diseases and thrombosis, ischemic bowel disease, inflammatory bowel disease (e.g., Crohn's disease and ulcerative colitis) necrotizing enterocolitis, or intestinal lesions associated with thermal burns, cytomegalovirus infection, particularly HCMV infection, idiopathic thrombocytopenic purpura and Basedow's disease.

Further, the compounds of Formula I are also useful for treating or preventing renal diseases selected from interstitial nephritis, Goodpasture's syndrome, hemolytic-uremic syndrome and diabetic nephropathy; nervous diseases selected from multiple myositis, Guillain-Barre syndrome, Meniere's disease and radiculopathy; endocrine diseases selected from hyperthyroidism; hematic diseases selected from pure red cell aplasia, aplastic anemia, hypoplastic anemia, autoimmune hemolytic anemia, agranulocytosis and anerythroplasia; bone diseases such as osteoporosis; respiratory diseases selected from sarcoidosis, fibroid lung and idiopathic interstitial pneumonia; eye diseases selected from herpetic keratitis, conical cornea, dystrophia epithelialis corneas, corneal leukmas, ocular pemphigus, Mooren's ulcer, scleritis and Gravels ophthalmopathy skin diseases selected from dermatomyositis, leukoderma vulgaris, ichthyosis vulgaris, photoallergic sensitivity and cutaneous T cell lymphoma; circulatory diseases selected from arteriosclerosis, aortitis syndrome, polyarteritis nodosa and myocardosis; collagen diseases selected from scleroderma, Wegener's granuloma and Sjogren's syndrome; adiposis; eosinophilic fasciitis; periodontal disease; and muscular dystrophy.

The compounds of Formula I are useful for the treatment of fungal infections in animals, especially mammals, including humans, in particular humans and domesticated animals (including farm animals). The compounds may be used for the treatment of topical fungal infections in man caused by, among other organisms, species of Candida, Trichophyton, Microsporum or Epidermophyton or in mucosal infections caused by Candida Albicans (e.g. thrush and vaginal candidiasis). They may also be used in the treatment of systemic fungal infections caused by, for example Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, Coccidiodes, Paracocciciodes, Histoplasma or Blastomyces spp. They may also be of use in treating eumycotic mycetoma, chromoblastomycosis and phycomycosis.

The pharmaceutical compositions of this invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid or liquid form, which contains one or more of the compounds of the present invention, as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for external, enteral or parenteral applications. The active ingredient may be compounded, for example, with the usual nontoxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use. The carriers which can be used are water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form, and in addition auxiliary, stabilizing, thickening and coloring agents and perfumes may be used. The active object compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the process or condition of diseases.

For the treatment of these conditions and diseases caused by immmunoirregularity a compound of formula I may be administered orally, topically, parenterally, by inhalation spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques.

Dosage levels of the compounds of the present invention are of the order from about 0.005 mg to about 50 mg per kilogram of body weight per day, preferably from about 0.1 mg to about 10 mg per kilogram of body weight per day, are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 g per patient per day, assuming a 70 kg patient). In addition, the compounds of the present invention may be administered on an intermittent basis; i.e. at daily, semiweekly, weekly, semi-monthly or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for the oral administration of humans may contain from 0.5 mg to 5 gm of active agent compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient, and preferably about 0.5 mg to about 100 mg of active ingredient. For external administration the compound of Formula I may be formulated within the range of, for example, 0.0001% to 60% by weight, preferably from 0.001 to 10% by weight, and most preferably from about 0.005 to 0.8% by weight.

It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

The following examples are given for the purpose of illustrating the present invention and shall not be construed as being limitations on the scope or spirit of the instant invention.

EXAMPLE 1 General Procedure for the Preparation of Triarylbismuthines

To a stirred suspension of magnesium (486 mg, 20 mmol) in dry tetrahydrofuran (10 mi) is added slowly a solution of aryl halide (20 mmol) in dry tetrahydrofuran (10 mi). If necessary the mixture is warmed gently to effect Grignard formation. To the stirred solution of the Grignard reagent is added a solution of bismuth trichloride (1.9 g, 6 mmol) dissolved in dry tetrahydrofuran (20 mi). The resulting mixture is stirred for 24 hours. The reaction mixture is poured into a separatory funnel containing brine and extracted 4× with CH2 Cl2. The organic extracts were combined-and dried over anhydrous Na2 SO4. The mixture was filtered and concentrated in vacuo. The triarylbismuthine is isolated and purified by flash column chromatography on silica gel.

EXAMPLE 2 43-O-phenyl-rapamycin

To a stirred solution of triphenylbismuthine (100 mg, 0.11 mmol) in CH2 Cl2 (4 mL) was added peracetic acid (0.041 mL, 0.19 mmol, 32 wt% in dilute acetic acid). To this stirred solution was added THF (1 mL), rapamycin (100 mg, 0.126 mmol) and Cu(OAc)2 (6 mg, 0.03 mmol) and the reaction mixture was stirred at room temperature for 1 hr. The flask was fitted with a reflux condenser and the mixture was heated to 40° C. for 2 hours. The mixture was allowed to cool and was quenched with saturated aqueous NaHCO3 and extracted 4× with CH2 Cl2. The organic extracts were combined and dried over anhydrous Na2 SO4. The mixture was filtered and concentrated in vacuo. The products were isolated by preparative TLC on silica gel (eluted with 2:1 hexanes/acetone) to afford 54.7 mg 42-O-phenyl-rapamycin. (1 H NMR and mass spectral analysis were consistent with the desired structure).

EXAMPLE 3 T-Cell Proliferation Assay

1. Sample Preparation

The compounds to be assayed were dissolved in absolute ethanol at 1 mg/ml.

2. Assay

Spleens from C57Bl/6 mice were taken under sterile conditions and gently dissociated in ice-cold RPMI 1640 culture medium (GIBC), Grand Island, N.Y.) supplemented with 10% heat-inactivated fetal calf serum (GIBO)). Cells were pelleted by centrifugation at 1500 rpm for 8 minutes. Contaminating red cells were removed by treating the pellet with ammonium chloride lysing buffer (GIBO)) for 2 minutes at 4° C. Cold medium was added and cells were again centrifuged at 1500 rpm for 8 minutes. T lymphocytes were then isolated by separation of the cell suspension on nylon wool columns as follows: Nylon wool columns were prepared by packing approximately 4 grams of washed and dried nylon wool into 20 ml plastic syringes. The columns were sterilized by autoclaving at 25° F. for 30 minutes, Nylon wool columns were wetted with warm (37° C.) culture medium and rinsed with the same medium. Washed spleen cells resuspended in warm medium were slowly applied to the nylon wool. The columns were then incubated in an upright position at 37° C. for 1 hour. Non-adherent T lymphocytes were eluted from the columns with warm culture medium and the cell suspensions were spun as above.

Purified T lymphocytes were resuspended at 2.5×105 cells/ml in complete culture medium composed of RPMI 1640 medium with 10% heat-inactivated fetal calf serum, 100 mM glutamine, 1 MM sodium pyruvate, 2×10-5 M 2-mercaptoethanol and 50 μg/ml gentamycin. Ionomycin was added at 250 ng/ml and PMA at 10 ng/ml. The cell suspension was immediately distributed into 96 well flat-bottom microculture plates (Costar) at 200 μl/well. The various dilutions of the compound to be tested were then added in triplicate wells at 20 μl/well. The compound 17-allyl-1,14-dihydroxy-12-[2'-(4"-hydroxy-3"-methoxycyclohexyl)-1'-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-aza-tricyclo[22.3.1.04,9 octacos-18-ene-2,3,10,16-tetraone was used as a standard. The culture plates were then incubated at 37° C. in a humidified atmosphere of 5% CO2 -95% air for 44 hours. The proliferation of T lymphocytes was assessed by measurement of tritiated thymidine incorporation. After 44 hours of culturing, the cells were pulse-labelled with 2 μci/well of tritiated thymidine (NEN, Cambridge, Mass.). After another 4 hours of incubation, cultures were harvested on glass fiber filters using a multiple sample harvester. Radioactivity of filter discs corresponding to individual wells was measured by standard liquid scintillation counting methods (Betacounter). Mean counts per minute of replicate wells were calculated and the results expressed as concentration of compound required to inhibit tritiated thymidine uptake of T-cells by 50%.

A selection of compounds were tested according to the previous procedure. The title compound of the following Example had activity in inhibiting the proliferation of T-cells in the aforementioned assay: 2.

While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the casual variations, adaptations, modifications, deletions, or additions of procedures and protocols described herein, as come within the scope of the following claims and its equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3929992 *Apr 12, 1974Dec 30, 1975Ayerst Mckenna & HarrisonRapamycin and process of preparation
US4650803 *Dec 6, 1985Mar 17, 1987University Of KansasWater-soluble antitumor agents
US5100883 *Apr 8, 1991Mar 31, 1992American Home Products CorporationFluorinated esters of rapamycin
US5102876 *May 7, 1991Apr 7, 1992American Home Products CorporationReduction products of rapamycin
US5118677 *May 20, 1991Jun 2, 1992American Home Products CorporationFor treating transplant rejection, host vs. draft disease, autoimmune diseases and inflammations; antibody inhibitors
US5118678 *Apr 17, 1991Jun 2, 1992American Home Products CorporationAntibody inhibitors, antiinflammatory agents, fungicides, antitumor agents
US5120725 *May 29, 1991Jun 9, 1992American Home Products CorporationAntibody inhibitors
US5120727 *May 29, 1991Jun 9, 1992American Home Products CorporationRapamycin dimers
US5120842 *Apr 1, 1991Jun 9, 1992American Home Products CorporationImmunosuppresive activity, antitumor agents, fungicides
US5138051 *Aug 7, 1991Aug 11, 1992American Home Products CorporationRapamycin analogs as immunosuppressants and antifungals
US5151413 *Nov 6, 1991Sep 29, 1992American Home Products CorporationRapamycin acetals as immunosuppressant and antifungal agents
US5162333 *Sep 11, 1991Nov 10, 1992American Home Products CorporationTreating transplantation rejection, autoimmune diseases, antiinflammatory
US5162334 *May 13, 1991Nov 10, 1992Merck & Co., Inc.Amino O-alkyl, O-alkenyl and O-alkynlmacrolides having immunosuppressive activity
US5169851 *Apr 29, 1992Dec 8, 1992American Home Products CorporationAdministering for fungal infections in mammals
EP0227355A2 *Dec 4, 1986Jul 1, 1987The University Of KansasProdrugs of rapamycin
EP0516347A1 *May 21, 1992Dec 2, 1992American Home Products CorporationRapamycin derivatives
GB2245891A * Title not available
WO1989005304A1 *Dec 2, 1988Jun 15, 1989Fisons PlcMacrocyclic compounds
WO1991002736A1 *Aug 10, 1990Mar 7, 1991Fisons PlcMacrocyclic compounds
WO1991013889A1 *Mar 13, 1991Sep 19, 1991Fisons PlcImmunosuppressive macrocyclic compounds
WO1992005179A1 *Sep 19, 1991Apr 2, 1992American Home ProdCarboxylic acid esters of rapamycin
WO1992014737A1 *Feb 14, 1992Sep 3, 1992Smithkline Beecham Plc3-desmethylrapamycin or derivatives thereof, processes for their preparation and their use as antifungal agents and immunosuppressants
WO1992020688A1 *May 11, 1992Nov 26, 1992Merck & Co IncAmino o-aryl, o-alkyl, o-alkenyl and o-alkynyl macrolides
WO1992021341A1 *Apr 3, 1992Dec 1, 1992PfizerUse of rapamycin prodrugs as immunosuppressant agents
Non-Patent Citations
Reference
1 *Findlay, et al., Can. J. Chem., 58, 579 590 (1980).
2Findlay, et al., Can. J. Chem., 58, 579-590 (1980).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5496831 *May 13, 1994Mar 5, 1996The General Hospital CorporationRapamycins
US5525610 *Apr 26, 1995Jun 11, 1996American Home Products CorporationImmunosuppressants, antiarthritic agents
US5527907 *Oct 26, 1994Jun 18, 1996Abbott LaboratoriesMacrolide immunomodulators
US5583139 *Apr 19, 1995Dec 10, 1996Abbott LaboratoriesMarcolide immunomodulators
US5665772 *Sep 24, 1993Sep 9, 1997Sandoz Ltd.O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
US5672605 *Apr 19, 1995Sep 30, 1997Abbott LaboratoriesMacrolide immunomodulators
US5780462 *Dec 11, 1996Jul 14, 1998American Home Products CorporationMethoxypoly(ethylene glycol) esters of rapamycin
US5912253 *Dec 16, 1994Jun 15, 1999Novartis AgRapamycin derivatives
US5922730 *Jun 24, 1998Jul 13, 1999American Home Products CorporationAlkylated rapamycin derivatives
US5945441 *Jun 4, 1997Aug 31, 1999Gpi Nil Holdings, Inc.Administering to promote hair germination
US5955457 *Mar 23, 1998Sep 21, 1999American Home Products CorporationWater soluble rapamycin esters
US5985890 *Jun 5, 1996Nov 16, 1999Novartis AgMacrolide antibiotic having antitumor and antifungal activity
US6004993 *Jun 3, 1998Dec 21, 1999Gpi Nil Holdings, Inc.N-linked sulfonamide of heterocyclic thioester hair growth compounds and uses
US6015809 *Aug 16, 1999Jan 18, 2000American Home Products CorporationPhotocyclized rapamycin
US6117863 *Oct 22, 1999Sep 12, 2000American Home Products CorporationTreating transplantation rejection or graft vs. host disease in mammal which comprises administering antirejection effective amount of rapamycin compound
US6172087Jun 3, 1998Jan 9, 2001Gpi Nil Holding, Inc.N-oxide of heterocyclic ester, amide, thioester, or ketone hair growth compositions and uses
US6177455Jun 3, 1998Jan 23, 2001Gpi Nil Holdings, Inc.Administering a nitrogen-containing heterocyclic compound
US6187757Jan 22, 1998Feb 13, 2001Ariad Pharmaceuticals, Inc.Regulation of biological events using novel compounds
US6187784Jun 3, 1998Feb 13, 2001Gpi Nil Holdings, Inc.Pipecolic acid derivative hair growth compositions and uses
US6187796Jun 3, 1998Feb 13, 2001Gpi Nil Holdings, Inc.Alopecia treatment; immunophilin affinity
US6187806Jul 23, 1999Feb 13, 2001Gpi Nil HoldingsN-linked sulfone of heterocyclic thioester hair growth compositions and uses
US6191125Jun 3, 1998Feb 20, 2001Gpi Nil Holdings, Inc.Small molecule pipecolic acid derivative hair growth compositions and uses
US6194440Jun 3, 1998Feb 27, 2001Gpi Nil Holdings, Inc.Small molecule carbamate or urea hair growth compositions and uses
US6200985Jul 19, 1999Mar 13, 2001Novartis AgRapamycin derivatives
US6218423Aug 14, 1998Apr 17, 2001Gpi Nil Holdings, Inc.Administering pyrrolidine derivative for therapy of nerve-related vision disorder, improving vision, treating memory impairment, or enhancing memory performance in animal
US6239164Aug 9, 1999May 29, 2001Gpi Nil Holdings, Inc.Immunophilin affinity; nonimmunosuppressant
US6271244Jun 3, 1998Aug 7, 2001Gpi Nil Holdings, Inc.N-linked urea or carbamate of heterocyclic thioester hair growth compositions and uses
US6274602Jun 3, 1998Aug 14, 2001Gpi Nil Holdings, Inc.Administering compostitions such as 3,3-dimethyl-1-((2s)-2-(5-(3-pyridyl) pentanoyl)-1-pyrrolidine)-1, 2-pentanedione to treat alopecia or promoting hair growth in animals
US6274617Jun 3, 1998Aug 14, 2001Gpi Nil Holdings, Inc.Heterocyclic ester and amide hair growth compositions and uses
US6277983Sep 27, 2000Aug 21, 2001American Home Products CorporationTreating rapamycin with chlorotrimethylsilane in an inert solvent in the presence of a suitable base to provide rapamycin 31,42-bis-trimethylsilyl ether; treating with dilute acid to provide rapamycin 31-trimethylsilyl ether
US6331547Aug 16, 2000Dec 18, 2001American Home Products CorporationPolyoxyethylene glycol conjugate with 40-o-(2-hydroxy)ethyl-rapamycin; immunosuppressive, antiinflammatory, antifungal, antiproliferative and antitumor agent
US6333340Aug 14, 1998Dec 25, 2001Gpi Nil Holdings, Inc.Sulfonamides with oxo, ester or amide groups for vision defects and cognition activators
US6335348Aug 14, 1998Jan 1, 2002Gpi Nil Holdings, Inc.Administering pipecolic acid derivative as cognition activator and to treat eye and nervous system disorders
US6337340Aug 14, 1998Jan 8, 2002Gpi Nil Holdings, Inc.Carboxylic acids and isosteres of heterocyclic ring compounds having multiple heteroatoms for vision and memory disorders
US6339101Aug 14, 1998Jan 15, 2002Gpi Nil Holdings, Inc.Administering n-linked sulfonamide of an n-heterocyclic carboxylic acid derivative for therapy of nerve-related vision disorder, improving vision, therapy memory impairment or enhancing memory performance in an animal
US6376517Aug 14, 1998Apr 23, 2002Gpi Nil Holdings, Inc.For treating vision loss, preventing vision degeneration, and promoting vision regeneration (?neopsis?)
US6384056Aug 14, 1998May 7, 2002Gpi Nil Holdings, Inc.Cognition activators and nerve and vision disorders
US6399625Sep 18, 2001Jun 4, 2002Wyeth1-oxorapamycins
US6399626Sep 19, 2001Jun 4, 2002WyethUseful in inducing immunosuppression and in treatment of transplantation rejection, autoimmune diseases, solid tumors, fungal infections, vascular disease
US6399648Aug 14, 1998Jun 4, 2002Gpi Nil Holdings, Inc.N-oxides of heterocyclic ester, amide, thioester, or ketone for vision and memory disorders
US6429215Jun 29, 2001Aug 6, 2002Gpi Nil Holdings, Inc.For therapy of alopecia
US6432973Sep 18, 2001Aug 13, 2002WyethPolyoxyethylated hydroxyesters of rapamycin useful in inducing immunosuppression and in the treatment of transplantation rejection, autoimmune diseases, solid tumors, fungal infections, and vascular disease.
US6440990May 23, 1997Aug 27, 2002Novartis AgO-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
US6440991Sep 19, 2001Aug 27, 2002WyethEthers of 7-desmethlrapamycin
US6506788Aug 14, 1998Jan 14, 2003Gpi Nil Holdings, Inc.N-linked urea or carbamate of heterocyclic thioesters for vision and memory disorders
US6511986Aug 6, 2001Jan 28, 2003WyethMethod of treating estrogen receptor positive carcinoma
US6635745Jan 9, 2001Oct 21, 2003Novartis AgRapamycin assay
US6649595Feb 12, 2001Nov 18, 2003Ariad Gene Therapeutics, Inc.Regulation of biological events using novel compounds
US6670355Dec 6, 2002Dec 30, 2003WyethRapamycin
US6939376Apr 24, 2002Sep 6, 2005Sun Biomedical, Ltd.Drug-delivery endovascular stent and method for treating restenosis
US6943187May 20, 2002Sep 13, 2005Gpi Nil Holdings, Inc.Shampoos for treating alopecia
US7067526Aug 24, 2000Jun 27, 2006Ariad Gene Therapeutics, Inc.28-epirapalogs
US7160867May 13, 2004Jan 9, 2007Isotechnika, Inc.Rapamycin carbohydrate derivatives
US7189582Apr 27, 2005Mar 13, 2007Dade Behring Inc.Compositions and methods for detection of sirolimus
US7196192Sep 19, 2005Mar 27, 2007Ariad Gene Therapeutics, Inc.28-epirapalogs
US7220755Nov 12, 2003May 22, 2007Biosensors International Group, Ltd.42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
US7265150Aug 14, 1998Sep 4, 2007Gpi Nil Holdings Inc.E.g., [(2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-hydroxymethylpyrrolidine; (2S)-1-(1, 2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinetetrazole; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinecarbonitrile; and 2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-aminocarbonyl piperidine
US7338976Aug 14, 1998Mar 4, 2008Gpi Nil Holdings, Inc.Administering heterocyclic esters and amides: 3-phenyl-1-propyl(2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-(4-thiazolidine)carboxylate; 3-phenyl-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate; immunosuppressants; affinity for an FK binding protein-type immunophilin
US7410995Aug 14, 1998Aug 12, 2008Gpi Nil Holdings Inc.N-linked sulfonamide of heterocyclic thioesters for vision and memory disorders
US7445916Apr 12, 2005Nov 4, 2008WyethProcess for preparing rapamycin 42-esters and FK-506 32-esters with dicarboxylic acid, precursors for rapamycin conjugates and antibodies
US7585517Sep 20, 2004Sep 8, 2009Macusight, Inc.delivery system contains a solid core of rapamycin or other therapeutic agent
US7622477Feb 28, 2006Nov 24, 2009Cordis Corporationinhibiting the neointimal growth of vasculature after catheter and balloon intervention; new isomers and 42-epimers of rapamycin alkyl ether analogs may also possess better stability in a formulation
US7625726Sep 29, 2008Dec 1, 2009WyethProcess for preparing rapamycin 42-esters and FK-506 32-esters with dicarboxylic acid, precursors for rapamycin conjugates and antibodies
US7682387Mar 5, 2003Mar 23, 2010Biosensors International Group, Ltd.Drug-delivery endovascular stent and method for treating restenosis
US7727275Sep 20, 2004Jun 1, 2010Biosensors International Group, Ltd.Drug-delivery endovascular stent and method of forming the same
US7781447 *Sep 7, 2007Aug 24, 2010The Trustees Of The University Of PennsylvaniaO-methylated rapamycin derivatives for alleviation and inhibition of lymphoproliferative disorders
US7807211May 27, 2004Oct 5, 2010Advanced Cardiovascular Systems, Inc.Thermal treatment of an implantable medical device
US7820190Jan 2, 2004Oct 26, 2010Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US7897623Aug 27, 2007Mar 1, 2011Bayer Healthcare Llcω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
US7901451Sep 22, 2005Mar 8, 2011Biosensors International Group, Ltd.Drug-delivery endovascular stent and method for treating restenosis
US8021849Nov 5, 2004Sep 20, 2011Siemens Healthcare Diagnostics Inc.Methods and kits for the determination of sirolimus in a sample
US8026276Jul 25, 2003Sep 27, 2011Wyeth LlcParenteral CCI-779 formulations containing cosolvents, an antioxidant, and a surfactant
US8039599Jun 2, 2000Oct 18, 2011Novartis AgRapamycin assay
US8039600Aug 20, 2001Oct 18, 2011Novartis AgMonoclonal antibodies
US8044200Mar 14, 2006Oct 25, 2011Endocyte, Inc.Enhance immunology response; ion exchanging with chromatography support
US8067055Mar 23, 2007Nov 29, 2011Biosensors International Group, Ltd.Drug-delivery endovascular stent and method of use
US8076488Mar 1, 2004Dec 13, 2011Bayer Healthcare LlcAntiproliferative agents; angiogenesis inhibitors; anticancer agents
US8105568Jul 10, 2009Jan 31, 2012Endocyte, Inc.Vitamin receptor binding drug delivery conjugates
US8124630Nov 27, 2001Feb 28, 2012Bayer Healthcare Llcω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8163726Sep 18, 2003Apr 24, 2012University Of PennsylvaniaAdministering to the mammal with the angiogenesis-mediated disease or condition an amount effective to inhibit, reduce, or prevent angiogenesis of an immunophilin binding active agent, e.g., rapamycin, a rapamycin analog, or tacrolimus ; diabetic retinopathy, macular degeneration
US8173199Sep 26, 2006May 8, 2012Advanced Cardiovascular Systems, Inc.40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8222271Mar 23, 2007Jul 17, 2012Santen Pharmaceutical Co., Ltd.Formulations and methods for vascular permeability-related diseases or conditions
US8242147Sep 23, 2010Aug 14, 2012Bayer Healthcare LlcAryl ureas with angiogenisis inhibiting activity
US8252046Dec 15, 2009Aug 28, 2012Biosensors International Group, Ltd.Drug-delivery endovascular stent and method for treating restenosis
US8252047Feb 8, 2011Aug 28, 2012Biosensors International Group, Ltd.Drug-delivery endovascular stent and method for treating restenosis
US8299116Aug 10, 2011Oct 30, 2012Wyeth LlcCCI-779 concentrate formulations
US8308795Jan 29, 2010Nov 13, 2012Biosensors International Group, Ltd.Drug-delivery endovascular stent and method of forming the same
US8367097May 12, 2010Feb 5, 2013Santen Pharmaceutical Co., Ltd.Liquid formulations for treatment of diseases or conditions
US8455539Oct 15, 2012Jun 4, 2013Wyeth LlcCCI-779 concentrate formulations
US8465724Aug 18, 2006Jun 18, 2013Endocyte, Inc.Vitamin receptor binding drug delivery conjugate
US8486960Jun 21, 2012Jul 16, 2013Santen Pharmaceutical Co., Ltd.Formulations and methods for vascular permeability-related diseases or conditions
US8492400Feb 9, 2007Jul 23, 2013Santen Pharmaceutical Co., Ltd.Stable formulations, and methods of their preparation and use
US8545550Jul 24, 2012Oct 1, 2013Biosensors International Group, Ltd.Drug-delivery endovascular stent and method for treating restenosis
US8562974Feb 26, 2006Oct 22, 2013Fondazione TelethonMethod for expanding Cd4+ Cd25+ T regulator cells
US8569332Jun 7, 2010Oct 29, 2013The Trustees Of The University Of PennsylvaniaO-methylated rapamycin derivatives for alleviation and inhibition of lymphoproliferative disorders
US8618088Mar 29, 2012Dec 31, 2013University Of PennsylvaniaMethods of inhibiting choroidal neovascularization
US8618141Jul 18, 2012Dec 31, 2013Bayer Healthcare LlcAryl ureas with angiogenesis inhibiting activity
US8637070Feb 9, 2006Jan 28, 2014Santen Pharmaceutical Co., Ltd.Rapamycin formulations and methods of their use
US8637553Jul 22, 2004Jan 28, 2014Bayer Healthcare LlcFluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8658667Jun 24, 2013Feb 25, 2014Santen Pharmaceutical Co., Ltd.Stable formulations, and methods of their preparation and use
US8663639Aug 18, 2008Mar 4, 2014Santen Pharmaceutical Co., Ltd.Formulations for treating ocular diseases and conditions
US8685995Mar 20, 2009Apr 1, 2014The University Of ChicagoTreatment with opioid antagonists and mTOR inhibitors
US8715341Oct 9, 2012May 6, 2014Biosensors International Group, Ltd.Drug-delivery endovascular stent and method of forming the same
US8722700May 13, 2013May 13, 2014Wyeth LlcCCI-779 formulations for parenteral administration
USRE40596 *Feb 6, 2007Dec 2, 2008Novartis AgRapamycin assay
CN1820011BJul 7, 2004May 26, 2010诺瓦提斯公司Use of rapamycin and rapamycin derivatives for the treatment of bone loss
EP0867438A1 *Sep 24, 1993Sep 30, 1998Novartis AGRapamycin derivatives and their use, particularly as immunosuppressants
EP1413581A1 *Sep 24, 1993Apr 28, 2004Novartis AGRapamycin derivatives
EP1767193A2Apr 9, 2001Mar 28, 2007Novartis AGPharmaceutical compositions
EP1826211A1 *Feb 20, 2007Aug 29, 2007Cordis CorporationIsomers and 42-Epimers of rapamycin alkyl ether analogs, methods of making and using the same
EP1852437A2Nov 12, 2004Nov 7, 2007Sun Biomedical, Ltd.42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
EP2039358A1Oct 25, 1995Mar 25, 2009Novartis AGPharmaceutical compositions comprising a macrolide and an acid
EP2070550A1Oct 13, 2004Jun 17, 2009Combinatorx, IncorporatedUse of combinations comprising a corticosteroid and a pyrimidopyrimidine in the treatment of inflammatory diseases
EP2253320A1Jul 19, 2006Nov 24, 2010Novartis AGCombination of a pyrimidylaminobenzamide and a mTOR kinase inhibitor
EP2301628A1Oct 13, 2004Mar 30, 2011Zalicus Inc.Methods and reagents for the treatment of immunoinflammatory disorders
EP2431036A1Sep 12, 2007Mar 21, 2012Elixir Medical CorporationMacrocyclic lactone compounds and methods for their use
EP2532740A1Aug 12, 2011Dec 12, 2012Michael SchmückAntigen-specific CD4+ and CD8+ central-memory T cell preparations for adoptive T cell therapy
EP2583678A2Jun 24, 2005Apr 24, 2013Novartis Vaccines and Diagnostics, Inc.Small molecule immunopotentiators and assays for their detection
EP2702993A1Sep 12, 2007Mar 5, 2014Elixir Medical CorporationMacrocyclic lactone compounds and methods for their use
WO1995014023A1 *Nov 7, 1994May 26, 1995Abbott LabSemisynthetic analogs of rapamycin (macrolides) being immunomodulators
WO1995016691A1 *Dec 16, 1994Jun 22, 1995Sylvain CottensRapamycin derivatives useful as immunosuppressants
WO1998009970A2 *Sep 3, 1997Mar 12, 1998American Home ProdAlkylated rapamycin derivatives
WO2005005434A1 *Jul 7, 2004Jan 20, 2005Michaela KneisselUse of rapamycin and rapamycin derivatives for the treatment of bone loss
WO2005047295A1 *Nov 12, 2004May 26, 2005Ronald E Betts42-o-alkoxyalkyl rapamycin derivatives and compositions comprising same
WO2006090291A2Feb 24, 2006Aug 31, 2006San Raffaele Centro FondMethod for expanding cd4+ cd25+ t regulatory cells
WO2008042216A2Sep 27, 2007Apr 10, 2008Follica IncMethods, kits, and compositions for generating new hair follicles and growing hair
WO2011109833A2Mar 7, 2011Sep 9, 2011President And Fellows Of Harvard CollegeInduced dendritic cell compositions and uses thereof
WO2011128405A1Apr 14, 2011Oct 20, 2011Novartis AgCombination of organic compounds
WO2011130232A1Apr 12, 2011Oct 20, 2011Novartis AgCombination comprising a cyclin dependent kinase 4 or cyclin dependent kinase (cdk4/6) inhibitor and an mtor inhibitor for treating cancer
WO2012148846A1Apr 23, 2012Nov 1, 2012Novartis AgCombination of a phosphatidylinositol-3-kinase (pi3k) inhibitor and a mtor inhibitor
WO2012171882A1Jun 11, 2012Dec 20, 2012Hans-Dieter VolkAntigen-specific central-memory t cell preparations having high cd4+ fraction
WO2013182503A1Jun 3, 2013Dec 12, 2013Biotronik AgRapamycin 40-o-cyclic hydrocarbon esters, compositions and methods
WO2013192367A1Jun 20, 2013Dec 27, 2013Novartis AgNeuroendocrine tumor treatment
WO2014068070A1Oct 31, 2013May 8, 2014INSERM (Institut National de la Santé et de la Recherche Médicale)Methods for preventing antiphospholipid syndrome (aps)
Classifications
U.S. Classification514/291, 540/456
International ClassificationC07D498/18
Cooperative ClassificationC07D498/18
European ClassificationC07D498/18
Legal Events
DateCodeEventDescription
Aug 29, 2012ASAssignment
Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY
Free format text: CHANGE OF NAME;ASSIGNOR:SCHERING CORPORATION;REEL/FRAME:028866/0511
Effective date: 20120502
Aug 27, 2012ASAssignment
Owner name: SCHERING CORPORATION, NEW JERSEY
Free format text: MERGER;ASSIGNOR:MERCK SHARP & DOHME CORP.;REEL/FRAME:028850/0515
Effective date: 20120426
Jan 27, 2010ASAssignment
Free format text: CHANGE OF NAME;ASSIGNOR:MERCK & CO., INC.;REEL/FRAME:23852/595
Owner name: MERCK SHARP & DOHME CORP.,NEW JERSEY
Effective date: 20091102
Free format text: CHANGE OF NAME;ASSIGNOR:MERCK & CO., INC.;REEL/FRAME:023852/0595
Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY
Mar 29, 2005FPAYFee payment
Year of fee payment: 12
Apr 19, 2001FPAYFee payment
Year of fee payment: 8
Aug 27, 1997SULPSurcharge for late payment
Aug 27, 1997FPAYFee payment
Year of fee payment: 4
Jun 10, 1997REMIMaintenance fee reminder mailed
Jun 28, 1993ASAssignment
Owner name: MERCK & CO., INC.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOULET, MARK;PARSONS, WILLIAM H.;SINCLAIR, PETER J.;AND OTHERS;REEL/FRAME:006589/0386
Effective date: 19930107