Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5322537 A
Publication typeGrant
Application numberUS 08/053,526
Publication dateJun 21, 1994
Filing dateApr 26, 1993
Priority dateApr 28, 1992
Fee statusPaid
Also published asDE69304809D1, DE69304809T2, EP0575038A1, EP0575038B1
Publication number053526, 08053526, US 5322537 A, US 5322537A, US-A-5322537, US5322537 A, US5322537A
InventorsKenichi Nakamura, Kunio Kimura
Original AssigneeMatsushita Electric Industrial Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Exhaust gas filter and method for making the same
US 5322537 A
Abstract
An exhaust gas filter for internal combustion engines and having a honeycomb structure comprises a ceramic fiber and an inorganic binder. The ceramic fiber consists essentially of Al2 O3 and SiO2. The inorganic binder includes Al2 O3 and SiO2 to bind the ceramic fiber. The inorganic binder is of a single glass phase or of a mixed phase of a glass phase and a crystal phase both having the same crystal structure in the temperature range of 20 to 1200 C. In the inorganic binder, a crystal such as quartz which produces abnormal expansion due to crystal phase transition is excluded, and occurrence of cracking is prevented.
Images(2)
Previous page
Next page
Claims(11)
What is claimed:
1. An exhaust gas filter comprising:
a ceramic fiber including Al2 O3 and SiO2, and
an inorganic binder including Al2 O3 and SiO2 for binding to said ceramic fiber,
wherein said inorganic binder is of a single phase of glass or of a mixed phase of a glass phase and a crystal phase, said crystal phase having a crystal structure which is invariant in the temperature range of 20 to 1200 C.
2. The exhaust gas filter of claim 1, wherein said ceramic fiber includes one compound selected from the group consisting of aluminosilicate and aluminoborosilicate.
3. The exhaust gas filter of claim 1, wherein said ceramic fiber comprises a crystal nucleus.
4. The exhaust gas filter of claim 3, wherein said crystal nucleus is Cr2 O3.
5. The exhaust gas filter of claim 1, wherein said inorganic binder includes at least one compound selected from the group consisting of alkaline and alkaline earth metals.
6. An exhaust gas filter comprising
a ceramic fiber including Al2 O3 and SiO2, and
an inorganic binder which includes complex oxides including Al2 O3, SiO2 and potassium, to bind said ceramic fiber,
wherein said inorganic binder comprises a mixed phase of a glass phase and a mullite phase.
7. A method of manufacturing an exhaust gas filter comprising the steps of:
1) preparing a mixture including raw materials of ceramic powder,
2) manufacturing a honeycomb structure with a porous wall, an inlet for an exhaust gas leading to said porous wall, and an outlet for an exhaust gas after passing through said porous wall from said mixture, and
3) sintering the honeycomb structure,
wherein said ceramic raw material powder comprises a ceramic fiber with Al2 O3 and SiO2 as the main constituents, and an inorganic binder material powder comprising complex oxides including Al2 O3, SiO2 and at least oxides from the group consisting of alkaline and alkaline earth metal, and
wherein the sintering is carried out at a temperature range in which said inorganic binder material powder changes to a single glass phase or to a mixed phase with a crystal phase having a crystal structure which is invariant in the temperature range of 20to 1200 C.
8. The method of manufacturing an exhaust gas filter of claim 7, wherein said ceramic fiber further contains Cr2 O3 of 1.5 to 3.5 weight %.
9. The method of manufacturing an exhaust gas filter of claim 7, wherein said inorganic binder material powder includes sericite.
10. The method of manufacturing an exhaust gas filter of claim 7, wherein said inorganic binder material powder includes potassium of 1.8 to 3.2 weight % in terms of K2 O.
11. A method of manufacturing an exhaust gas filter comprising the steps of:
1) preparing a mixture including ceramic material powder.
2) manufacturing a honeycomb structure with a porous wall, an inlet for an exhaust gas leading to said porous wall, and an outlet for an exhaust gas after passing through said porous wall from said mixture, and
3) sintering the honeycomb structure,
wherein said mixture includes aluminosilicate fiber, sericite clay, and organic binder, and
wherein said step of manufacturing a honeycomb structure comprises the steps of making a planar sheet and corrugated sheet with said mixture, gluing said planar sheet to said corrugated sheet so that cavities are formed, pouring paste for plug-forming into said cavities, said paste including aluminosilicate fiber, sericite clay, and organic binder, and combining and winding said planar sheet and said corrugated sheet into a cylindrical form, wherein said sintering is carried out at a temperature range of 1400-1500 C.
Description
FIELD OF THE INVENTION

This invention relates to an exhaust gas filter of an internal combustion engine, especially a Diesel engine, to clean the exhaust gas emitted by the engine. The filter operates by trapping and removing particulates such as soot exhausted from the engine to prevent air pollution.

BACKGROUND OF THE INVENTION

In recent years, air pollution by NOx or floating small particulates has developed in large cities. As for the small particulates floating in the air, 20 to 30% of them are said to be produced by black smoke exhausted by Diesel engines of automobiles. As a counter-measure against the black smoke, there is provided an exhaust gas cleaner which, placed in the exhausting system, comprises a filter to trap small particulates in the exhaust gas and a refreshing apparatus to burn the trapped particulates.

Among the conventional filters, a ceramic monolithic type is known as is disclosed in U.S. Pat. No. 4,364,761, which is incorporated herein by reference. This conventional ceramic monolithic filter comprises many long cells arranged side-by-side to form a honeycomb structure, one cell having an inlet at one end thereof and being plugged at the other end, and an adjacent cell being plugged at the same end as the inlet of the first cell but having an outlet at the other end. When the exhaust gas enters the inlet and passes along the porous wall between the cells, the particulate in the gas is trapped. If the amount of trapped particulate increases, the porous walls are choked, of course, by the particulates. This results in an increase of back pressure of the engine. Accordingly, it is necessary, when the trapped particulates exceeded a certain amount, to remove the particulates to suppress the load increase on the engine due to increased back pressure. The particulates consist of solid carbon and soluble organic fraction (SOF) which is soluble in an organic solvent such as dichloromethane, both being combustible and burned if heated over 600 C., although the temperature somewhat varies depending upon the kind or loading condition of the engine. Thus, the exhaust gas cleaner is provided with a filter regenerating apparatus such as an electric heater or gas burner. For the exhaust gas filter, it is necessary that it not be choked or molten when heated for regenerating, and, usually is a porous material of large porosity and high melting temperature. For the exhaust gas filter to meet the above described requirement, U.S. Pat. No. 4,652,286 which is incorporated herein by reference discloses a filter which is made by sintering a mixture of silica-alumina fiber and silica-alumina clay at 1200 C. to make a sheet assembled in a honeycomb structure. This filter, however, after repeated particulate trappings and heating regenerating, produced cracks in the wall, and is therefore not satisfactory.

SUMMARY OF THE INVENTION

A gas filter especially for an exhaust gas cleaner of an internal combustion engine is provided which will not crack and which has high durability. An exhaust gas filter comprises a ceramic fiber and an inorganic binder, the ceramic fiber consisting mainly of Al2 O3 and SiO2, the inorganic binder including Al2 O3 and SiO2 to bind the ceramic fiber, and being of a single phase of glass or a mixed phase of a glass phase and a crystal phase which has no crystal transformation in the temperature range of 20 to 1200 C. Such a filter has an inorganic binder which does not include a crystal phase (such as a quartz phase) which has a crystal transformation in the temperature range of 20-1200 C. Such a crystal phase typically causes abnormal volume expansion or shrinkage as a result of crystal phase transition. Consequently, cracking in the porous wall is suppressed and the duration of the porous wall is improved.

Further, according to an exemplary embodiment of the present invention, a ceramic fiber consisting mainly of alumina and silica is applied with a crystal nucleus of Cr2 O3 etc. With this crystal nucleus, the mullite crystal which generates at the time of sintering is suppressed, and the mechanical strength of the porous wall and the durability of the filter are further improved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a sectional view of an exhaust gas filter embodying an exemplary embodiment of the present invention.

FIG. 2 is a perspective view of the exhaust gas filter shown in FIG. 1.

FIG. 3 is a section view showing a system in which an exhaust gas filter is included.

DETAILED DESCRIPTION OF THE INVENTION

Using the conventional exhaust gas filter with sintered sheets of the mixture of silica-alumina fiber and silica-alumina clay, the present inventors investigated the cause of cracks after cycles of particulates being trapped and heated and found, by thermo-mechanical analysis, an abnormal volume-expansion near 573 C. This is caused by the volume expansion produced by the transformation of quartz, which is a content of the clay in the filter, from low temperature crystal phase to high temperature crystal phase.

As described above, the particulates deposited in the filter are burned out at 600 C. If the exhaust gas filter, when heated for regenerating, had its particulates burned out only partially, the part of the filter with particulates burned out was heated above 600 C., and the part of the filter with particulates not burned was heated below 550 C. Accordingly it was found that, in a wall between a burning path and a not-burning path, the surface of the burning path expands abnormally due to crystal transformation of quartz, and cracks in the wall result.

In some kinds of clays, crystal phases other than quartz such as cristobalite or tridymite were observed. When these crystals are involved, abnormal expansion due to crystal transformation to high temperature crystal phase was noticed in the 150-230 C. temperature range. This was the reason that cracks occur when exhaust gas near 500 C. flows through an exhaust gas filter under room temperature.

Based on the above investigation of cracking, the present inventors experimented with materials and processes to obtain an exhaust gas filter with excellent durability. The constituent material for exhaust gas filters desirably has high heat-resisting property for burning the particulates. As a typical ceramic fiber of high heat-resisting property, alumina fiber, aluminosilicate fiber, aluminoborosilicate fiber and mullite are known. Among them, alumina fiber and mullite are not appropriate for the exhaust gas filter, since the former is weak against thermal shock or steep temperature gradient due to its big thermal expansion coefficient and the latter is mechanically weak as it is a polycrystal. Thus, the inventors selected alumino-silicate fiber and aluminoborosilicate fiber as the material. Aluminosilicate fiber with Al2 O3 and SiO2 of 50/50 weight % and nominal usable temperature of 1260 C. is marketed. Applying differential thermal analysis to this aluminosilicate fiber, a high heat-generating peak is found in the vicinity of 980 C. This heat-generating peak corresponds to the crystallization peak of mullite crystal (3Al2 O3 2SiO2). Therefore, when aluminosilicate fiber, which is in amorphous state at a normal temperature, is heated mullite crystal nucleus begins to precipitate at a temperature below 950 C., and, in the vicinity of 980 C., the crystal growth reaches a climax. As the weight ratio of Al2 O3 and SiO2 in a mullite crystal is 72:28, aluminosilicate fiber with Al2 O3 :SiO2 =50:50, at the temperature over 980 C. is of such a state as needle-like crystals of mullite are dispersed in a SiO2 -rich aluminosilicate glass. Thus, aluminosilicate fiber after sintering is under such a state. Since the mullite crystals, having no crystal transformation, is stable from room temperature up to 1200 C., the highest temperature expected for the filter, the filter according to the present invention does not have abnormal expansion due to crystal transformation and crack occurrence, if any mullite crystal exists.

The temperature of 1260 C. mentioned above as the temperature aluminosilicate fiber can withstand, is determined based on shrinking of board-type product used as heat-insulating material, and does not limit the sintering temperature for the usage of the present invention. This fiber, in spite of eutectic temperature as high as about 1760 C., has its fibrous structure destroyed at high temperature as a result of viscosity decrease due to its nature as glass. However, it keeps its fibrous structure up to 1600 C. sintering temperature according to observations using an electron microscope, and sintering at a temperature as high as 1600 C. is possible.

Although the existence of mullite crystal does not cause cracking as described above, sintering at high temperature and for long hours induces abnormal growth of crystal particles, and a mechanically strong exhaust gas filter is not obtained. Accordingly, the growth of mullite crystal particle is desirably suppressed. To suppress the growth of needle crystal of mullite, it is enough to have numbers of crystal nuclei increased and the crystal size minimized. As the crystal nucleus, Cr2 O3, TiO2, ZrO2 or such metal oxide which is relatively easily precipitated as crystal from glassy state is preferable.

Aluminosilicate fiber with Cr2 O3 additive and aluminosilicate fiber without any crystal nucleus were applied to differential thermal analysis, and the area of heating peak by the crystallization of the former was confirmed to be far smaller than that of the latter. Also, in electromicrographs of crystal particles after sintering, needle-like crystals of 0.5 μm average length were observed for the aluminosilicate fiber without any additive, but very small crystals only of average length less than 0.1 μm were found for the aluminosilicate fiber with Cr2 O3. Therefore, to suppress the crystal growth of mullite, addition of crystal nucleus, preferably Cr2 O3 is preferable. As for the content of Cr2 O3, 1.5-3 5 weight % is suitable; less than 1.5% is not enough for nucleus suppression, while more than 3.5 weight % results in hard working (i.e. difficulty in corrugating and rolling the ceramic sheet, because the mechanical strength of the sheet is not strong).

The length of the ceramic fiber is preferably within the range of 0.1 to 10 mm. With the length less the strength of the ceramic sheet before sintering is insufficient resulting in hard working, and, with the length more than 10 mm, the fibers overly twist with each other forming large flocks, and unevenness of sheet thickness is greater. In the following, the inorganic binder according to an exemplary embodiment of the present invention is explained. When the aluminosilicate fiber, for example, is adopted as a material for an exhaust gas filter, sufficient strength is not obtained for itself, so that addition of inorganic binder is desirable. Characteristics necessary for the inorganic binder are high heat resistance, low thermal expansion, and reactivity with ceramic fiber, and, accordingly, for that purpose, glass or ceramics consisting mainly of complex oxides Al2 O3 and SiO2 is adequate.

Further to obtaining high adhesive strength without losing the form of the ceramic fiber, use of the inorganic binder with a eutectic or softening temperature lower than that of ceramic fiber is preferable. For that purpose, those containing a small amount of oxide of alkaline metal (Li, NA, K etc.) or alkaline-earth metal (Ca) is preferable. Thus, as the raw material for the inorganic binder, glass of alkaline-metal oxide (alkaline-earth metal oxide)-SiO2 -Al2 O3, feldspar such as potash feldspar or plagioclase, or ceramic material consisting mainly of clay mineral such as sericite or illite, or the mixture of those is preferable.

When ceramic material powder of a feldspar or clay mineral, or a mixture of these is adopted as the inorganic binder, sintering at a temperature equal to or higher than the temperature at which a glass phase is formed from the above crystal content will produce a filter material with high mechanical strength. Even if the sintering temperature is equal to or higher than the temperature at which a glass phase is formed, however, the quartz or its modified crystal, cristobalite and tridymite still remains in the inorganic binder after sintering, provided the sintering temperature is relatively low. These crystals have their crystal transformation temperature between the normal temperature and 1200 C., the latter being the highest temperature the filter is used, and the existence of these crystal phases causes cracking. In consequence, according to an exemplary embodiment of the present invention, sintering is carried out at a temperature equal to or higher than that at which the crystal phase of quartz etc. melts into a glass phase. In so doing, the inorganic binder becomes a single phase of glass or a mixed phase of a glass phase and another crystal phase such as of mullite which does not transform below 1200 C., preventing cracking. Further, the glass phase in the inorganic binder becomes silica-rich, resulting in low thermal expansion, improvement of mechanical strength and heat resistance, and thermal-shock resistance of the exhaust gas filter is also obtained. Among material powders containing an alkaline metal or alkaline-earth metal, especially preferable is clay such as sericite consisting mainly of SiO2, Al2 O3 and K2 O and feldspar due to the high durability of the gas filter and easy treatment in manufacturing with an appropriate sintering temperature. If sericite clay, with sericite as the main constituent, and quartz, kaolinite or pyrophyllite as impurities, is sintered at a temperature equal to or higher than 1350 C., the quartz crystal melts into the glass phase, resulting in complete separation to glass and mullite phase, and small thermal expansion coefficient and high mechanical strength with low sintering temperature thanks to the existence of glass phase. For instance, Murakami clay (a natural material marketed by Kyoritsu Ceramic Materials Co., Ltd.) can have its thermal expansion coefficient reduced to 3.610-6 from the conventional 4.510-6 by complete glassifying. Further, with the glass phase becoming silica-rich, the glass transition temperature and yielding point also rises. For example, the yielding temperature rises to 1000 C. from 950 C. for Murakami clay, improving the heat resistance property of the filter.

The temperature at which a quartz crystal melts into the glass phase depends on the composition of the ceramic material powder and especially the content of alkaline metal. For the case of sericite clay, the content of potassium is a big factor for determining the sintering temperature. The Murakami clay, for example, with potassium of about 5 weight % calculated in terms of K2 O, is completely separated to mullite phase and glass phase when heated up to or over 1350 C. Generally, the larger the alkaline metal content is, the lower the glassifying temperature is, and the higher the sintering temperature is. For the filter regenerated by heating. burning a high heatshock-resisting property, i.e. a low thermal expansion coefficient, is required, so that the potassium content is preferred to be within a 1.8 to 3.2 weight % range in terms of K2 O. However, if the regenerating is made by any method other than heating, the potassium content is not necessarily limited.

The ratio of combining the ceramic fiber and the inorganic binder depends on the porosity necessary for the filter, and is preferred to be 25 to 75 weight % of a ceramic fiber and 25 to 75 weight % of an inorganic binder. If the inorganic binder content is less than 25%, the mechanical strength is insufficient, and if larger than 75% the porosity is not enough.

EMBODIMENT 1

One thousand grams of aluminosilicate fiber (Ibiwool bulk by Ibiden Co., Ltd.) with an average fiber diameter of 3 μm and chopped to 0.1 to 10 mm in length was dispersed in 600 kg water to form a suspension. The suspension was mixed with 1000 g of sericite (Murakami clay) which contains about 5 weight % potassium in terms of K2 O and was stirred, and further mixed and stirred, with 30 g of emulsion of vinyl-acetate and acrylate copolymer. The suspension was then mixed with 100 g of aluminum sulfate and further with an aqueous solution of sodium hydroxide so that the slurry thus made had about 5.5 pH. After adding 200 g of 15% aqueous solution of cationic polyacrylamid to the slurry to form a flock suspension, the suspension was diluted with water to 1500 liters and made into a ceramic paper by a usual papermaking machine. On the other hand, a paste-like plug material was prepared by mixing 2000 g of shattered aluminosilicate fiber, 2000 g of sericite clay, and polyvinyl alcohol.

A part of the ceramic paper was made corrugated on a corrugate machine and glued to another part of the paper with adhesive deposited on the peak of corrugation, the adhesive being prepared by kneading 2000 g of aluminosilicate fiber, 2000 g of sericite clay and potato starch. While glueing, an end of the glued corrugated paper is filled with plug material, which, after sintering, becomes the plug 2 in FIG. 1 and FIG. 2. The free peaks of the above glued corrugated sheet were further glued and fixed to another plain sheet, and the thus formed body was rolled and the other end was filled by plug material to become the plug 3. When the rolled up corrugated paper is taken off the rolling machine, the center of the roll occupied by the core becomes empty. The empty center part was filled with plug material, which is to become the core 4 after sintering. The thus assembled body is sintered for 2 hours under 1350 C. temperature. As a result, organic contents disappear and aluminosilicate fibers are consolidated by the glassified sericite clay, and an exhaust gas filter of honeycomb structure of fibrous ceramic having inlets and outlets 1a, 1b for the exhaust gas on one side and on the other side respectively was obtained. The exhaust gas filter 5 was placed in a case 13 of an exhaust gas cleaning apparatus as shown in FIG. 3 with a heat-insulating body 6 consisting of thermally expanding ceramic fiber. For trapping particulate, a valve 10 is fixed to the side of filter 5, whereby the exhaust gas from the engine 8 is, after passing exhaust gas pipe 9, sent to the filter 5. In the filter 5, the particulates in the exhaust gas are trapped, and the exhaust gas without particulates is sent, via an exhaust gas pipe 14, to the outer world or turbocharger. When the trapped particulates exceed a certain amount, the valve 10 is changed to the bypass 12 side, and the regenerating of the filter 5 is carried out. With an electric heater 7 applied with electric power, the exhaust gas filter 5 is heated and the particulates near the entrance of the filter 5 are burned. Then the heater 7 is switched off, and air is sent by an air pump 11, to transfer the flame to the exit of the filter to promote the burning of the particulates. When the burning of particulates is over, the valve 10 is changed to the filter 5, and particulate trapping begins again. An engine 8 was applied with an exhaust gas cleaner with the exhaust gas filter of the present embodiment and was operated for 2 hours, and the increase of back pressure while trapping particulates was found to be 60 mmHg, the same value as the conventional one.

When, after particulate trapping, reheating-regenerating by heater 7 is being made, the particulates burn off at most parts of the exhaust gas filter, but do not at other parts due to heat loss to the outer atmosphere, the temperature difference between the parts being nearly 300 C. While the conventional filter could withstand only about 200 C. temperature difference, the exhaust gas filter according to an exemplary embodiment can withstand as high as a 500 C. temperature difference, due to the mechanical strength increased to two times and the thermal expansion coefficient reduced by more than 20%. Repetition testing of the trapping and heating of particulates proved that the filter is not destroyed even after 200 cycles of trapping and heating. Further, black smoke was not observed after 1000 cycles, showing that the filter is carrying out the duty as a filter up to 1000 cycles.

Instead of the aluminosilicate fiber, aluminoborosilicate fiber can be used.

EMBODIMENT 2

An exhaust gas filter was prepared, with sintering temperature of 1500 C. for the sintering to make a honeycomb structure, instead of 1350 C. of Embodiment 1. Repetition testing of heating-regenerating of this filter as in Embodiment 1 was carried out without destroying of the filter after more than 1000 cycles. Thus, it was found that increasing the sintering temperature brought an increase of mechanical strength of the filter and an increase of the number of times of repeated regenerating.

EMBODIMENT 3

An exhaust gas filter was prepared with aluminosilicate fiber (SC bulk 1400B, Nippon Steel Chemical Co., Ltd) containing 2.5 weight % Cr2 O3 instead of aluminosilicate fiber in Embodiment 1. To verify the crystal-growth suppression effect, differential thermal analysis was applied to the aluminosilicate fiber with Cr2 O3 and the fiber according to Embodiment 1 using differential thermal analyzer DTA911D of Rigaku Corp.

              TABLE 1______________________________________                 without an        with Cr2 O3                 additive______________________________________Peak temperature          980 C.                     980 C.of crystallizationPeak area of DTA          10 μV  s/mg                     40 μV  s/mg______________________________________

As a result, as shown in Table 1, it was confirmed that the area of heating peak by crystallization of aluminosilicate fiber with Cr2 O3 is far smaller than that of fiber without additive. Also, an electromicrograph of crystal particles after sintering was inspected, and needle-like crystals with more than 0.5 m average length for the fiber without additive were observed. However, for the fiber with CR2 O3 crystals of equal to or less than 0.1 μm average were observed.

The exhaust gas filter prepared as explained above was applied on an exhaust gas cleaning apparatus of FIG. 3. After 2 hours of the engine operation and particulate trapping, the increase of back pressure was 60 mmHg, as for Embodiment 1. Also, repetition of particulate trapping and heating regenerating 1000 times did not bring black smoke. The mechanical strength increased to more than 1.2 times of the filter of Embodiment 1, and increase of duration resulted.

EMBODIMENT 4

To investigate the effect K2 O content in an inorganic material has on the thermal characteristics, physical properties were compared on the five samples of sericite clay with K2 O content 1, 2, 3, 4 and 5 weight % (tolerance of 0.2% is possible, as natural products) from Shokozan mine, Showa Mining Co., Ltd. whose constituents given by analysis are as shown in Table 2.

              TABLE 2______________________________________Constituents of SamplesSample      No. 1    No. 2   No. 3 No. 4 No. 5______________________________________Designated  0.8-1.2  1.8-2.2 2.8-3.2                              3.8-4.2                                    4.8-5.2K2 O content (%)K2 O (%)       1.2       2.0     2.9   3.9   5.1SiO2 (%)       88.7     80.6    70.2  60.5  65.0Al2 O3 (%)       7.1      13.8    22.3  29.8  24.8Ig Loss (%) 1.6       2.8     3.8   4.7   3.8______________________________________

These samples were sintered in an electric furnace for 2 hours at temperatures 1200, 1300, 1400, 1500, and 1600 C., and applied to the thermomechanical analysis (by analyzer TMA8140, Rigaku Corp.), the results being shown in Table 3, wherein the "sintering-possible temperature" means the temperature, after sintering under which temperature only mullite and glass phase remain and quartz and cristobalite disappear.

              TABLE 3______________________________________Sample       No. 1   No. 2   No. 3 No. 4 No. 5______________________________________Sintering-possible        ≧1600                ≧1500                        ≧1400                              ≧1350                                    ≧1300temperature (C.)Thermal expansion        0.8     1.9     2.8   3.7   3.9coefficient (10-6 /C.)Glass transition         1000     890     880   850   870temperature (C.)Yielding temperature         1300    1150    1100  1030  1010(C.)______________________________________

Five kinds of exhaust gas filters were made with 5 kinds of clay of Table 1 as the material powder for inorganic binder, when the quantity of organic binder was so adjusted to the same porosity as obtained for different sintering temperatures peculiar to clays. These 5 kinds of filters were tested, applying on the exhaust gas filter cleaning apparatus and being heated repeatedly under the same conditions, to obtain the number of repetitions until cracking or melting of material occurs. The results are given in Table 4.

              TABLE 4______________________________________Clay sample No. 1    No. 2   No. 3 No. 4 No. 5______________________________________K2 O content (%)       0.8-1.2  1.8-2.2 2.8-3.2                              3.8-4.2                                    4.8-5.2Sintering    1600     1500    1400 1350  1300temperature (C.)Cycle of duration       >1000    >1000   >1000  200   10______________________________________

As is observed in Table 4, the lower the K2 O content is, the larger the cycles of duration against heating regenerating are, especially, with K2 O content less than 3.2 weight % duration of more than 1000 cycles is possible. Among the samples, however, the filter from No. 1 clay had its aluminosilicate fiber partially deformed due to the high sintering temperature. Accordingly, the most favorable K2 O content is 1.8 to 3.2 weight %, and the most favorable sintering-temperature is 1400 to 1500 C.

EMBODIMENT 5

Natural sericite clay contains small amounts of clays such as kaolinite, pyrophyllite and quartz as impurities. On samples obtained by adding to 50 weight part of sericite clay with 3.9 weight % K2 O (Showa Mining Co.), 50 weight part of kaolinite (Tsuchiya Kaolin Ind. 5M kaolin), 50 weight part of pyrophyllite (Showa Mining Co.), or silica sand (Tsuchiya, natural silica sand No. 3) to make the K2 O contents with 2.0 weight %, the sintering-possible temperatures were examined. The result is shown in Table 5.

              TABLE 5______________________________________Additive    Kaolinite Pyrophyllite                            Silica (quartz)______________________________________sintering-possible       1500      1500       not usabletemperature (C.)______________________________________

As is observed, the clays with kaolinite or pyrophyllite can be used under likewise conditions as sericite with 2% K2 O. However, the clay with the addition of quartz had much crystallization of cristobalite, could not melt into glass phase, had too large an expansion coefficient, and was not suitable for application. Then, of the three exhaust gas filters obtained by a manufacturing method similar to that described in Embodiment 1, but with the three types of clay of the above described present exemplary embodiment, similar tests of repeated heating were applied. The result is shown in Table 6.

As is indicated, sericite clay with the addition of kaolinite or pyrophyllite to reduce the K2 O content to 1.8-3.2% can work against more than 1000 times of heating regenerating.

              TABLE 6______________________________________Additive     Kaolinite Pyrophyllite                              Silica______________________________________Sintering     1500      1500       1500temperature (C.)Duration cycle        >1000     >1000         1______________________________________
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4340403 *Oct 15, 1980Jul 20, 1982Ngk Insulators, Ltd.Alumina cement containing calcium oxide used as sealer; for use on exhaust gas
US4364761 *Jun 15, 1981Dec 21, 1982General Motors CorporationCeramic filters for diesel exhaust particulates and methods for making
US4420316 *Feb 22, 1982Dec 13, 1983Corning Glass WorksFilter apparatus and method of making it
US4652286 *Jan 28, 1985Mar 24, 1987Matsushita Electric Industrial Co., Ltd.Exhaust gas filter
US4894070 *Nov 10, 1988Jan 16, 1990Foseco International LimitedFiltration of fluid media
US4921616 *Nov 10, 1988May 1, 1990Ceramiques Et CompositesAlveolar ceramic filters for high melting metals
US4946487 *Nov 14, 1988Aug 7, 1990Norton CompanyUsed to clean particle-laden gases
US5069697 *Aug 3, 1989Dec 3, 1991Ngk Insulators, Ltd.Cordierite as main component of crystalline phase
US5098455 *Dec 21, 1990Mar 24, 1992The Dow Chemical CompanyRegenerable exhaust gas filter element for diesel engines
US5114581 *Jan 10, 1991May 19, 1992Ceramem CorporationBack-flushable filtration device and method of forming and using same
US5177035 *Aug 7, 1990Jan 5, 1993The Carborundum CompanyMolten metal filter and method for making same
US5185018 *Nov 4, 1991Feb 9, 1993Zievers Elizabeth SStructural fibrosics
US5194078 *Mar 19, 1992Mar 16, 1993Matsushita Electric Industrial Co., Ltd.Corrugated honeycomb structure of fiberous ceramics
US5194154 *Dec 5, 1991Mar 16, 1993The Dow Chemical CompanyStructure for filter or heat exchanger, composed of a fused single crystal acicular ceramic
US5198006 *Aug 16, 1991Mar 30, 1993Asahi Glass Company, Ltd.Ceramic filter for a dust-containing gas and method for its production
US5198007 *Dec 5, 1991Mar 30, 1993The Dow Chemical CompanyFilter including a porous discriminating layer on a fused single crystal acicular ceramic support, and method for making the same
JPS57187014A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5714228 *Dec 18, 1995Feb 3, 1998General Motors CorporationHexagonal shaped cell walls with rounded corners, provide extra strength to the substrate and uniformly dissipate any force applied to the substrate
US5731562 *Jan 13, 1997Mar 24, 1998General Motors CorporationMethod of making a ceramic catalytic converter open cell substrate with rounded corners
US5772883 *Apr 26, 1996Jun 30, 1998Donaldson Company, Inc.Slanted inline filter
US5792247 *Apr 26, 1996Aug 11, 1998Donaldson Company, Inc.Integrated resonator and filter apparatus
US5820646 *Apr 26, 1996Oct 13, 1998Donaldson Company, Inc.Inline filter apparatus
US5846276 *Jun 19, 1996Dec 8, 1998Matsushita Electric Industrial Co., Ltd.Exhaust gas filter
US5895574 *Apr 26, 1996Apr 20, 1999Donaldson Company, Inc.Rolled liquid filter using fluted media
US5902364 *Apr 26, 1996May 11, 1999Donaldson Company, Inc.Conical filter
US6048386 *Jun 4, 1998Apr 11, 2000Donaldson Company, Inc.Integrated resonator and filter apparatus
US6214072Apr 17, 1998Apr 10, 2001Menardi Mikropul, LlcCeramic coated filter medium and internal support
US6344073 *Jun 28, 2000Feb 5, 2002Nichias Corporation90.0 parts by weight to 99.9 parts by weight of silica gel; and 0.1 part by weight to 10.0 parts by weight of an iron oxide or a mixture of the iron oxide and another metal oxide.
US6375700Jun 23, 2000Apr 23, 2002Nelson Industries, Inc.Direct flow filter
US6444006May 18, 2000Sep 3, 2002Fleetguard, Inc.High temperature composite ceramic filter
US6449947Oct 17, 2001Sep 17, 2002Fleetguard, Inc.Low pressure injection and turbulent mixing in selective catalytic reduction system
US6482247Dec 18, 2000Nov 19, 2002Nelson Industries, Inc.Multi-panel fluid filter with equalized contaminant passages
US6511599Dec 18, 2000Jan 28, 2003Nelson Industries, Inc.Multi-element cylindrical filter with equalized flow
US6540816 *Aug 23, 2001Apr 1, 2003Fleetguard, Inc.Air filters are heated by microwave power to incinerate or burn-off contaminant; localized heating is focused at specific points along the filter, to conserve energy
US6544310May 24, 2001Apr 8, 2003Fleetguard, Inc.Exhaust aftertreatment filter with particulate distribution pattern
US6551369 *Dec 3, 1999Apr 22, 2003Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.Ceramic flat membrane and method for producing the same
US6582490Aug 23, 2001Jun 24, 2003Fleetguard, Inc.Pre-form for exhaust aftertreatment control filter
US6601385Oct 17, 2001Aug 5, 2003Fleetguard, Inc.Impactor for selective catalytic reduction system
US6669913Mar 9, 2000Dec 30, 2003Fleetguard, Inc.Combination catalytic converter and filter
US6673300 *Feb 28, 2002Jan 6, 2004Corning IncorporatedMethod for plugging selected cells in a honeycomb
US6712869Feb 27, 2002Mar 30, 2004Fleetguard, Inc.Exhaust aftertreatment device with flow diffuser
US6716512 *Jan 11, 2001Apr 6, 2004Ngk Insulators, Ltd.Honeycomb structure and process for production thereof
US6722123Feb 27, 2002Apr 20, 2004Fleetguard, Inc.Exhaust aftertreatment device, including chemical mixing and acoustic effects
US6776814May 8, 2001Aug 17, 2004Fleetguard, Inc.Dual section exhaust aftertreatment filter and method
US6892854Apr 11, 2003May 17, 2005Donaldson Company, Inc.Muffler with catalytic converter arrangement; and method
US6893487 *Dec 23, 2002May 17, 2005Caterpillar IncPower generation aftertreatment system having a particulate filter dimensioned to be interchangeable with a muffler
US6918755Jul 20, 2004Jul 19, 2005Arvin Technologies, Inc.Fuel-fired burner with skewed electrode arrangement
US6946012May 21, 2003Sep 20, 2005Fleetguard, Inc.Filter and forming system
US6978901 *Dec 3, 1999Dec 27, 2005Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.layers have differing particle sizes and surface joints inbetween; simultaneous sintering with minimal shrinkage or pore size reduction; homogenous distribution and high degree of fineness; ultrafiltration and microfiltration membranes
US7052532Dec 20, 2002May 30, 20063M Innovative Properties CompanyHigh temperature nanofilter, system and method
US7201572Dec 16, 2003Apr 10, 20073M Innovative Properties CompanyGas burners; heat shock resistance; high thermal output, low nitrogen oxides emissions
US7211226Feb 12, 2002May 1, 2007Fleetgaurd, Inc.Catalyst and filter combination
US7235124Jan 17, 2006Jun 26, 20073M Innovative Properties CompanyHigh temperature nanofilter, system and method
US7258719Jun 7, 2005Aug 21, 2007Fleetguard, Inc.Filter and forming system
US7258723Sep 27, 2004Aug 21, 2007Arvin Technologies, Inc.Particulate filter assembly and associated method
US7329326Feb 21, 2003Feb 12, 2008Donaldson Company, Inc.Method of making a fluted filter media for air filter
US7340888Mar 10, 2006Mar 11, 2008Donaldson Company, Inc.Diesel particulate matter reduction system
US7393386May 26, 2005Jul 1, 2008Fleetguard, Inc.Exhaust aftertreatment filter with residual stress control
US7404840Jul 3, 2002Jul 29, 20083M Innovative Properties CompanyChemically stabilized β-cristobalite and ceramic bodies comprising same
US7438739 *Jul 26, 2005Oct 21, 2008Dow Global Technologies Inc.Catalyzed soot filter
US7451594Sep 28, 2005Nov 18, 2008Donaldson Company, Inc.Exhaust flow distribution device
US7486962 *Aug 18, 2006Feb 3, 2009Geo2 Technologies, Inc.Extruded porous substrate having inorganic bonds
US7488365Nov 19, 2002Feb 10, 2009Donaldson Company, Inc.Filter element using corrugated media sheet
US7550025Aug 20, 2004Jun 23, 2009Ohcera Co., Ltd.comprising a sintered aluminum titanate product with MgO; use in a diesel engine of an automobile, for cleaning exhaust gas by removing solid carbon particles; air pollution control device, environmentally friendly; improve high mechanical strength, heat resistance
US7578865Aug 18, 2006Aug 25, 2009Geo2 Technologies, Inc.Method of forming a porous substrate having inorganic bonds
US7640732Sep 21, 2006Jan 5, 2010Geo2 Technologies, Inc.Method and apparatus for filtration of a two-stroke engine exhaust
US7658778Dec 16, 2003Feb 9, 2010Global Strategic Materials, LlcReacting sodium acetylide with organo-chlorosilanes; condensing (polymerizing) resultant organo(ethynyl)chlorosilane product with an excess of an alkali metal forming poly(ethynyl)carbosilane, shaping, pyrolysis
US7713324 *Dec 19, 2006May 11, 2010Mann + Hummel GmbhFormed from a corrugated filter layerand a flat filter sheet which are interconnected by embossing points to form channels, eliminating need for an joining agent; simplification; no additional materials requiredto be supplied or cured; cost efficiency; diesel particle filters;ceramics; high strength
US7781372Jul 31, 2007Aug 24, 2010GE02 Technologies, Inc.Fiber-based ceramic substrate and method of fabricating the same
US7855163Jan 16, 2008Dec 21, 2010Geo2 Technologies, Inc.Low coefficient of thermal expansion bonding system for a high porosity ceramic body and methods of manufacture
US7862640Mar 19, 2007Jan 4, 2011Donaldson Company, Inc.Low temperature diesel particulate matter reduction system
US7862641Mar 12, 2009Jan 4, 2011Geo2 Technologies, Inc.Enables substrate porosities of about 60% to 90%; substrate for a filter or catalyst host, or catalytic converter; high permeability
US7901480 *Feb 2, 2009Mar 8, 2011Geo2 Technologies, Inc.Extruded porous substrate having inorganic bonds
US7938876Apr 17, 2008May 10, 2011GE02 Technologies, Inc.Compositional structure of RxMg2Al4+2xSi5-xO18 or RxMg2-xAl4Si5O18; heat treatment; filter; catalytic converter
US7938877Apr 17, 2008May 10, 2011Geo2 Technologies, Inc.Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
US7967887Nov 3, 2006Jun 28, 2011Cummins Filtration Ip, Inc.Exhaust aftertreatment filter with reduced maximum temperature
US7997071Oct 15, 2008Aug 16, 2011Donaldson Company, Inc.Exhaust flow distribution device
US7997425Jan 31, 2003Aug 16, 2011Donaldson Company, Inc.Fluted filter medium and process for its manufacture
US8029591 *Jul 13, 2007Oct 4, 2011Ibiden Co., Ltd.Inorganic fiber aggregate, method for manufacturing inorganic fiber aggregate, honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purifier
US8038759Jul 12, 2008Oct 18, 2011Geoz Technologies, Inc.Fibrous cordierite materials
US8039050Dec 21, 2006Oct 18, 2011Geo2 Technologies, Inc.Method and apparatus for strengthening a porous substrate
US8057568Feb 20, 2008Nov 15, 2011Geo2 Technologies, Inc.Extruded porous substrate and products using the same
US8110151Apr 2, 2007Feb 7, 2012Donaldson Company, Inc.Exhaust flow distribution device
US8192517 *Aug 28, 2006Jun 5, 2012Ibiden Co., Ltd.used as a filter for the purification of the exhaust gas in automobiles; having an efficient collection and removal of harmful particulates in the exhaust gas and an excellent catalytic reaction efficiency for the conversion of harmful gas such as nitrogen oxides; desired pore size distribution; alumina
US8268053Feb 11, 2008Sep 18, 2012Donaldson Company, Inc.Fluted filter media
US8334043Mar 19, 2009Dec 18, 2012Dow Global Technologies LlcCement to make thermal shock resistant ceramic honeycomb structures and method to make them
US8460442Aug 21, 2012Jun 11, 2013Donaldson Company, Inc.Fluted filter media
US8470253Feb 7, 2012Jun 25, 2013Donaldson Company, Inc.Exhaust flow distribution device
US8512499Aug 11, 2011Aug 20, 2013Donaldson Company, Inc.Fluted filter medium and process for its manufacture
US8741016 *Jan 31, 2012Jun 3, 2014Mann + Hummel GmbhFilter device
US8808418Jul 16, 2012Aug 19, 2014Donaldson CompanyLow temperature diesel particulate matter reduction system
US20100113238 *Nov 4, 2009May 6, 2010Osamu HoriuchiBase material for disk, process for producing the same, and disk roll
US20120171457 *Feb 17, 2012Jul 5, 20123M Innovative Properties CompanyFlexible fibrous material,pollution control device, and methods of making the same
US20120198803 *Jan 31, 2012Aug 9, 2012Mann+Hummel GmbhFilter device
CN100402127CAug 20, 2004Jul 16, 2008王世来股份有限公司Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
CN101054509BMay 27, 2002Nov 17, 2010揖斐电株式会社Fastening sealing material and manufacturing method thereof
CN101505847BMar 14, 2007Sep 7, 2011美商绩优图科技股份有限公司An extruded porous substrate having inorganic bonds
EP1155723A2May 10, 2001Nov 21, 2001Fleetguard, Inc.High temperature ceramic filter
EP1285685A2Jul 12, 2002Feb 26, 2003Fleetguard, Inc.Ceramic green body for exhaust aftertreatment control filter
EP1666123A1 *Jul 12, 2002Jun 7, 2006Fleetguard, Inc.Ceramic green body for exhaust aftertreatment control filter
EP2607333A1Mar 19, 2009Jun 26, 2013Dow Global Technologies LLCImproved cement to make thermal shock resistant ceramic honeycomb structures and method to make them
WO2003004438A2Jul 3, 2002Jan 16, 20033M Innovative Properties CoInorganic fiber substrates for exhaust systems and methods of making same
WO2008021587A2 *Mar 14, 2007Feb 21, 2008Carty William MAn extruded porous substrate having inorganic bonds
WO2011008461A2Jun 24, 2010Jan 20, 2011Dow Global Technologies Inc.Ceramic honeycomb structure with applied inorganic skin
WO2011008462A1Jun 24, 2010Jan 20, 2011Dow Global Technologies, Inc.Cement containing multi-modal fibers for making thermal shock resistant ceramic honeycomb structures
WO2011059699A1Oct 27, 2010May 19, 2011Dow Global Technologies LlcImproved cement to make thermal shock resistant ceramic honeycomb structures and method to make them
WO2011082399A1Jan 3, 2011Jul 7, 2011The Dow Global Technologies Llc.Method of making polymeric barrier coating to mitigate binder migration in a diesel particulate filter to reduce filter pressure drop and temperature gradients
WO2012030533A1Aug 17, 2011Mar 8, 2012Dow Global Technologies LlcMethod for applying discriminating layer onto porous ceramic filters
WO2012030534A1Aug 17, 2011Mar 8, 2012Dow Global Technologies LlcMethod for applying discriminating layer onto porous ceramic filters via gas-borne prefabricated porous assemblies
WO2013048850A1Sep 20, 2012Apr 4, 2013Dow Global Technologies LlcCement and skinning material for ceramic honeycomb structures
WO2013090214A2Dec 10, 2012Jun 20, 2013Dow Global Technologies LlcCement and skinning material based on a water-swellable clay, and method for producing segmented or skinned ceramic honeycomb structures
WO2013172916A1Mar 1, 2013Nov 21, 2013Coopersurgical, Inc.Suture passer guides and related kits and methods
Classifications
U.S. Classification55/523, 55/521, 55/498, 55/DIG.30, 55/DIG.5
International ClassificationC04B38/00, C04B35/80, B01D39/20, C04B35/18, F01N3/02, F01N3/022, B01D46/24
Cooperative ClassificationY10S55/05, Y10S55/30, Y02T10/20, C04B35/803, F01N2330/06, C04B38/0006, C04B2111/00793, B01D39/2086, F01N3/0222, C04B35/18, B01D46/24
European ClassificationC04B35/80B, B01D39/20H4B, F01N3/022B, C04B35/18, B01D46/24, C04B38/00B
Legal Events
DateCodeEventDescription
Nov 28, 2005FPAYFee payment
Year of fee payment: 12
Nov 29, 2001FPAYFee payment
Year of fee payment: 8
Dec 8, 1997FPAYFee payment
Year of fee payment: 4
Jun 25, 1993ASAssignment
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAMURA, KENICHI;KIMURA, KUNIO;REEL/FRAME:006596/0463
Effective date: 19930614