Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5337393 A
Publication typeGrant
Application numberUS 08/131,432
Publication dateAug 9, 1994
Filing dateOct 4, 1993
Priority dateNov 30, 1990
Fee statusPaid
Publication number08131432, 131432, US 5337393 A, US 5337393A, US-A-5337393, US5337393 A, US5337393A
InventorsPauli T. Reunamaki
Original AssigneeGlasstech, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for heating a flat glass sheet
US 5337393 A
Abstract
A roller conveyor furnace (12) for heating flat glass sheets has top and bottom heating arrays (28,30) respectively located above and below the plane of conveyance with each heating array including a plurality of elongated heaters (32,34) extending parallel to the direction of conveyance and spaced laterally from each other with respect to the direction of conveyance. The top heating array (28) has one more heater (32) than the number of heaters (34) of the bottom heating array (30) and the bottom heaters (34) are located in a laterally staggered relationship with respect to the top heaters such that each bottom heater is located laterally between a pair of top heaters. A control (36) energizes the top and bottom heating arrays (28,30) to heat each bottom heater (34) only when the two top heaters 32 on opposite lateral sides thereof are heated to thereby prevent excessive lateral edge heating of the conveyed glass sheet. Each heater (32,34) is also preferably of the electrical resistance type including an electric resistance element (32e, 34e) that is energized by the control to provide the heating.
Images(1)
Previous page
Next page
Claims(5)
What is claimed is:
1. A method for heating a flat glass sheet, comprising:
conveying a flat glass sheet into a heating chamber of a housing on horizontal rolls of a roller conveyor along a horizontal plane of conveyance between top and bottom heating arrays each of which includes a plurality of heaters spaced laterally from each other with respect to the direction of conveyance with the top heating array having one more heater than the bottom heating array and with the bottom heating array having the heaters thereof located in a laterally staggered relationship with respect to the heaters of the top heating array such that each bottom heater is located laterally between a pair of top heaters; and
energizing the top and bottom heating arrays to heat each bottom heater only when the two top heaters on opposite lateral sides thereof are heated to thereby prevent excessive lateral edge heating of the conveyed glass sheet.
2. A method for heating a flat glass sheet as in claim 1 wherein the roller conveyor conveys the glass sheet between heating arrays whose heaters each has an elongated shape that extends parallel to the direction of conveyance.
3. A method for heating a flat glass sheet as in claim 1 wherein the roller conveyor conveys the glass sheet between heating arrays whose heaters each is of the electrical resistance type including an electric resistance element that is energized to provide the heating.
4. A method for heating a flat glass sheet as in claim 1 wherein the roller conveyor conveys the glass sheet between heating arrays whose heaters each has an elongated shape and is of the electrical resistance type with each elongated heater extending parallel to the direction of conveyance and with each heater having an electric resistance element that is energized to provide the heating.
5. A method for heating a flat glass sheet, comprising:
conveying a flat glass sheet into a heating chamber of a housing on horizontal fused silica rolls of a roller conveyor along a horizontal plane of conveyance between top and bottom heating arrays each of which includes a plurality of electrical resistance heaters that have elongated shapes extending parallel to the direction of conveyance and that are spaced laterally from each other with respect to the direction of conveyance with the top heating array having one more heater than the bottom heating array and with the bottom heating array having the heaters thereof located in a laterally staggered relationship with respect to the heaters of the top heating array such that each bottom heater is located laterally between a pair of top heaters; and
energizing the top and bottom heating arrays to heat each bottom heater only when the two top heaters on opposite lateral sides thereof are heated to thereby prevent excessive lateral edge heating of the conveyed glass sheet.
Description

This is a continuation of copending application Ser. No. 07/942,376, filed on Sep. 9, 1992 now abandoned, which is a continuation application of Ser. No. 07/621,027 filed on Nov. 30, 1990 (now abandoned).

TECHNICAL FIELD

This invention relates to heating of flat glass sheets on a roller conveyor furnace.

BACKGROUND ART

One problem involved with heating of glass sheets is that the edges of the glass sheet tend to become hotter than the center because the edges have a greater surface area for a given square area of the glass sheet surface due to the edge surface that extends between the oppositely facing planar surfaces of the glass sheet. Such edge heating causes warpage of the glass sheet from its planar condition and thereby adversely affects the resultant quality of the glass sheet after subsequent processing. This edge heating problem is present regardless of what type of heating takes place in the furnace whether it is radiant, natural convection, forced convection or any combination of these different types of heating. With roller conveyance of glass sheets, the bottom surface of the glass sheet is also heated by conduction from the conveyor rolls which can also affect the uniformity of the heating.

Prior roller conveyor furnaces for heating flat glass sheets have incorporated heater controls which control the extent of heating along the different lengths of the furnace but have not heretofore addressed the edge heating problem described above.

BRIEF SUMMARY OF THE INVENTION

An object of the present invention is to provide an improved heater control for a roller conveyor furnace for heating flat glass sheets so as to reduce edge heating and thereby provide a more uniformly heated glass sheet.

In carrying out the above and other objects of the invention, a furnace for heating a flat glass sheet is constructed in accordance with the invention to include a housing defining a heating chamber and to also include a roller conveyor located within the housing and having horizontal rolls for conveying a flat glass sheet to be heated through the heating chamber along a horizontal plane of conveyance. Top and bottom heating arrays of the furnace are respectively located above and below the plane of conveyance. Each heating array includes a plurality of elongated heaters extending parallel to the direction of conveyance and spaced laterally from each other with respect to the direction of conveyance, and the top heating array has one more heater than the bottom heating array. The bottom heating array has its heaters located in a laterally staggered relationship with respect to the heaters of the top heating array such that each bottom heater is located laterally with respect to the direction of conveyance between a pair of top heaters. As disclosed, a control of the furnace energizes the top and bottom heating arrays to heat each bottom heater only when the two top heaters on opposite lateral sides thereof are heated to thereby prevent excessive lateral edge heating of the conveyed glass sheet.

In the preferred construction of the furnace, each heater of each heating array is of the electrical resistance type including an electric resistance element that is energized by the control to provide the heating.

The objects, features and advantages of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic side elevational view of a glass sheet processing system including a roller conveyor furnace constructed in accordance with the present invention to heat flat glass sheets; and

FIG. 2 is a partial cross-sectional view taken through the furnace along line 2--2 of FIG. 1 to illustrate the manner in which heating is performed.

BEST MODE FOR CARRYING OUT THE INVENTION

With reference to FIG. 1 of the drawings, a flat glass sheet processing system is generally indicated by 10 and includes a furnace 12 that is constructed in accordance with the present invention to heat flat glass sheets as is more fully hereinafter described. System 10 also includes another station 14 for processing the glass sheets such as for bending and tempering or other similar processing.

With continuing reference to FIG. 1, the furnace 12 of this invention includes a housing 16 that defines a heating chamber 18 in which the glass sheet heating takes place. A roller conveyor 20 of the furnace is located within the heating chamber 18 and includes horizontally extending rolls 22 for conveying a flat glass sheet G to be heated through the heating chamber along a horizontal plane of conveyance. These conveyor rolls 32 are preferably made of sinter bonded fused silica particles so as to have good resistance to thermal warpage. Also, furnace housing 16 is sufficiently insulated so as to reduce heat loss from the heating chamber 18 to the environment and has an entrance slot 24 through which glass sheets to be heated are introduced into the furnace as well as having an exit slot 26 through which the heated glass sheets exit the furnace and enter the processing station 14. Suitable doors may also be provided at the entrance and exit slots 24 and 26 to open each slot as a glass sheet is passing therethrough and to thereafter close the slot so as to reduce the heat loss from the furnace.

With combined reference to FIGS. 1 and 2, the furnace 12 also includes top and bottom heating arrays 28 and 30, respectively, located above and below the plane of conveyance at the top surface of the rolls 22 of conveyor 20. Each heating array 28 and 30 includes a plurality of heaters 32 and 34, respectively, spaced laterally from each other with respect to the direction of conveyance. The top heating array 28 has one more heater 32 than the heaters 34 of the bottom heating array 30. Furthermore, the bottom heating array 30 has its heaters 34 located in a laterally staggered relationship with respect to the heaters 32 of the top heating array 28. As such, each bottom heater 34 is located laterally between a pair of top heaters 32.

As shown in FIG. 2, a control 36 energizes the top and bottom heating arrays 28 and 30 to heat each bottom heater 34 only when the two top heaters 32 on opposite lateral sides thereof are heated to thereby prevent excessive lateral edge heating of the conveyed glass sheet. Thus, as illustrated, the three central bottom heaters 34 are turned on with the two lateral outboard bottom heaters turned off, and the four central top heaters 32 are turned on with the two lateral outboard top heaters 32 turned off.

Each heater 32 and 34 of the each heating array 28 and 30, respectively, has an elongated shape that extends parallel to the direction of conveyance of the glass sheet on the conveyor rolls 22 of the roller conveyor 20. More specifically, each heater 32 and 34 of each heating array 28 and 30, respectively is preferably of the electrical resistance type including an electric resistance element 32e or 34e that is energized by the control 36 to provide the heating. Connections 32a connect the electric resistance elements 32e of the top heaters 32 with the control 36 at 36a as indicated. Furthermore, connections 34b connect the electric resistance elements 34e of the bottom heaters 34 to the control 36 at 36b. These separate connections of each electric resistance element to the control 36 permit a control portion 36c of the control to selectively control operation of the bottom heaters 34 as previously described so that each bottom heater is only turned on when the two top heaters 32 on each lateral side thereof are also turned on in order to prevent the edge heating problem previously described. A suitable adjuster operates the control to turn the top heaters 32 on or off and thereby also turns the bottom heaters on or off to provide the required extent of heating without excessive lateral edge heating.

While the best mode for carrying out the invention has been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1571282 *Feb 5, 1924Feb 2, 1926Leculier PaulApparatus for drying fabrics or the like
US2629162 *Oct 27, 1949Feb 24, 1953Palatine Dyeing Company IncMethod and apparatus for heattreating textile fabrics
US3040807 *Nov 4, 1959Jun 26, 1962Industrial Nucleonics CorpMoisture balance correction system
US3508899 *Mar 21, 1969Apr 28, 1970Ppg Industries IncEdge heating in annealing process
US3511627 *Mar 13, 1968May 12, 1970Saint GobainMethod and apparatus for the production of flat glass with edge temperature sensing means
US3744985 *Jun 8, 1971Jul 10, 1973Ppg Industries IncMethod and apparatus for controlling temperature of conveyed glass sheets
US4119426 *Sep 2, 1977Oct 10, 1978Ppg Industries, Inc.Method and apparatus for eliminating tong vents in a glass sheet furnace
US4202112 *Dec 8, 1977May 13, 1980Hoechst AktiengesellschaftProcess for the uniform dyeing of textile material webs with the aid of a uniform pre-drying
US4601743 *May 2, 1985Jul 22, 1986Casso Solar CorporationGlass furnace with heat sensing means
US4712086 *Dec 16, 1985Dec 8, 1987O/Y Kyro A/B TamglassSupport frame for resistor elements in a heating furnace for glass sheets
US4807144 *Dec 2, 1986Feb 21, 1989Glasstech International L.P.Temperature control system for glass sheet furnace
US4824464 *Apr 9, 1987Apr 25, 1989Saint-Gobain VitrageProcess and apparatus for heating glass sheets
US4981434 *Jul 18, 1989Jan 1, 1991Arndt H ChandlerDryer or oven of the radiant burner type
US5122180 *Feb 15, 1991Jun 16, 1992Saint-Gobain Vitrage InternationalFurnace for heating glass sheets
US5173102 *Feb 19, 1991Dec 22, 1992Saint-Gobain Vitrage InternationalApparatus for curving glass sheets
FR1062522A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6064040 *Feb 18, 1999May 16, 2000Tamglass Ltd OyMethod and apparatus for the localization of heating in a tempering furnace for glass panels
US6172336 *May 21, 1997Jan 9, 2001Uniglass Engineering OyHeating glass in tempering furnace
US6204483 *Jun 24, 1999Mar 20, 2001Intevac, Inc.Heating assembly for rapid thermal processing system
US6236021 *Jun 24, 1999May 22, 2001Intevac, Inc.Substrate transport assembly for rapid thermal processing system
US6452135 *May 1, 2001Sep 17, 2002Johnson, Iii Joe P.Heating unit with selectively energized heating modules
US7371996 *Oct 27, 2006May 13, 2008Schott AgRoller-equipped annealing lehr
US8259144 *Mar 6, 2012Sep 4, 2012Applied Minds, LlcThermal marking system
US8294743Nov 3, 2011Oct 23, 2012Applied Minds, LlcThermal marking system
US8354616 *Mar 31, 2008Jan 15, 2013Corning IncorporatedHeater apparatus, system, and method for stabilizing a sheet material
US8638350Oct 4, 2012Jan 28, 2014Applied Minds, LlcThermal marking system
US8665300Feb 8, 2013Mar 4, 2014Applied Minds, LlcThermal marking system
US8816252 *Nov 22, 2011Aug 26, 2014Corning IncorporatedMethods and apparatus for localized heating and deformation of glass sheets
US20120162341 *Mar 6, 2012Jun 28, 2012Hillis W DanielThermal marking system
US20130125592 *Nov 22, 2011May 23, 2013Antoine G.D. BissonMethods and apparatus for localized heating and deformation of glass sheets
CN102017787BMar 30, 2009Sep 10, 2014康宁股份有限公司Heater apparatus, system, and method for stabilizing a sheet material
EP0937687A2 *Jan 29, 1999Aug 25, 1999Tamglass Ltd OyMethod and apparatus for the localization of heating in a tempering furnace for glass panels
WO2000001628A1 *Jun 24, 1999Jan 13, 2000Intevac IncHeating assembly for rapid thermal processing system
WO2000001995A1 *Jun 24, 1999Jan 13, 2000Intevac IncSubstrate transport assembly for rapid thermal processing system
WO2000002232A2 *Jun 24, 1999Jan 13, 2000Intevac IncRapid thermal processing system having scanning temperature sensor
Classifications
U.S. Classification392/417, 65/162, 432/31, 65/118, 219/388, 432/8
International ClassificationF27D99/00, F27D19/00, C03B29/08
Cooperative ClassificationF27D99/0006, F27D19/00, C03B29/08
European ClassificationF27D19/00, C03B29/08, F27D99/00A4
Legal Events
DateCodeEventDescription
Dec 28, 2005FPAYFee payment
Year of fee payment: 12
Jul 17, 2002ASAssignment
Owner name: UPS CAPITAL CORPORATION, GEORGIA
Free format text: SECURITY INTEREST;ASSIGNOR:GLASSTECH, INC.;REEL/FRAME:012896/0981
Effective date: 20020708
Owner name: UPS CAPITAL CORPORATION SUITE 550 35 GLENLAKE PARK
Free format text: SECURITY INTEREST;ASSIGNOR:GLASSTECH, INC. /AR;REEL/FRAME:012896/0981
Owner name: UPS CAPITAL CORPORATION SUITE 550 35 GLENLAKE PARK
Owner name: UPS CAPITAL CORPORATION SUITE 550 35 GLENLAKE PARK
Free format text: SECURITY INTEREST;ASSIGNOR:GLASSTECH, INC.;REEL/FRAME:012896/0981
Effective date: 20020708
Owner name: UPS CAPITAL CORPORATION SUITE 550 35 GLENLAKE PARK
Free format text: SECURITY INTEREST;ASSIGNOR:GLASSTECH, INC. /AR;REEL/FRAME:012896/0981
Effective date: 20020708
Dec 28, 2001FPAYFee payment
Year of fee payment: 8
Nov 27, 2000ASAssignment
Owner name: BANK OF AMERICA, N.A., ILLINOIS
Free format text: SECURITY AGREEMENT;ASSIGNOR:GLASSTECH, INC.;REEL/FRAME:014268/0159
Effective date: 20000929
Owner name: BANK OF AMERICA, N.A. 231 S. LASALLE STREETCHICAGO
Free format text: SECURITY AGREEMENT;ASSIGNOR:GLASSTECH, INC. /AR;REEL/FRAME:014268/0159
Owner name: BANK OF AMERICA, N.A. 231 S. LASALLE STREETCHICAGO
Free format text: SECURITY AGREEMENT;ASSIGNOR:GLASSTECH, INC. /AR;REEL/FRAME:014268/0159
Effective date: 20000929
Jan 30, 1998FPAYFee payment
Year of fee payment: 4
Jan 3, 1995ASAssignment
Owner name: FIRST NATIONAL BANK OF BOSTON, THE (AS COLLATERAL
Free format text: SECURITY INTEREST;ASSIGNOR:GLASSTECH, INC.;REEL/FRAME:007286/0036
Effective date: 19950103