Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5403071 A
Publication typeGrant
Application numberUS 08/158,099
Publication dateApr 4, 1995
Filing dateNov 24, 1993
Priority dateNov 24, 1993
Fee statusLapsed
Also published asDE69413556D1, DE69413556T2, EP0730418A1, EP0730418B1, WO1995014405A1
Publication number08158099, 158099, US 5403071 A, US 5403071A, US-A-5403071, US5403071 A, US5403071A
InventorsJeffrey D. Hostetler, Lawrence E. Noone, Leo J. Lagasse
Original AssigneeUnited Technologies Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of brush seal tufting
US 5403071 A
Abstract
Wire is wound from spool 10 onto drum 15 where a multiple strand rope is formed and gripped at multiple locations. The gripped rope is cut into individual bundles, one end of each bundle being bonded to join the wires of the bundle together. The tufts may then be used to form a brush seal.
Images(2)
Previous page
Next page
Claims(3)
We claim:
1. A method of forming brush seals comprising:
mounting a supply spool of metal wire thread rotatably on a support;
rotating a winding drum, and winding wire from said spool onto said drum, forming a rope;
stopping the rotation of said drum after a predetermined number of turns corresponding to the number of strands in said rope;
cutting said metal wire thread between said supply spool and said winding drum;
gripping said rope at a plurality of locations forming a gripped rope;
cutting a portion of said gripped rope to a predetermined length forming a tuft;
bonding one end of the wires of said tuft to each other forming a bonded tuft for use in a brush seal; and
repeatedly cutting a portion of the remainder of said gripped rope and bonding one end of the wires of each tuft so formed.
2. A method of claim 1 wherein the step of winding wire from said spool onto said drum comprises:
winding the wire into a slot around the periphery of said drum.
3. A method of claim 1 wherein the step of bonding one end of the wires of said tuft comprises:
welding the ends of said wires to each other.
Description
TECHNICAL FIELD

The invention relates to the manufacture of metallic brush seals and in particular to a method of forming individual tufts for the fabrication of the seal.

BACKGROUND OF THE INVENTION

Brush seals can be applied to a variety of jet engine applications. Uniform wire bristle density is an important determinant of proper seal manufacture.

One method of manufacturing of brush seals uses tufts containing uniform numbers of small diameter wires. In forming these tufts it is important that the wires not be twisted in a bundle and that they be aligned properly preferably prior to cutting to length. The procedure should preferably be one with little waste of wire and no sensitivity to the length of the feed strand. There should be an inherent accurate control of the number of wires in each tuft.

SUMMARY OF THE INVENTION

A supply spool or spools containing the metal wire which is to be used for the tufts is rotatably mounted on a support. The end of the wire is secured to a winding drum which is rotated with the wire wound in a slot around the periphery of the drum, thereby forming a rope. The rotation of the drum is stopped after a predetermined number of turns, this corresponding to the number of strands in the rope.

The metal wire thread from the supply spool is then cut while the rope continues to be gripped at a plurality of locations on the drum. This gripped rope is cut into sections of predetermined length forming the tufts. These tufts are bonded at one end for use in a brush seal. Repeated cutting of the remaining rope is accomplished to complete the fabrication of the selected number of tufts.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a sketch showing the winding of the wire on the drum;

FIG. 2 is a drawing of a typical retention clamp; and

FIG. 3 is a sketch showing the cutting of the tufts, with an alternate winding arrangement shown in phantom.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1 a spool 10 containing metallic wire 12 is rotatably mounted on a frame 14. This wire is typically of a diameter of 0.0028 inches.

One end of the wire is secured to a drum 15 which is thereafter rotated in the direction shown by arrow 16. Clamps 18 are cammed to open and close permitting the wire to fit within a slot, with the clamped then closing to retain the wire. A wire tensioner 20 is located between the spool and the drum to provide uniform tension in the wire as it is wound around the drum.

As the drum 15 is rotated a rope is formed, typically between 250 and 300 wires corresponding to a like number of rotations of the drum. The wire is cut between the supply spool and the winding drum and secured to the drum. A typical clamp located on the drum 15 is illustrated in FIG. 2. The clamp 22 opens and closes over a peripherally located slot 24 to retain the rope therein while opening to admit the additional strands. Plural spools 10 may be used leading to fewer rotations for the desired number of wires. The actual number of wires may be more or less than the typical number set forth above.

The mandrel 26 of the winding drum is preferably relocated to a second, tuft cutting location. Shown in phantom in FIG. 3 is a spool 30 and a tensioner 32 indicating that it is possible to carry out both operations at the same location.

Also shown in FIG. 3 are the original clamps 18 which were used to clamp the wire during winding around the drum. Additional clamps 38 are used during the cutting operation, since the relatively short tufts must be retained by a clamp until they are secured together.

Taking advantage of a notch 40 located in the winding drum a bundle of the rope is gripped by a clamp 42. The jaws of this clamp are configured to maintain the desired cross section of the wire bundle. A cutter mechanism 44 severs the bundle of wires 46. One end is retained in the groove while the other end is removed by the clamp in a path 48 to locate the severed ends of the bundle at a securing station 50. Here the ends of the wires are welded together by welding mechanism 52. Alternate forms of joining the wires together such as shrink tubing glue or wax could be used.

An indexing clamp arrangement 54 advances the wire bundle one tuft length with the drum rotating accordingly. The earlier secured and welded tuft is then severed from the end of the bundle.

The newly cut end is positioned at the securing station and the process is repeated until the entire wire bundle has been used. Typically the drum will be about 29 inches in diameter with the total of 60 clamps being used. Six to twelve of these clamps will be used and activated on the first fixture during the winding of the wire around the drum to form the rope. The remainder are required in the cutting of the tufts which with the described drum would be approximately 60 tufts each one and a half inches long.

After being so formed these tufts are then used for the fabrication of a brush seal. This machine may be easily modified for cutting tufts of different lengths and of different numbers of wires per tuft.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3917150 *Nov 15, 1974Nov 4, 1975Rolls Royce 1971 LtdSeals and method of manufacture thereof
US4204629 *Jul 7, 1978May 27, 1980Rolls-Royce LimitedBrush seal and a method of manufacture
US4274575 *May 30, 1979Jun 23, 1981Flower Ralph F JMethod of manufacturing brush seals
US4642867 *Feb 7, 1986Feb 17, 1987Rolls-Royce LimitedBrush seal manufacture
US4678113 *Feb 10, 1986Jul 7, 1987Rolls-Royce PlcBrush seals
US4730876 *Jul 31, 1986Mar 15, 1988Motoren- Und Turbinen Union Munchen GmbhApparatus for manufacturing a brush seal
US4768725 *May 23, 1986Sep 6, 1988Rolls-Royce PlcApparatus for winding a filament onto a former, having guide structure for reducing filament bending
US4989919 *Aug 14, 1989Feb 5, 1991Pratt & Whitney CanadaMethod and apparatus for manufacturing compliant brush seals
US5165758 *Aug 7, 1991Nov 24, 1992Technetics CorporationPlace and bundle method for the manufacture of brush seals
US5183197 *Aug 7, 1991Feb 2, 1993Technetics Corp.Bundle and place method for the manufacture of brush seals
DE4041475A1 *Dec 22, 1990Jun 25, 1992Zahoransky Anton FaBrush making machine with continuous feed - has bristle material bundled and supplied on large reels
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5678898 *Apr 17, 1995Oct 21, 1997General Electric CompanyMethod for making a brush seal
US7565729 *Mar 17, 2006Jul 28, 2009General Electric CompanyMethods of manufacturing a segmented brush seal for sealing between stationary and rotary components
EP2224152A2 *Feb 1, 2010Sep 1, 2010General Electric CompanySystems and methods and apparatus involving fabricating brush seals
Classifications
U.S. Classification300/21
International ClassificationA46D1/08, A46B3/22
Cooperative ClassificationA46D1/08
European ClassificationA46D1/08
Legal Events
DateCodeEventDescription
May 29, 2007FPExpired due to failure to pay maintenance fee
Effective date: 20070404
Apr 4, 2007LAPSLapse for failure to pay maintenance fees
Oct 19, 2006REMIMaintenance fee reminder mailed
Oct 2, 2002FPAYFee payment
Year of fee payment: 8
Sep 11, 1998FPAYFee payment
Year of fee payment: 4
Nov 24, 1993ASAssignment
Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSTETLER, JEFFREY D.;NOONE, LAWRENCE E.;LAGASSE, LEO J.;REEL/FRAME:006787/0164;SIGNING DATES FROM 19931105 TO 19931115