Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5415555 A
Publication typeGrant
Application numberUS 08/200,037
Publication dateMay 16, 1995
Filing dateFeb 22, 1994
Priority dateDec 14, 1992
Fee statusLapsed
Also published asCA2110892A1, CA2110892C, DE69301531D1, DE69301531T2, EP0602610A1, EP0602610B1, US5342207
Publication number08200037, 200037, US 5415555 A, US 5415555A, US-A-5415555, US5415555 A, US5415555A
InventorsMohi Sobhani
Original AssigneeHughes Aircraft Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrical interconnection apparatus utilizing raised connecting means
US 5415555 A
Abstract
A pair of electrical circuits (20, 22), which may be both flexible or one flexible and one rigid, are interconnected by projections, such as bumps (24) and rings (26) . The projections are formed from substantially inelastic dielectric material, such as an epoxy defining bumps (34) and rings (36), which are plated with copper (38). Projections (24, 26) of one circuit are disposed to interconnect with mating projections on the other circuit, the interconnection being bump to bump, bump to ring, or bump to pad. The projections may be formed on a copper-clad substrate (42) or on plated-through holes (72) on a printed wiring board (70). Alternately, polygonal pads (94) on a circuit (90) may be joined to a projection. Further, a plurality of bump projections (106), electrically connected to the same or different circuits, may collectively interconnect with a single oval ring projection (108).
Images(3)
Previous page
Next page
Claims(5)
What is claimed is:
1. An electrical connector comprising:
(a) a first member comprising:
a first substrate;
electrically conductive material on said first substrate having first sites defining positions of electrical interconnections;
first projections of substantially inelastic dielectric material affixed to and projecting from said first sites said first projections comprising rounded mounts; and
a first electrically conductive layer on and supported by each of said first projections and electrically coupled to said electrically conductive material adjacent thereto; and
(b) a second member comprising:
a second substrate;
electrically conductive material on said second substrate having second sites defining positions of electrical interconnections;
second projections of substantially inelastic dielectric material affixed to and projecting from said second sites, said second projections comprising ring structures; and
a second electrically conductive layer on and supported by each of said second projections and electrically coupled to said electrically conductive material adjacent thereto, wherein said first member is mated to said second member to produce electrical interconnection therebetween.
2. An electrical connector according to claim 1 in which said first and second projections consist of a material whose coefficient of thermal expansion matches that of said substrate, which provides good adhesion to said conductive material and layer, and which resists bubbling or expansion after it is cured, which resists bursting said conductive material and layer, and which resists any degradation through volume expansion.
3. An electrical connector according to claim 1 in which said substantially inelastic dielectric material comprises an epoxy resin.
4. An electrical connector according to claim 1 wherein said first member further includes means defining plated-through holes in said first substrate filled with electrically conductive matter, said filled plated-through hole means supporting said electrically conductive material and layer and any of said substantially inelastic dielectric material thereunder.
5. An electrical connector according to claim 4 in which said filled plated-through hole means extends to opposed sides of said first substrate and supports said electrically conductive material on said opposed sides.
Description

This is a division of application, Ser. No. 07/990,475 filed 14 Dec. 1992, now U.S. Pat. No. 5,342,207.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and apparatus for interconnecting electrical conductors by use of electrical protuberances, such as raised bumps and rings.

2. Description of Related Art and Other Considerations

There are many techniques for obtaining interconnections among printed wiring boards, and ceramic and silicon wafers. Connectors, which are soldered and aligned to mating connectors, are very expensive. Hand wiring and soldering do not result in cost savings and the high density connections which are increasingly desired in the industry.

Bumps or projecting metallic contacts, as an alternate to soldered and alignable connectors, are known techniques for interconnecting flexible to flexible circuits, flexible to rigid printed circuits, or such circuits to electric components. Examples utilizing such bumps are described in U.S. Pat. Nos. 4,125,310 and 4,453,795. These patents describe a plurality of generally resilient metallic raised projections. In the latter patent, a resilient backup arrangement is used to avoid overstressing and squashing of the resilient contacts or projections beyond their elastic limit, which overstressing precludes repeated mating and unmating of connectors. These terminations otherwise effectively and reliably interconnect mating circuits, but their manufacture can be difficult, time consuming and costly. Many times, repeated etching and plating operations are required. Special attention is often required to select special materials, methodology, tooling and artwork. Many techniques limit the size of the bumps and, therefore, the density of interconnection which is desired.

It is, therefore, desirable to avoid these problems.

SUMMARY OF THE INVENTION

The present invention is directed to enabling the interconnection of a pair of electrical circuits, whether both are flexible or one is flexible and the other is rigid. Electrically conductive material on a first connector is placed on a substrate on which there are sites that define positions of electrical connections. Projections of substantially inelastic dielectric material, e.g., epoxy resin, are affixed to these sites, and an electrically conductive layer is placed atop each of the projections and the electrically conductive material adjacent to the projections.

The inelastic dielectric material must be carefully selected to match its coefficient of thermal expansion with that of the circuit, to have good adhesion to its base material, and not to bubble or expand after it is cured or to burst the underlying copper.

Each of the projections may comprise a rounded mount or a walled structure. The walls are preferably fully enclosed and may be circular, oval or other shape, for example, polygonal. When configured as an enlarged ring or oval, the walled structure may be used to contact a plurality of mounts on a mating cable.

Several advantages are derived from the present invention. It is possible to obtain a higher density interconnection than was previously obtainable. The cost of manufacture is relatively low. Connection and disconnection between mating cables are simple and repeatable. The use of solder connections, special connectors and wired interconnections are avoided. Facile interchangeability amongst different types of flexible or rigid cables and printed wiring boards is obtainable.

Other aims and advantages, as well as a more complete understanding of the present invention, will appear from the following explanation of exemplary embodiments and the accompanying drawings thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates, in cross-section, a pair of flexible cables which are interconnectable, in accordance with the teachings of the present invention, using a rounded mount positionable to contact with a ring;

FIG. 2 is a top view of one of the flexible cables depicted in FIG. 1;

FIGS. 3-9 illustrate a method for forming the bump and ring formations shown in FIGS. 1 and 2;

FIGS. 10-12 show an alternate embodiment of the present invention utilizing plated-through holes as bases for the bump or ring interconnects;

FIG. 13 is a view of a further embodiment of the present invention utilizing a combination of bump projections and flat interconnections for mating, for example, with bump projections on a companion circuit; and

FIG. 14 is a perspective view of still another embodiment of the present invention showing a plurality, illustrated as two, of bump projections contactable with a single oval projection on a mating connector.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

As shown in FIGS. 1 and 2, a pair of flexible circuits 20 and 22 each comprise a pair of protuberances configured as bumps 24 and rings 26. Bump 24 of circuit 20 is positioned to face ring 26 of circuit 22, while ring 26 of circuit 20 faces bump 24 of circuit 22. Therefore, when circuits 20 and 22 are placed in contact with one another, their respective bumps and rings form mating interconnections.

Each circuit 20 and 22 is similarly fabricated, and comprises a substrate 28, an electrically conductive layer 30 adhered thereto, electrically conductive pads 32 on layer 30, projections 34 and 36 of relatively inelastic dielectric material, and a conductive layer 38 on the projections.

Substrate 28 may comprise a ceramic or silicon semiconductor, a polyimide plastic, epoxy glass, aluminum nitride, or other suitable electronic material. The material of layer 30, pads 32, and layer 38 may be copper. Pads 32 define the sites of the projecting electrical interconnects, and projections 34 and 36 define respective bump and ring outlines.

While copper layer 38 is shown also to form an interconnection 40 between bumps 24 and rings 26 of respective circuits 20 and 22, it is to be understood that the particular circuit design may not require that such an interconnection 40 exist between every bump and ring pair.

While bumps 24 are depicted as generally circular, they may be configured in any convenient manner. Likewise, rings 26 are illustrated also as circular in configuration; however, they also may be of any other configuration, such as elliptical, oval, and polygonal.

Each of flexible circuits 20 and 22 are fabricated according to the process depicted in FIGS. 3-9. As shown in FIG. 3, a conventional cladded article 42 of conventional design and construction comprises a substrate 44 having copper cladding 46 distributed thereover. Substrate 44 is formed of any conventional plastic material, e.g., a polyimide plastic.

As shown in FIG. 4, sites 48 on article 42 are selected for the formation of respective bumps 24 and rings 26, and are precisely located by the positioning of a screen 50 on copper cladding 46. Screen 50 has openings 52 and 54 therein, which respectively define the sites for bumps 24 and rings 26. For the production of a bump and a ring, opening 52 forms a simple round opening, while opening 54 is angular in shape in order to define the ring.

As shown in FIG. 5, a relatively inelastic dielectric material, such as an epoxy resin, is deposited by conventional methods on copper cladding 46 through openings 52 and 54 of screen 50, and thereby respectively forms an epoxy base 56 for bump 24 through opening 52 and an epoxy ring 58 for ring 26 through opening 54.

It is important that the dielectric material have several characteristics. The inelastic dielectric material must be carefully selected to match its coefficient of thermal expansion with that of the circuit, to provide good adhesion to its base material, and not to bubble or expand after it is cured or to burst the underlying copper. Thus, the dielectric material is so selected that its coefficient of thermal expansion be below that of the underlying conductor, for example copper, to prevent any degradation through volume expansion.

The preferred dielectric material comprises a non-metallic epoxy resin, known in the industry as EPON (a trademark of Shell Chemical Company) and more specifically comprises EPON 825, which is essentially pure diglycidyl ether of Bisphenol A, a thermosetting resin, which is chemically activated and heat cured to an irreversible condition. A preferred epoxy composition used in the present invention comprises EPON 825, a curing agent, such as a diamine, and an accelerator. A particular composition used in constructing the present invention comprised EPON 825 and an accelerated amine curing agent comprising menthane diamine (250.02.0 parts by weight, pbw), metaphenylene diamine (100.02.0 pbw), and N-benzyl dimethylamine (1.50.2 pbw) as the accelerator. Optionally, an anhydride curing agent, such as nadic methyl anhydride, may be used. The preferred composition in accordance with the present invention also comprises glass powder, to enable the curing process to be sufficiently rapid, so as to provide an acceptable end item whose geometry can be controlled, and to avoid relaxation and flow of the resin from the desired geometry.

Screen 50 is then removed to present the configuration illustrated in FIG. 6.

A combination of electroless and electroplated copper 60, as illustrated in FIG. 7, is then deposited by conventional techniques over copper cladding 46 and epoxy projections 56 and 58. As is standard in the industry, an electroless coating is first deposited over the formation depicted in FIG. 6 to insure that copper will cover the dielectric materials comprising projections 56 and 58 as well as cladding 46, the electroless deposit thereby forming an electrically conductive surface for the subsequent deposition of an electroplate of copper.

The final definition of the completed circuit is obtained by use of a photoresist 62 and mask/artwork 64 above the photoresist, as illustrated in FIG. 8. Using conventional photographic and etching techniques, which employ photoresist 62 and mask/artwork 64, selective portions of copper cladding 46 and copper plate 60 are etched away, as outlined by the mask and developed photoresist portions designated by indicium 66, thus resulting in the configuration illustrated in FIG. 9, as well as in FIGS. 1 and 2.

Referring now to FIGS. 10-12, a second embodiment of the present invention relates to projections, such as bumps and rings as above described, formed on a printed wiring board 70 having plated-through holes 72 therein. Such a board with plated-through holes is of conventional construction, board 70 including a matrix 74 of dielectric material and internal conductive traces or leads 76 for connecting one or more plated-through holes 72. As is conventional, plated-through holes 72 are formed with through openings 78 therein.

To form projections on the plated-through holes, as shown in FIG. 11, openings 78 are filled with conductive material 80. Then, by processing similar to that described with respect to FIGS. 3-9, projections 82 of epoxy resin and their coverings of an electroless and electroplated copper plate 84 are formed on the filled plated-through holes, as shown in FIG. 12. While shown as bumps, the projections may be configured as desired and be formed not only on an upper surface 86 but also on a lower surface 88 of printed wiring board 70 as depicted in FIG. 12.

Referring now to FIG. 13, a further embodiment of the present invention, comprising a flexible or rigid circuit 90, includes a plurality of projections 92 coupled to rectangular pads 94 by connections 96. While shown as having rectangular configurations, pads 94 may take any polygonal or other configuration. The purpose of pads 94 is to provide a contacting surface of sufficiently large area for contact with one or more projections on a mating circuit.

In FIG. 14, a circuit assembly 100 is shown as comprising a pair of circuits 102 and 104. The two circuits are interconnected by means of bump projections 106 and a ring projection 108. Both projections 106 and 108 are formed in the manner described above with respect to FIGS. 3-9, or may comprise the plated-through hole configuration depicted in FIGS. 10-12. Ring projection 108 preferably is ovular in configuration and is sufficiently large in area so as to encompass both bump projections 106. While shown as only two bump projections, projections 106 may comprise more than two. In this embodiment, the plurality of bump projections 106 may be all interconnected with one another, in order to insure that there would be at least one electrical connection with oval ring projection 108. Alternately or in addition, the plurality of bump projections 106 may lead to different circuitry and other connections on circuit 102, in order to utilize ring projection 108 to connect the several bump projections and their respective circuits on circuit 102.

Although the invention has been described with respect to particular embodiments thereof, it should be realized that various changes and modifications may be made therein without departing from the scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4116517 *Dec 3, 1976Sep 26, 1978International Telephone And Telegraph CorporationFlexible printed circuit and electrical connection therefor
US4125310 *Dec 1, 1975Nov 14, 1978Hughes Aircraft CoElectrical connector assembly utilizing wafers for connecting electrical cables
US4268956 *Mar 15, 1979May 26, 1981Bunker Ramo CorporationMethod of fabricating an interconnection cable
US4403272 *Jun 2, 1980Sep 6, 1983Oak Industries Inc.Membrane switch interconnect tail and printed circuit board connection
US4453795 *Jul 7, 1981Jun 12, 1984Hughes Aircraft CompanyCable-to-cable/component electrical pressure wafer connector assembly
US4740700 *Sep 2, 1986Apr 26, 1988Hughes Aircraft CompanyThermally insulative and electrically conductive interconnect and process for making same
US4813129 *Jun 19, 1987Mar 21, 1989Hewlett-Packard CompanyInterconnect structure for PC boards and integrated circuits
US4902606 *Aug 1, 1988Feb 20, 1990Hughes Aircraft CompanyCompressive pedestal for microminiature connections
US5129142 *Oct 30, 1990Jul 14, 1992International Business Machines CorporationEncapsulated circuitized power core alignment and lamination
US5147208 *Jun 28, 1991Sep 15, 1992Rogers CorporationFlexible printed circuit with raised contacts
US5158466 *Mar 4, 1991Oct 27, 1992Hughes Aircraft CompanyElectrical connector part
US5172050 *Feb 15, 1991Dec 15, 1992Motorola, Inc.Probe fixture for testing a circuit
US5207585 *Oct 31, 1990May 4, 1993International Business Machines CorporationThin interface pellicle for dense arrays of electrical interconnects
EP0295914A2 *Jun 16, 1988Dec 21, 1988Hewlett-Packard CompanyAn interconnect structure for PC boards and integrated circuits
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5796050 *Feb 5, 1997Aug 18, 1998International Business Machines CorporationFlexible board having adhesive in surface channels
US5831444 *Jul 9, 1997Nov 3, 1998General Dynamics Information Systems, Inc.Apparatus for performing a function on an integrated circuit
US5938455 *May 15, 1996Aug 17, 1999Ford Motor CompanyThree-dimensional molded circuit board having interlocking connections
US5962924 *Aug 17, 1998Oct 5, 1999Integrated Device Technology, Inc.Semi-conductor die interconnect
US5977784 *Aug 20, 1998Nov 2, 1999General Dynamics Information Systems, Inc.Method of performing an operation on an integrated circuit
US6012221 *Aug 17, 1998Jan 11, 2000International Business Machines CorporationMethod of attaching a flexible circuit to a substrate
US6118080 *Jan 13, 1998Sep 12, 2000Micron Technology, Inc.Z-axis electrical contact for microelectronic devices
US6245444Oct 2, 1997Jun 12, 2001New Jersey Institute Of TechnologySubstrate with cantilever
US6417686Jan 26, 2000Jul 9, 2002Si Diamond Technology, Inc.Display panel test device
US6552563Nov 14, 1996Apr 22, 2003Si Diamond Technology, Inc.Display panel test device
US6662440 *Sep 20, 1999Dec 16, 2003Micron Technology, Inc.Z-axis electrical contact for microelectric devices
US6792679 *Nov 17, 2000Sep 21, 2004Japan Aviation Electronics Industry LimitedMethod of producing electrical connecting elements
US7059868 *Mar 3, 2003Jun 13, 2006Western Digital (Fremont), Inc.Connection of trace circuitry in a computer disk drive system
US7230339 *Mar 28, 2003Jun 12, 2007Intel CorporationCopper ring solder mask defined ball grid array pad
US7419382 *Oct 30, 2006Sep 2, 2008Kabushiki Kaisha ToshibaPrinted circuit board, electronic device, and manufacturing method for printed circuit board
US8194355May 8, 2008Jun 5, 2012Western Digital Technologies, Inc.Head stack assembly with a laminated flexure having a snap-through feature
US8279560Mar 4, 2009Oct 2, 2012Western Digital Technologies, Inc.Head stack assembly with suspension tail bond alignment by solder pin
US8552310 *Jan 9, 2012Oct 8, 2013Seiko Epson CorporationMounting structure of electronic component
US8611052Mar 27, 2012Dec 17, 2013Western Digital Technologies, Inc.Systems and methods for aligning components of a head stack assembly of a hard disk drive
US20100317233 *Jun 25, 2010Dec 16, 2010Jae-Yong KohElectrical connection system
US20120103673 *Jan 9, 2012May 3, 2012Seiko Epson CorporationMounting structure of electronic component
WO1999000874A1 *Jun 26, 1998Jan 7, 1999Quantum CorpCircuit connector
Classifications
U.S. Classification439/74
International ClassificationH05K3/00, H05K1/14, H01R12/16, H05K3/36, H01R43/00, H01R12/04, H05K3/40
Cooperative ClassificationH05K2201/09481, H05K2201/09745, H01R12/714, H05K3/365, H05K2201/0367, H05K3/0094, H05K2203/167, H05K3/4007, H05K2201/0959
European ClassificationH05K3/36B4, H01R23/72B, H05K3/40B
Legal Events
DateCodeEventDescription
May 16, 2007LAPSLapse for failure to pay maintenance fees
Nov 29, 2006REMIMaintenance fee reminder mailed
Dec 21, 2004ASAssignment
Owner name: HE HOLDINGS, INC., A DELAWARE CORP., CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:HUGHES AIRCRAFT COMPANY, A CORPORATION OF THE STATE OF DELAWARE;REEL/FRAME:016087/0541
Effective date: 19971217
Owner name: RAYTHEON COMPANY, MASSACHUSETTS
Free format text: MERGER;ASSIGNOR:HE HOLDINGS, INC. DBA HUGHES ELECTRONICS;REEL/FRAME:016116/0506
Owner name: HE HOLDINGS, INC., A DELAWARE CORP. 7200 HUGHES TE
Free format text: CHANGE OF NAME;ASSIGNOR:HUGHES AIRCRAFT COMPANY, A CORPORATION OF THE STATE OF DELAWARE /AR;REEL/FRAME:016087/0541
Oct 18, 2002FPAYFee payment
Year of fee payment: 8
Jan 6, 1999SULPSurcharge for late payment
Jan 6, 1999FPAYFee payment
Year of fee payment: 4
Dec 8, 1998REMIMaintenance fee reminder mailed
Feb 22, 1994ASAssignment
Owner name: HUGHES AIRCRAFT COMPANY, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOBHANI, MOHI;REEL/FRAME:006896/0567
Effective date: 19940214