US5423117A - Method for fabricating solenoid device for electromagnetic valves - Google Patents

Method for fabricating solenoid device for electromagnetic valves Download PDF

Info

Publication number
US5423117A
US5423117A US08/179,665 US17966594A US5423117A US 5423117 A US5423117 A US 5423117A US 17966594 A US17966594 A US 17966594A US 5423117 A US5423117 A US 5423117A
Authority
US
United States
Prior art keywords
coil
solenoid
bobbin
iron core
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/179,665
Inventor
Yoichiro Okada
Ryushirou Kaneko
Keisuke Shimauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to US08/179,665 priority Critical patent/US5423117A/en
Priority to EP94300179A priority patent/EP0662696B1/en
Assigned to SMC CORPORATION reassignment SMC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANEKO, RYUSHIROU, OKADA, YOICHIRO, SHIMAUCHI, KEISUKE
Application granted granted Critical
Publication of US5423117A publication Critical patent/US5423117A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Definitions

  • This invention relates to a method for fabricating a solenoid device for electromagnetic valves, and more particularly to a method for fabricating a molded solenoid device which is encased in a molded synthetic resin shell.
  • the solenoid devices which are widely used for electromagnetic valves are largely constituted by a solenoid coil wound on a bobbin of a non-magnetic material, a couple of rod-like coil terminals projected outwardly from the bobbin and connected to the head and tail ends of the winding wire of the solenoid coil, a fixed iron core fixedly mounted in an iron core chamber coaxially at the center of the bobbin, a magnetic frame of a magnetic material located to circumvent the afore-mentioned component parts, and a movable iron core disposed movably within the iron core chamber, the circumference of the magnetic frame being embedded in an insulating synthetic resin material by molding.
  • the mold In order to mold the solenoid device with an insulating synthetic resin, it has been the general practice to place, within a mold cavity, a solenoid assembly except the movable iron core, and to introduce a molten synthetic resin material into the mold cavity around the solenoid assembly.
  • a solenoid assembly In order to mold the solenoid assembly with an insulating synthetic resin, it has been the general practice to place, within a mold cavity, a solenoid assembly except the movable iron core, and to introduce a molten synthetic resin material into the mold cavity around the solenoid assembly.
  • the mold is usually provided with a couple of coil terminal escape holes in which the respective coil terminals are fitted when the solenoid assembly is set in molding position in the mold cavity.
  • the above-mentioned sealing cover members are each formed in a tubular shape with a tapered circumferential surface from an intermediate portion toward one end to be located on the outer side when fitted on the terminal coils, so that they snugly fit into the coil terminal escape holes and tightly held in abutting engagement with inner edge portions of the latter.
  • FIG. 1 is a sectional view of an electromagnetic valve incorporating a molded solenoid device fabricated by the method of the present invention
  • FIG. 2 is a sectional view of a solenoid assembly, explanatory of the steps of assembling solenoid device according to the method of the invention.
  • FIG. 3 is a sectional view explanatory of the method of molding the solenoid device with an insulating synthetic resin material.
  • FIG. 1 Illustrated in FIG. 1 is an electromagnetic valve incorporating a solenoid device 1 fabricated by the method of the present invention.
  • This electromagnetic valve is composed of a valve section 2 including an inlet port P and an outlet port A for pressurized fluid like compressed air, and a valve seat 31 provided in a fluid passage intercommunicating the inlet port P and the outlet port A, a solenoid device 1 mounted on a casing 30 of the valve section 2, and an electrical wiring section 3 mounted on top of the upper end of the solenoid device 1.
  • the reference 20 indicates a return spring biasing the movable iron core 17 in the closing direction or in the direction toward the valve seat 31.
  • the electrical wiring section 3 includes a printed wiring board 41 which is housed in a cover 40 and electrically connected to the above-mentioned coil terminals 11 and to a power supply terminal 42, the printed wiring board 41 supporting thereon various electrical parts including an indicator, resistors, counter electromotive force inhibitor and so forth although they are omitted in the drawing for the sake of simplicity of illustration.
  • the movable iron core 17 upon supplying current to the coil 12 of the solenoid device 1 through the power supply terminal 42, the movable iron core 17 is electromagnetically attracted by the fixed iron core 15. As a result, the valve seat 31 is opened, permitting the pressurized fluid to flow from the inlet port P to the outlet port A. As soon as the power supply is cut off, the movable iron core 17 is returned to the position of FIG. 1 under the influence of the biasing action of the return spring 20, closing the valve seat 31 to block the flow of the pressurized fluid.
  • the solenoid device 1 is fabricated through the following steps. As seen in FIG. 2, firstly a couple of coil terminals 11 are fixedly fitted in terminal anchor holes 22 which are provided on one flange 10b of the bobbin 10. Nextly, the leading or head end of a winding wire 12a is led out through a groove 24 on the flange 10b, and soldered to one coil terminal 11 after being entwined around the latter several times.
  • the wire 10b is wound on the cylindrical body portion 10a of the bobbin 10 to form a solenoid coil of a required number of turns, and the tail end of the winding wire 10b is led out through a groove 25 on the flange 10b and soldered to the other coil terminal 11 after being entwined around the latter several times.
  • resilient sealing cover members 13 of an electrically insulating material like rubber or synthetic resin material, are fitted on base end portions of the coil terminals 11 in such a manner as to cover the connected ends of the winding wire 12a.
  • Each of the sealing cover members 13 is formed in a short tubular shape having its outer periphery tapered toward one end to be located on the outer side when fitted on the coil terminal 11.
  • the fixed iron core 15 is fixedly mounted in the iron core chamber 14 within the cylindrical body portion 10a of the bobbin 10, and the magnetic frame 16 is fixed around the circumference of the bobbin 10.
  • the magnetic frame 16 is provided with radial inlet openings 23 at suitable positions to let the molding synthetic resin 19 enter and fill in the internal space of the magnetic frame 16.
  • the solenoid assembly which has been assembled through the above-described steps is then set in split mold members 50a and 50b, in such a way that the coil terminals 11 are fitted in a couple of coil terminal escape holes 51 as shown in FIG. 3, with the tapered portions 13a of the respective sealing cover members 13 held in abutting engagement with the inner edges of the latter to form seals around the coil terminals 11 in the respective escape holes 51.
  • One mold member 50a is provided with an abutting wall portion 52 to be held in engagement with the top surface of the magnetic frame 16, while the other mold member 50b is provided with abutting wall portion 53 to be fitted into the iron core chamber 14 for engagement with the electromagnetically attracting surface of the fixed iron core 15 and an abutting wall portion 54 to be held in abutting engagement with the bottom surface of the magnetic frame 16.
  • the two mold members 50a and 50b are closed on one another, fitting the abutting portion 53 of the mold member 50b into the iron core chamber 14.
  • the solenoid assembly Upon closing the two mold members 50a and 50b, the solenoid assembly is retained in position within the mold by the above-mentioned abutting wall portions 52, 53 and 54, and the tapered circumferences 13a of the sealing cover members 13 are tightly abutted against the inner marginal edges of the terminal escape holes 51 in a wedge-like fashion.
  • molten synthetic resin material 19 is introduced into the mold cavity 55 around the solenoid assembly within the closed mold members 50a and 50b to mold the solenoid assembly.
  • the sealing cover members 13 are embedded in the synthetic resin material 19 except their outer end portions which are partly exposed to the outside.
  • the synthetic resin material 19 which has been introduced into the mold cavity has no possibility of leaking to the outside through the terminal escape holes 15 since the tapered portions 13a of the sealing cover members 13 are tightly abutted against the inner edge portions of the escape holes 15 as described hereinbefore.
  • the coil terminals 11 are kept from direct contact with inner edge portions 51a of the terminal escape holes 51, precluding the possibilities of damages to the coil terminals 11 or breakage of the coil winding 12a.
  • the mold members 50a and 50b are opened to eject the molded solenoid assembly, which is encased in the plastic insulation shell, and the movable iron core 17 is mounted in the iron core chamber 14 of the molded solenoid assembly to complete a solenoid device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

A method for fabricating a molded solenoid device which is encased in an insulating synthetic resin shell, in which a resilient sealing cover member of an electrically insulating material is fitted on each one of a couple of solenoid coil terminals which are projected from a solenoid coil bobbin. The sealing cover members on the respective coil terminals are brought into intimate contact with inner edges of coil terminal escape holes in a mold in which a solenoid assembly is to be molded, thereby forming tight seals around the coil terminals in the coil terminal escape holes while a molten synthetic resin material is being introduced into the mold cavity around the solenoid assembly.

Description

BACKGROUND OF THE INVENTION
1. Field of the Art
This invention relates to a method for fabricating a solenoid device for electromagnetic valves, and more particularly to a method for fabricating a molded solenoid device which is encased in a molded synthetic resin shell.
2. Description of the Prior Art
Generally speaking, the solenoid devices which are widely used for electromagnetic valves are largely constituted by a solenoid coil wound on a bobbin of a non-magnetic material, a couple of rod-like coil terminals projected outwardly from the bobbin and connected to the head and tail ends of the winding wire of the solenoid coil, a fixed iron core fixedly mounted in an iron core chamber coaxially at the center of the bobbin, a magnetic frame of a magnetic material located to circumvent the afore-mentioned component parts, and a movable iron core disposed movably within the iron core chamber, the circumference of the magnetic frame being embedded in an insulating synthetic resin material by molding.
In order to mold the solenoid device with an insulating synthetic resin, it has been the general practice to place, within a mold cavity, a solenoid assembly except the movable iron core, and to introduce a molten synthetic resin material into the mold cavity around the solenoid assembly. When setting the solenoid assembly in position within the mold cavity, special attention needs to be paid to the coil terminals which stick out from the bobbin to such a degree as could be an obstacle to the setting operation. In this regard, the mold is usually provided with a couple of coil terminal escape holes in which the respective coil terminals are fitted when the solenoid assembly is set in molding position in the mold cavity.
The existence of the coil terminal escape holes in the mold, however, necessitates to provide some sort of blocking means for preventing leakage of the introduced molten synthetic resin through the escape holes. One of countermeasures to this problem has been to pack a sealing member into the gap space around each coil terminal in the escape hole. This method is troublesome and time-consuming to an objectionable degree. Another method which has been resorted to in this regard is to narrow the escape holes and to bring them into direct and tight contact with the coil terminals. This method also has drawbacks that it has possibilities of damaging the coil terminals or breaking the coil winding which is connected to the coil terminals.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of fabricating a molded solenoid device for electromagnetic valves, the method making it possible to mold a solenoid assembly with an insulating synthetic resin material, free of leakage of molten synthetic resin material through coil terminal escape holes in a mold in a secure and facilitated manner by the use of simple means.
In accordance with the present invention, the above-stated objective is achieved by the provision of a method which essentially includes the steps of: fixedly planting a couple of rod-like coil terminal members on a bobbin of non-magnetic material; connecting one of the coil terminals to the head or leading end of a winding wire of the solenoid coil prior to winding same around the bobbin and connecting the tail end of the winding wire to the other one of the coil terminals; fitting sealing cover members of an electrically insulating resilient material on base end portions of the coil terminals in such a manner as to cover the respective connections with the winding wire of the solenoid coil; mounting a fixed iron core member within an iron core chamber at the center of the bobbin; attaching a magnetic frame around the bobbin; placing the resulting solenoid assembly within a mold with a couple of terminal escape holes, bringing the resilient sealing cover members on the respective coil terminal members into intimate contact with inner edge portions of the coil terminal escape holes; introducing a molten insulating synthetic resin material into the mold, thereby molding the solenoid assembly with the synthetic resin material together with the sealing cover members; ejecting the molded solenoid assembly in a synthetic resin insulation from the mold; and fitting a movable iron core member in the iron core chamber at the center of the bobbin.
Preferably, the above-mentioned sealing cover members are each formed in a tubular shape with a tapered circumferential surface from an intermediate portion toward one end to be located on the outer side when fitted on the terminal coils, so that they snugly fit into the coil terminal escape holes and tightly held in abutting engagement with inner edge portions of the latter.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
FIG. 1 is a sectional view of an electromagnetic valve incorporating a molded solenoid device fabricated by the method of the present invention;
FIG. 2 is a sectional view of a solenoid assembly, explanatory of the steps of assembling solenoid device according to the method of the invention; and
FIG. 3 is a sectional view explanatory of the method of molding the solenoid device with an insulating synthetic resin material.
PARTICULAR DESCRIPTION OF THE INVENTION
Illustrated in FIG. 1 is an electromagnetic valve incorporating a solenoid device 1 fabricated by the method of the present invention. This electromagnetic valve is composed of a valve section 2 including an inlet port P and an outlet port A for pressurized fluid like compressed air, and a valve seat 31 provided in a fluid passage intercommunicating the inlet port P and the outlet port A, a solenoid device 1 mounted on a casing 30 of the valve section 2, and an electrical wiring section 3 mounted on top of the upper end of the solenoid device 1.
The solenoid device 1 includes a bobbin 10 of a non-magnetic material having flanges 10b and 10c at the upper and lower ends of a cylindrical body portion 10a, a couple of straight rod-like coil terminals 11 fixedly erected on the flange 10b at the upper end of the bobbin 10, a solenoid coil 12 formed by winding a wire 12a around the cylindrical body portion 10a of the bobbin 10 (as seen in FIG. 2) and having its head and tail ends connected to the above-mentioned coil terminals 11, respectively, resilient sealing cover members 13 of electrically insulating material fitted on base end portions of the coil terminals 11 in such a manner as to cover the connections with the winding wires, a fixed iron core 15 securely fixed in an iron core chamber 14 within the cylindrical body portion 10a of the bobbin 10, a magnetic frame 16 of a magnetic material circumventing the outer side of the bobbin 10, and a movable iron core 17 axially movably disposed in the iron core chamber 14 and provided with a valve body 18 for opening and closing the valve seat 31, the outer surfaces of the solenoid device 1 being encased in a molded shell of the insulating synthetic resin material except the areas around the outer end of the movable iron core 17 which is projected outwardly from the iron core chamber 14. The reference 20 indicates a return spring biasing the movable iron core 17 in the closing direction or in the direction toward the valve seat 31.
The electrical wiring section 3 includes a printed wiring board 41 which is housed in a cover 40 and electrically connected to the above-mentioned coil terminals 11 and to a power supply terminal 42, the printed wiring board 41 supporting thereon various electrical parts including an indicator, resistors, counter electromotive force inhibitor and so forth although they are omitted in the drawing for the sake of simplicity of illustration.
With the electromagnetic valve of the above-described construction, upon supplying current to the coil 12 of the solenoid device 1 through the power supply terminal 42, the movable iron core 17 is electromagnetically attracted by the fixed iron core 15. As a result, the valve seat 31 is opened, permitting the pressurized fluid to flow from the inlet port P to the outlet port A. As soon as the power supply is cut off, the movable iron core 17 is returned to the position of FIG. 1 under the influence of the biasing action of the return spring 20, closing the valve seat 31 to block the flow of the pressurized fluid.
According to the invention, the solenoid device 1 is fabricated through the following steps. As seen in FIG. 2, firstly a couple of coil terminals 11 are fixedly fitted in terminal anchor holes 22 which are provided on one flange 10b of the bobbin 10. Nextly, the leading or head end of a winding wire 12a is led out through a groove 24 on the flange 10b, and soldered to one coil terminal 11 after being entwined around the latter several times. Then the wire 10b is wound on the cylindrical body portion 10a of the bobbin 10 to form a solenoid coil of a required number of turns, and the tail end of the winding wire 10b is led out through a groove 25 on the flange 10b and soldered to the other coil terminal 11 after being entwined around the latter several times.
Succeedingly, resilient sealing cover members 13, of an electrically insulating material like rubber or synthetic resin material, are fitted on base end portions of the coil terminals 11 in such a manner as to cover the connected ends of the winding wire 12a. Each of the sealing cover members 13 is formed in a short tubular shape having its outer periphery tapered toward one end to be located on the outer side when fitted on the coil terminal 11.
In the next place, the fixed iron core 15 is fixedly mounted in the iron core chamber 14 within the cylindrical body portion 10a of the bobbin 10, and the magnetic frame 16 is fixed around the circumference of the bobbin 10. The magnetic frame 16 is provided with radial inlet openings 23 at suitable positions to let the molding synthetic resin 19 enter and fill in the internal space of the magnetic frame 16.
The solenoid assembly which has been assembled through the above-described steps is then set in split mold members 50a and 50b, in such a way that the coil terminals 11 are fitted in a couple of coil terminal escape holes 51 as shown in FIG. 3, with the tapered portions 13a of the respective sealing cover members 13 held in abutting engagement with the inner edges of the latter to form seals around the coil terminals 11 in the respective escape holes 51.
One mold member 50a is provided with an abutting wall portion 52 to be held in engagement with the top surface of the magnetic frame 16, while the other mold member 50b is provided with abutting wall portion 53 to be fitted into the iron core chamber 14 for engagement with the electromagnetically attracting surface of the fixed iron core 15 and an abutting wall portion 54 to be held in abutting engagement with the bottom surface of the magnetic frame 16. After fitting the coil terminals 11 of the above-described solenoid assembly in the terminal escape holes 51 in one mold member 50a, the two mold members 50a and 50b are closed on one another, fitting the abutting portion 53 of the mold member 50b into the iron core chamber 14. Upon closing the two mold members 50a and 50b, the solenoid assembly is retained in position within the mold by the above-mentioned abutting wall portions 52, 53 and 54, and the tapered circumferences 13a of the sealing cover members 13 are tightly abutted against the inner marginal edges of the terminal escape holes 51 in a wedge-like fashion.
After closing the mold members 50a and 50b in this manner, molten synthetic resin material 19 is introduced into the mold cavity 55 around the solenoid assembly within the closed mold members 50a and 50b to mold the solenoid assembly. At this time, the sealing cover members 13 are embedded in the synthetic resin material 19 except their outer end portions which are partly exposed to the outside.
The synthetic resin material 19 which has been introduced into the mold cavity has no possibility of leaking to the outside through the terminal escape holes 15 since the tapered portions 13a of the sealing cover members 13 are tightly abutted against the inner edge portions of the escape holes 15 as described hereinbefore. Besides, the coil terminals 11 are kept from direct contact with inner edge portions 51a of the terminal escape holes 51, precluding the possibilities of damages to the coil terminals 11 or breakage of the coil winding 12a.
Finally, the mold members 50a and 50b are opened to eject the molded solenoid assembly, which is encased in the plastic insulation shell, and the movable iron core 17 is mounted in the iron core chamber 14 of the molded solenoid assembly to complete a solenoid device 1.
Thus, according to the present invention, it becomes possible to mold a solenoid assembly with a synthetic resin material 19 free of leakage of the molten synthetic resin material through the coil terminal escape holes 51 in one of the split mold members 50a and 50b, by the use of very simple means, that is to say, by the use of resilient sealing cover members 13 which are fitted on the coil terminals 11.
Needless to say, the present invention is not limited to the particular construction of the preferred embodiment described above, and it is possible for those skilled in the art to add various modifications or alterations thereto without departing from the technical scope of the invention.

Claims (2)

What is claimed is:
1. A method for fabricating a molded solenoid device for electromagnetic valves, said method comprising the steps of:
fixedly planting a couple of rod-like coil terminal members on a bobbin of non-magnetic material for a solenoid coil;
connecting one of said coil terminals to the head or leading end of a winding wire of said solenoid coil prior to winding same around said bobbin and connecting the tail end of said winding wire to the other one of said coil terminals;
fitting sealing cover members of an electrically insulating resilient material on base end portions of said coil terminals in such a manner as to cover the respective connections with said winding wire of said solenoid coil;
mounting a fixed iron core member within an iron core chamber at the center of said bobbin;
attaching a magnetic frame around said bobbin;
placing the resulting solenoid assembly within a mold with a couple of terminal escape holes, bringing said sealing cover members on the respective coil terminals into intimate contact with inner edge portions of said coil terminal escape holes;
introducing a molten insulating synthetic resin material into said mold, thereby molding said solenoid assembly with said synthetic resin material together with said sealing cover members;
ejecting the molded solenoid assembly in a synthetic resin insulation from said mold; and
fitting a movable iron core member in said iron core chamber at the center of said bobbin.
2. A method for fabricating a molded solenoid device for electromagnetic valves as defined in claim 1, wherein said sealing cover members are each formed in a tubular shape with a tapered circumferential surface from an intermediate portion toward one end to be located on the outer side when fitted on said terminal coils, said tapered circumferential surface being brought into abutting engagement with inner edge portions of said coil terminal escape holes.
US08/179,665 1994-01-11 1994-01-11 Method for fabricating solenoid device for electromagnetic valves Expired - Lifetime US5423117A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/179,665 US5423117A (en) 1994-01-11 1994-01-11 Method for fabricating solenoid device for electromagnetic valves
EP94300179A EP0662696B1 (en) 1994-01-11 1994-01-11 Method for fabricating solenoid device for electromagnetic valves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/179,665 US5423117A (en) 1994-01-11 1994-01-11 Method for fabricating solenoid device for electromagnetic valves
EP94300179A EP0662696B1 (en) 1994-01-11 1994-01-11 Method for fabricating solenoid device for electromagnetic valves

Publications (1)

Publication Number Publication Date
US5423117A true US5423117A (en) 1995-06-13

Family

ID=26136881

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/179,665 Expired - Lifetime US5423117A (en) 1994-01-11 1994-01-11 Method for fabricating solenoid device for electromagnetic valves

Country Status (2)

Country Link
US (1) US5423117A (en)
EP (1) EP0662696B1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628951A (en) * 1988-01-19 1997-05-13 Olympus Optical Company Limited Method of producing a coreless armature
WO1997038428A1 (en) * 1996-04-04 1997-10-16 Abb Power T & D Company Inc. Solid insulation transformer
US5785394A (en) * 1996-05-24 1998-07-28 Ford Global Technologies, Inc. Solenoid assembly for anti-lock braking system
US5853643A (en) * 1996-07-19 1998-12-29 Bauer; Scott V. Method for constructing a liquid-impervious electric motor assembly
US5878482A (en) * 1993-03-12 1999-03-09 Thomson Television Components France Method for the manufacture of a degaussing coil
US5887851A (en) * 1995-08-11 1999-03-30 Hydraulik-Ring Antriebs- Und Steuerungtechnik Gmbh Control device, especially for a transmission of a motor vehicle, as well as a method for manufacturing such a control device
US6294851B1 (en) * 1998-06-10 2001-09-25 Asmo Co., Ltd. Resin molding method for inserting terminal and connector for motor having the terminal
US6312636B1 (en) * 1998-06-26 2001-11-06 Siemens Automotive Corporation Method for electromagnetic actuator with molded connector
US6538546B2 (en) * 2000-06-30 2003-03-25 Tokyo Sintered Metal Company Limited Magnetic core for a non-contact displacement sensor
US20030082056A1 (en) * 2000-01-06 2003-05-01 Techno Takatsuki Co., Ltd. Electromagnetic oscillating type pump and method for manufacturing the same
US20040169573A1 (en) * 2001-04-06 2004-09-02 Denso Corporation Electromagnetic switch for starter
US20040262558A1 (en) * 2003-06-27 2004-12-30 Kevin Wilson One-piece coil conduit
US6853530B1 (en) 2000-09-15 2005-02-08 General Electric Company Apparatus and method for actuating a mechanical device
US20070103265A1 (en) * 2005-11-09 2007-05-10 Denso Corporation Electromagnetic switch of starter
US20070295925A1 (en) * 2006-06-22 2007-12-27 Bernhard Spiegl Fluid control valve
US20100237968A1 (en) * 2009-03-18 2010-09-23 Denso Corporation Electromagnetic switch for a starter motor
US20120049989A1 (en) * 2010-08-24 2012-03-01 Denso Corporation Solenoid apparatus
US20120154078A1 (en) * 2010-12-20 2012-06-21 Svm Schultz Verwaltungs-Gmbh & Co.Kg Solenoid with a connection region
US20120229995A1 (en) * 2009-08-11 2012-09-13 Alan Chapman Solenoid
JP2014096530A (en) * 2012-11-12 2014-05-22 Toyota Motor Corp Reactor and method of manufacturing the same, and electric power conversion device with reactor and method of manufacturing the same
JP2014154564A (en) * 2013-02-04 2014-08-25 Toyota Motor Corp Reactor
US20150061799A1 (en) * 2012-03-28 2015-03-05 Eaton Corporation Solenoid assembly with anti-hysteresis feature
US20160064135A1 (en) * 2014-09-03 2016-03-03 TBK Co.,Ltd. Electromagnetic coil for retarder
US9579982B2 (en) 2014-04-16 2017-02-28 Tbk Co., Ltd. Resonant motor system
WO2018037029A3 (en) * 2016-08-26 2018-06-28 Danfoss Power Electronics A/S Insulated electrical inductor and insulated sealing arrangement thereof
US20190017483A1 (en) * 2017-07-11 2019-01-17 Borgwarner Inc. Starter solenoid with dual coils and axial diodes
US20190304668A1 (en) * 2018-03-28 2019-10-03 Delta Electronics,Inc. High-voltage coil, transformer and method for manufacturing high-voltage coil
JP2019220561A (en) * 2018-06-19 2019-12-26 株式会社不二工機 Mold coil and electric drive valve
US10839999B2 (en) 2017-02-01 2020-11-17 Horton, Inc. Electromagnetic coil connection assembly
US20220268369A1 (en) * 2021-02-19 2022-08-25 Ckd Corporation Electromagnetic valve

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710535A (en) * 1996-12-06 1998-01-20 Caterpillar Inc. Coil assembly for a solenoid valve
JP4395548B2 (en) * 1997-03-14 2010-01-13 Smc株式会社 Solenoid for solenoid valve
DE19843673C2 (en) * 1998-09-23 2001-05-17 Imi Norgren Herion Fluidtronic Gmbh & Co Kg Encapsulated device
US6175083B1 (en) 1998-12-11 2001-01-16 Caterpillar Inc. Sealing a lead from a confined cavity of an apparatus
FR2805387B1 (en) * 2000-02-17 2002-08-23 Luxalp ELECTROMAGNETIC SUCTION CUP WITH FIXED CONNECTIONS AND METHOD FOR THE PRODUCTION THEREOF
DE10151955A1 (en) * 2001-10-22 2003-05-08 Bosch Gmbh Robert Reduced-mass solenoid carrier
US6545583B1 (en) 2002-06-18 2003-04-08 Pnc, Inc. Sealing a lead from a confined cavity of an apparatus such as a solenoid
CN108987093B (en) * 2018-08-20 2020-08-25 赣州市桐鑫金属制品有限公司 Iron core hinged workpiece assembling equipment and assembling method thereof
CN112248330B (en) * 2020-10-12 2022-08-26 中车株洲电机有限公司 Method for casting double outlet coils at lower part of transformer and bottom plate structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2350822A (en) * 1941-12-03 1944-06-06 Sprague Specialties Co Electrically insulated element
US3045290A (en) * 1957-10-11 1962-07-24 Anderson Controls Inc Method of encapsulating coils
US3130355A (en) * 1961-05-03 1964-04-21 Warner Electric Brake & Clkutc Electromagnet
DE1488373A1 (en) * 1964-09-19 1969-04-03 Siemens Ag Method for casting windings for transformers
US3525966A (en) * 1968-07-24 1970-08-25 Square D Co Encapsulated coil and method of making same and spacer for use during encapsulation
DE3301502A1 (en) * 1982-01-28 1983-08-04 General Motors Corp., Detroit, Mich. MAGNETIC UNIT FOR ELECTROMAGNETIC FUEL INJECTION DEVICES AND METHOD FOR THE PRODUCTION THEREOF
WO1992009093A1 (en) * 1990-11-15 1992-05-29 Siemens Aktiengesellschaft Hermetically sealed overmolded free-standing solenoid coil and method
US5226220A (en) * 1991-12-19 1993-07-13 Allied-Signal Inc. Method of making a strain relief for magnetic device lead wires

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2350822A (en) * 1941-12-03 1944-06-06 Sprague Specialties Co Electrically insulated element
US3045290A (en) * 1957-10-11 1962-07-24 Anderson Controls Inc Method of encapsulating coils
US3130355A (en) * 1961-05-03 1964-04-21 Warner Electric Brake & Clkutc Electromagnet
DE1488373A1 (en) * 1964-09-19 1969-04-03 Siemens Ag Method for casting windings for transformers
US3525966A (en) * 1968-07-24 1970-08-25 Square D Co Encapsulated coil and method of making same and spacer for use during encapsulation
DE3301502A1 (en) * 1982-01-28 1983-08-04 General Motors Corp., Detroit, Mich. MAGNETIC UNIT FOR ELECTROMAGNETIC FUEL INJECTION DEVICES AND METHOD FOR THE PRODUCTION THEREOF
WO1992009093A1 (en) * 1990-11-15 1992-05-29 Siemens Aktiengesellschaft Hermetically sealed overmolded free-standing solenoid coil and method
US5226221A (en) * 1990-11-15 1993-07-13 Siemens Automotive L.P. Method of making a hermetically sealed overmolded free-standing solenoid coil
US5226220A (en) * 1991-12-19 1993-07-13 Allied-Signal Inc. Method of making a strain relief for magnetic device lead wires

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628951A (en) * 1988-01-19 1997-05-13 Olympus Optical Company Limited Method of producing a coreless armature
US5878482A (en) * 1993-03-12 1999-03-09 Thomson Television Components France Method for the manufacture of a degaussing coil
US5887851A (en) * 1995-08-11 1999-03-30 Hydraulik-Ring Antriebs- Und Steuerungtechnik Gmbh Control device, especially for a transmission of a motor vehicle, as well as a method for manufacturing such a control device
WO1997038428A1 (en) * 1996-04-04 1997-10-16 Abb Power T & D Company Inc. Solid insulation transformer
US5785394A (en) * 1996-05-24 1998-07-28 Ford Global Technologies, Inc. Solenoid assembly for anti-lock braking system
US5853643A (en) * 1996-07-19 1998-12-29 Bauer; Scott V. Method for constructing a liquid-impervious electric motor assembly
US6294851B1 (en) * 1998-06-10 2001-09-25 Asmo Co., Ltd. Resin molding method for inserting terminal and connector for motor having the terminal
DE19926300B4 (en) * 1998-06-10 2009-12-03 Asmo Co., Ltd., Kosai Resin molding method for inserting a contactor, and motor terminal provided with the contactor
US6312636B1 (en) * 1998-06-26 2001-11-06 Siemens Automotive Corporation Method for electromagnetic actuator with molded connector
US6501358B2 (en) 1998-06-26 2002-12-31 Siemens Automotive Corporation Electromagnetic actuator with molded connector
US20030082056A1 (en) * 2000-01-06 2003-05-01 Techno Takatsuki Co., Ltd. Electromagnetic oscillating type pump and method for manufacturing the same
US6977056B2 (en) * 2000-01-06 2005-12-20 Techno Takatsuki Co., Ltd. Electromagnetic oscillating type pump and method for manufacturing the same
US6538546B2 (en) * 2000-06-30 2003-03-25 Tokyo Sintered Metal Company Limited Magnetic core for a non-contact displacement sensor
US6853530B1 (en) 2000-09-15 2005-02-08 General Electric Company Apparatus and method for actuating a mechanical device
US7038563B2 (en) * 2001-04-06 2006-05-02 Denso Corporation Electromagnetic switch for starter
US20040169573A1 (en) * 2001-04-06 2004-09-02 Denso Corporation Electromagnetic switch for starter
US20040262558A1 (en) * 2003-06-27 2004-12-30 Kevin Wilson One-piece coil conduit
US7007924B2 (en) 2003-06-27 2006-03-07 Parker-Hannifin Corporation One-piece coil conduit
US7549899B2 (en) * 2005-11-09 2009-06-23 Denso Corporation Electromagnetic switch of starter
US20070103265A1 (en) * 2005-11-09 2007-05-10 Denso Corporation Electromagnetic switch of starter
US20070295925A1 (en) * 2006-06-22 2007-12-27 Bernhard Spiegl Fluid control valve
US20100237968A1 (en) * 2009-03-18 2010-09-23 Denso Corporation Electromagnetic switch for a starter motor
US8212637B2 (en) * 2009-03-18 2012-07-03 Denso Corporation Electromagnetic switch for a starter motor
US20120229995A1 (en) * 2009-08-11 2012-09-13 Alan Chapman Solenoid
US8344837B2 (en) * 2010-08-24 2013-01-01 Denso Corporation Solenoid apparatus
US20120049989A1 (en) * 2010-08-24 2012-03-01 Denso Corporation Solenoid apparatus
US8587397B2 (en) * 2010-12-20 2013-11-19 SVM Schultz Verwaltungs-GmbH & Co. Solenoid with a connection region
US20120154078A1 (en) * 2010-12-20 2012-06-21 Svm Schultz Verwaltungs-Gmbh & Co.Kg Solenoid with a connection region
US20150061799A1 (en) * 2012-03-28 2015-03-05 Eaton Corporation Solenoid assembly with anti-hysteresis feature
US9324488B2 (en) * 2012-03-28 2016-04-26 Eaton Corporation Solenoid assembly
JP2014096530A (en) * 2012-11-12 2014-05-22 Toyota Motor Corp Reactor and method of manufacturing the same, and electric power conversion device with reactor and method of manufacturing the same
JP2014154564A (en) * 2013-02-04 2014-08-25 Toyota Motor Corp Reactor
US9343212B2 (en) 2013-02-04 2016-05-17 Toyota Jidosha Kabushiki Kaisha Reactor
US9579982B2 (en) 2014-04-16 2017-02-28 Tbk Co., Ltd. Resonant motor system
US20160064135A1 (en) * 2014-09-03 2016-03-03 TBK Co.,Ltd. Electromagnetic coil for retarder
WO2018037029A3 (en) * 2016-08-26 2018-06-28 Danfoss Power Electronics A/S Insulated electrical inductor and insulated sealing arrangement thereof
US10839999B2 (en) 2017-02-01 2020-11-17 Horton, Inc. Electromagnetic coil connection assembly
US20190017483A1 (en) * 2017-07-11 2019-01-17 Borgwarner Inc. Starter solenoid with dual coils and axial diodes
US10851754B2 (en) * 2017-07-11 2020-12-01 Borgwarner Inc. Starter solenoid with dual coils and axial diodes
US20190304668A1 (en) * 2018-03-28 2019-10-03 Delta Electronics,Inc. High-voltage coil, transformer and method for manufacturing high-voltage coil
JP2019220561A (en) * 2018-06-19 2019-12-26 株式会社不二工機 Mold coil and electric drive valve
US20220268369A1 (en) * 2021-02-19 2022-08-25 Ckd Corporation Electromagnetic valve
US11698142B2 (en) * 2021-02-19 2023-07-11 Ckd Corporation Electromagnetic valve

Also Published As

Publication number Publication date
EP0662696B1 (en) 1998-03-18
EP0662696A1 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US5423117A (en) Method for fabricating solenoid device for electromagnetic valves
US4720078A (en) Solenoid valve
US4067541A (en) Water valve operating solenoid
US4679767A (en) Solenoid arrangement including yoke-enclosed coil and double encapsulation
EP0635664B1 (en) Encapsulated solenoid operated valve assembly
US5192936A (en) Solenoid
KR930012230B1 (en) Electromagnetically actuable valve and manufacturing method thereof
JP4571985B2 (en) Injection valve
JP2007010084A (en) Solenoid valve
KR19990028600A (en) Bobbin Mounted Solenoid Coil and Manufacturing Method
JPH0743049B2 (en) Overmolding method for solenoid assembly and solenoid enclosure
EP1867867B1 (en) Fuel injector
US4076045A (en) Solenoid operated valve
JPS63280851A (en) Magnet switch for starter
US4725802A (en) Solenoid actuator with stationary armature extension
JP2539077Y2 (en) solenoid
US6175168B1 (en) Overmolded stator for fuel metering solenoid and method of manufacturing same
JP2000224798A (en) Electromagnetic actuator
JP3605628B2 (en) Solenoid valve device
JP2912234B2 (en) Electromagnetic relay
JPH043452Y2 (en)
JP3811835B2 (en) solenoid
JP3712589B2 (en) Injector response adjustment method
JP3023032B2 (en) Manufacturing method of cast coil
JPS6039586Y2 (en) solenoid valve device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKADA, YOICHIRO;KANEKO, RYUSHIROU;SHIMAUCHI, KEISUKE;REEL/FRAME:007050/0509

Effective date: 19931228

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12