Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5434370 A
Publication typeGrant
Application numberUS 08/148,837
Publication dateJul 18, 1995
Filing dateNov 5, 1993
Priority dateNov 5, 1993
Fee statusPaid
Also published asUS5623129
Publication number08148837, 148837, US 5434370 A, US 5434370A, US-A-5434370, US5434370 A, US5434370A
InventorsScott E. Wilson, Samuel W. Mallicoat, Donald H. Zurstadt
Original AssigneeMicrofield Graphics, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Marking system with pen-up/pen-down tracking
US 5434370 A
Abstract
A system and method for detecting movement of an object along an axis normal to a planar surface is described. The invention is applied to a graphic data-acquisition system in which a digitized record is produced according to the X, Y and Z location of a writing implement relative to a writing surface. An expanse of electromagnetic radiation is generated in a zone closely adjacent to the writing surface. An electromagnetic-interactive structure is associated with the writing implement at a location where it will interact with the expanse when the pen is in a write mode. The configuration of the radiation-interactive structure and its positioning relative to the expanse allows the production of an analog data stream which may be correlated to relative distance between the tip of the pen and the writing surface. After fine analog data is digitized, a processing routine is used to determine reliably and accurately when the pen has moved to the non-write mode. The processor is configured to perform the desired discriminatory function with minimal occurrences of false positives relating to pen tilting, writing velocity and board irregularity.
Images(2)
Previous page
Next page
Claims(13)
It is desired to secure and claim by Letters Patent:
1. In a graphic data-acquisition system for tracking the position of an implement relative to a writing surface, a sub-system for distinguishing between a write mode and a non-write mode of the writing implement comprising
electromagnetic-radiation-generating structure disposed adjacent the writing surface and operable to produce an expanse of radiation in a substantially planar zone near the writing surface,
radiation-interactive structure associated with the implement and capable of interacting with the expanse to produce signals which vary depending on a relative distance between a writing tip on the implement and the writing surface,
monitoring structure capable of detecting and converting the signals into an analog data stream, and
a processor for receiving and processing the data stream to determine when the implement is in the write mode and when the implement is in the non-write mode.
2. The sub-system of claim 1 wherein the degree of interaction between the radiation-generating structure and the radiation-interactive structure is infinitely varying as the implement moves from the write mode to the non-write mode.
3. The sub-system of claim 1 wherein the expanse has a depth, the radiation-interacting structure partially penetrates the expanse when the implement is in the write mode and a change in the degree of implement penetration into the expanse results when the implement moves between the write mode and the non-write mode.
4. The sub-system of claim 1 wherein the radiation-interacting structure is tapered so that the degree of interaction between the radiation-interacting structure and the expanse is infinitely varying as the implement moves between the write mode and non-write mode.
5. The sub-system of claim 1 wherein the expanse produced by the radiation-generating structure derives from a scanning electromagnetic beam.
6. The sub-system of claim 1 wherein the beam is a laser.
7. The sub-system of claim 1 wherein the radiation-interacting structure is reflective.
8. The sub-system of claim 1 wherein the radiation-interacting structure is non-reflective.
9. The sub-system of claim 1 wherein the radiation-interacting structure is variably reflective in a pen-up/pen-down direction generally perpendicular to the writing surface when the implement is in the write mode.
10. The sub-system of claim 8 wherein the radiation-interacting structure is uniformally reflective and geometrically tapered in the pen-up/pen-down direction.
11. The sub-system of claim 8 wherein the radiation-interacting structure is geometrically uniform and reflectively varying in the pen-up/pen-down direction.
12. In a graphic data-acquisition system for tracking the position of a writing implement relative to a writing surface by producing and interpreting an analog data stream from interaction between an expanse of electromagnetic radiation and the writing implement, a method of determining when the implement is in a write mode and when the implement is in a non-write mode comprising
connecting a radiation-interactive structure to the implement so that the structure interacts with the expanse when the implement is in the write mode,
producing an analog signal from varying interaction between the structure and the expanse as the implement is moved in a pen-up/pen-down direction generally perpendicular to the writing surface, and
interpreting the signal to determine when the implement moves between the write mode and non-write mode.
13. The method of claim 12 further comprising
establishing a baseline amplitude from the analog signal in a moving window of time while the implement is in the write mode, setting an amplitude threshold a fixed magnitude away from the baseline, determining non-write mode status of the implement when the amplitude of the analog signal falls outside the area between the baseline and the threshold.
Description
FIELD OF THE INVENTION

The invention relates to a system and method for tracking the location of an object relative to a substantially planar surface. In particular, the invention involves the production of a quantitative data stream correlating to the relative distance between the object and the surface, and has been applied for the purpose of determining whether a writing implement is in a write mode or a non-write mode relative to a writing surface.

BACKGROUND OF THE INVENTION

In the past 20 to 30 years, a number of systems for tracking and digitizing the X, Y location of a writing implement relative to a writing surface have been disclosed. For example, a summary of the work in this field is discussed in the background section of U.S. Pat. No. 5,248,856, the entire patent of which is hereby incorporated by reference.

In the system disclosed in the '856 patent, a reflective code structure is provided around the circumference of a pen toward the writing tip. Two scanning laser beams are used to monitor continuously the X, Y location of the reflective structure by triangulation.

A principal problem with the system disclosed in the '856 patent and other prior systems is that the X, Y location of the writing implement may be tracked and digitized even when the operator has moved the pen away from the board between writing events. This causes an incongruity between what the writer actually writes, or intends to write, and the image which is reproducible from the digitized record.

Several types of writing interruption events may occur during a writing or drawing session. A first type of interruption event occurs when the operator of the implement completely removes the pen out of the range of X, Y scanner detection. This type of interruption event is relatively easy to determine because when it occurs there is an absence of interaction between the implement and the scanners. Even if the system does not have a mechanism for concluding that absence of interaction between the implement and the scanners indicates movement of the pen to a non-writing mode, it does not matter because when the pen is not interacting with the scanners, there can be no X, Y tracking.

The present invention, however, addresses a second type of writing interruption event which most commonly occurs, for example, when the operator is printing letters. When moving a pen between printed letters, the operator typically lifts the pen only a small distance, for example, a fraction of an inch, above the writing surface. During this type of writing interruption event, the implement generally continues to interact with the X, Y scanning system causing unwanted lines, commonly referred to as "tracers," in the digitally reproduced image.

Tracers are especially problematic when the system is used to track the writing of a series of discrete symbols for which the meaning may be lost or changed when the symbols are connected by tracers. For example, Chinese characters, such as the one shown in FIG. 7, may completely lose or alter its meaning when the components of the symbol or adjacent symbols are connected by tracers.

Accordingly, an important objective of the present invention is to provide a system for quantitatively tracking movement of an object along an axis perpendicular to a planar surface.

More particularly, an objective of the invention is to provide a system and method for determining whether a writing implement is in a write mode or a non-write mode relative to a writing surface.

Another object of the invention is to provide a system which is capable of discriminating between board-contacted and board-non-contacted movement of a writing implement.

Another object of the invention is to distinguish between a write mode and a non-write mode of a writing implement with minimal if any occurrence of false detection due to pen tilting, fluctuation in pen velocity or other writing style idiosyncracies.

Another object of the invention is to provide pen-up/pen-down detection without interfering with the effective simultaneous detection of coding information on the pen for indicating the character, for example, color, of the pen.

SUMMARY OF THE INVENTION

The objects stated above are accomplished by the present invention which may be used generally to track the location of an object along an axis normal to a planar surface. In the present case, the invention is applied as a sub-system in the context of a graphic data-acquisition system for tracking the position of a writing implement relative to a writing surface. The sub-system is used to distinguish between a write mode and a non-write mode of the writing implement.

In the sub-system, an electromagnetic-radiation-generating structure is located adjacent to the writing surface. The structure is operable to produce an expanse of radiation in a substantially planar zone near the writing surface. A radiation-interactive structure is associated with the implement. For example, the radiation-interactive structure is preferably mounted around a circumferential outer surface of the implement. The radiation-interactive structure is capable of interacting with the expanse to effect the production of an analog data stream which can be correlated to the relative distance between a writing tip on the implement and the writing surface. The analog data stream, resulting from the interaction between the radiation interactive structure and the expanse of radiation, is transmitted to a processor where the information is interpreted so that determinations can be made as to the writing or non-writing status of the implement.

In a preferred embodiment of the invention, the electromagnetic-radiation generating structure generates a scanning laser beam. The radiation-interactive structure is reflective. In one approach the scanning beam and implement reflector are positioned so that when the implement is in the writing mode, the reflector partially penetrates the zone of the scanning laser beam. When the pen tip is moved away from the writing surface, the degree of reflector penetration into the scanning zone changes quantitatively resulting in the production of an interpretable analog data stream.

In a second approach, the depth of the scanning beam may be quite thin. The reflector has a reflective gradient in the direction of the axis of the pen (which is ideally perpendicular to the writing surface, hereafter referred to as the "Z axis"). In the second approach, the laser scanning zone and the implement reflector may be positioned so that the reflector completely crosses the zone. As the implement writing tip is moved along the Z axis, the quantity of light reflected from the reflector varies infinitely and is used to determine the movement of the implement between the writing mode and the non-writing mode.

In a related method of the invention, a sub-system, as discussed above, is used to generate an analog data stream correlating to the movement of the pen tip along the Z axis. A processor is used to interpret the data stream and ultimately discriminate between writing and non-writing activity. A preferred processing scheme involves, first, the establishing of a base line amplitude in a moving window of time while the implement is in the write mode. Second, an amplitude threshold is set a fixed magnitude away from the base line. Third, the occurrence of a non-write or "pen-up" event is determined when the analog amplitude moves outside the area between the threshold and base line. Finally, once it has been determined that the pen has moved to a non-write mode, that non-write designation is extended back toward the point where the movement of the implement away from the writing surface was first detected.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a front view of a graphic data-acquisition system of the present invention. PG,7

FIG. 2 is a partial side view of a writing implement with reflector structure showing varying interaction between the reflector and the radiation expanse as the pen tip moves away from the writing surface.

FIG. 3 is a partial side view of a writing implement with reflector showing another way of effecting variable interaction between the reflector and the radiation expanse as the writing tip moves away from the writing surface.

FIG. 4 is a graphic plot of the analog data amplitude which is recorded during the writing of the words shown in FIGS. 5 and 6. FIG. 4 also illustrates the threshold cut-off that was used to produce the images shown in FIGS. 5 and 6.

FIGS. 5A and 5B illustrate digitally reproduced images of the written word "natural," first without, and then with the pen-up/pen-down discriminator of the present invention.

FIGS. 6A and 6B illustrate digitally reproduced images of the written word "fast," first without, and then with the pen-up/pen-down discriminator of the present invention.

FIG. 7 illustrates a Chinese character, the creation of which requires numerous pen-up/pen-down movements.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides a mechanism for tracking movement of an implement along the Z axis normal to a planar surface. The system is particularly useful in the context of a data-acquisition system such as the one disclosed in the '856 patent referred to above.

The subject of the present invention is also related to the subject matters disclosed and claimed in three other U.S. patent applications, namely: the invention of Donald H. Zurstadt, Samuel W. Mallicoat and Scott E. Wilson, entitled "CALIBRATION OF GRAPHIC DATA-ACQUISITION TRACKING SYSTEM", filed on Nov. 5, 1993, the invention of Guy L. Williams, Timothy A. Jenness and Scott E. Wilson, entitled "OPTICAL-SCANNING SYSTEM EMPLOYING LASER AND LASER SAFETY CONTROL", filed on Nov. 5, 1993; and the invention of Timothy A. Jenness and Scott E. Wilson, entitled "GRAPHIC DATA-ACQUISITION SYSTEM UTILIZING LIGHT-SOURCE STRUCTURE WITH EXTRANEOUS-LIGHT FILTERING", filed on Nov. 5, 1993, each of which is hereby incorporated by reference.

FIG. 1 shows basic components of the present invention incorporated into an electromagnetic-field-responsive graphic data-acquisition systems 10 as disclosed in the '856 patent with modifications directed to implement Z location, calibration and laser safety. The graphic data-acquisition system 10 includes a writing surface 12 and a writing implement 14. The implement has a reflector structure 15 with code structure 16 for indicating characteristics of the implement, for example, color, tip width, etc. The reflector 15 is typically mounted circumferentially around a side of the implement 14 toward the writing tip 17. An eraser 18 is also provided with an eraser signaling code structure 19.

Laser scanners 20a and 20b are mounted adjacent the writing surface near the upper left and upper right hand corners respectively of the writing surface. In the preferred embodiment, the scanning lasers 20a and 20b each generate an expanse of electromagnetic radiation in a substantially planar zone near the writing surface 12. However, the invention could be analogously employed by using a static or non-scanning electromagnetic-radiation-generating structure. Laser scanners 20a and 20b generate scanning laser beams 21a and 21b respectively which preferably alternate through scanning cycles across the writing surface 12. Although not critical, in the preferred embodiment, beam 21a scans in a counterclockwise motion and beam 21b scans in a clockwise motion.

A variety of different types of radiation may be used to produce the expanse. For example, the expanse in the preferred embodiment is derived from a scanned, invisible laser beam. However, visible or infrared light could also be used.

Calibration strips 22a, 22b, 22c and 22d are positioned near the corners of the writing surface for interacting with the laser beams for the purposes of providing reference points from which to track X, Y movement of the implement 14, and to provide information regarding the position of the radiation expanse(s) relative to the writing surface.

Light reflection monitoring structures (not shown) are positioned adjacent the writing surface for receiving light reflected from the implement reflector 15, the laser 18, and the calibration strips 22a, 22b, 22c and 22d. The reflectance information signal is then transmitted to the processor 30 where, in the preferred embodiment, it undergoes analog-to-digital conversion and interpretation. Processor 30 can also be designed to interpret the analog data without digital conversion. One portion of the processing structure 32 determines implement X, Y location based on data received from both scanners 20a and 20b and a triangulation calculation. Another portion of the processor 34 assesses the implement Z location for the purpose of discriminating between pen-up/pen-down events. A third portion of the processor 30 interprets information resulting from the interaction of 21a and 21b with calibration strips 22a, 22b, 22c and 22d for the primary purpose of monitoring the position of the scanning laser beams relative to the writing surface. A fourth portion of the processor 38 interprets information relating to the function of the scanning laser, and is capable of instructing the system to shut down when the scanner is not functioning properly.

FIGS. 2 and 3 focus on structural components of the invention which allow the generation of an analog signal correlating to movement of the writing implement 14 along the Z axis. Persons skilled in the art will readily recognize that the structures shown in FIGS. 2 and 3 are just two examples of many possible alternatives for producing the desired data, all of which are claimed below.

In FIG. 2, the pen 14 is shown in three positions in time progression going from left to right. The pen 14 starts out in the "write mode" with tip 17 contacting the writing surface 12. In this position, the reflector 15 interacts with both laser beams produced by scanners 20a and 20b. The scanner 20a produces a relatively thin beam 42, approximately 0.8 to 2.0 millimeters in thickness. Aside from providing information for X, Y location of the pen, laser beam 42 functions to effect production of data based on the bar code structure 15 which can be interpreted to provide character information about the pen. The other expanse of radiation 40 which is produced by the scanning laser beam 21b, is relatively thicker than radiation expanse 42. Radiation expanse 40 is preferably between approximately 4.0 and 5.0 millimeters. The center of beam 40 is preferably located approximately 0.30 inches from the highest point 43 on the writing surface 12. The center of beam 42 is preferably located approximately 0.42 inches away from the highest point 43 on the writing surface.

It can be seen in FIG. 2 that when the tip 17 is contacting the writing surface 12, reflector 15 penetrates beam 40 by a distance in the Z direction designated at 44. In the second pen position illustrated, as the tip 17 moves away from writing surface 12 in the Z direction, the distance 46 or degree of penetration of reflector 15 into beam 40 decreases causing a corresponding change in the magnitude of reflective light. Finally, in the third pen position illustrated, tip 17 has continued to move further from the writing surface 12 in the Z direction, causing the distance 48 by which reflector 15 penetrates into the zone occupied by scanning beam 40, to further decrease. Thus, it is apparent that a reflective signal based on the degree of reflector penetration into laser beam 40 provides an infinitely varying signal directly correlating to the distance between tip 17 and writing surface 12.

FIG. 3 shows another way of effecting the production of an analog signal which correlates to movement of the pen tip in the Z direction. In this example, the reflector 50 is variably reflective in the Z direction. This is accomplished by tapering the bar code structure 52 in such a way that no matter which part of the reflector interacts with beam 42, the bar code information which indicates pen character, will be accurately read. With regard to beam 54 which is responsible for perfecting the production of information relating to location of the pen in the Z direction, the amount of light reflected by reflector 50 will depend on which part of the reflector is interacting with beam 54.

In the first pen position shown in FIG. 3, tip 17 contacts writing surface 12. In this position the amount of light originating from beam 54 which reflects from reflector 50 is less than the magnitudes of light reflected in the two subsequently illustrated pen positions. As pen tip 17 moves away from writing surface 12 the amount of reflectable area on the reflector 50 intersecting beam 54 increases causing a corresponding increase in analog amplitude.

A variety of other mechanisms, employing modifications or combinations of the principals just illustrated, can be employed for the purpose of making possible the interaction between a structure on the pen and an electromagnetic radiation expanse having a defined relationship to the writing surface, so that the desired quantitative data stream can be generated. For instance, a modification of the reflector shown in FIG. 2 would employ a reflective gray scale gradient in the C direction. Such a reflector could be used in conjunction with a relatively thin beam such as 54 shown in FIG. 3. Once an analog data stream correlating to the Z location of the pen is generated, processor portion 34 determines when the pen is moved to a non-writing mode. Theoretically, in the ideal case where the operator always writes with the pen absolutely perpendicular to the writing surface, at a constant speed and on a perfectly flat writing surface, the determination of whether the pen is moved to a non-write mode would be relatively simple. When the pen has stayed at one level long enough, a baseline amplitude is set. When the amplitude changes a certain amount from the baseline, non-write status of the implement is indicated.

However, in the real world, the writing surface is not flat. The operator does not write with uniform velocity and frequently tips the pen in various directions away from its ideal perpendicular orientation. These real world variables are individually and collectively potential sources of false positives, meaning that the process will indicate that the pen is not writing when in fact it is writing or vice versa.

For example, assume that an operator is writing with the pen substantially tipped causing a greater degree of reflector penetration into the radiation expanse than would exist if the pen were perpendicular to the writing surface. All of a sudden, while continuing to write, the operator adjusts the orientation of the pen to be substantially perpendicular to the writing surface causing a corresponding decrease in the magnitude of reflection. A processor could potentially conclude that the pen has moved to a non-write mode when in fact the pen is still writing, however, in a different angular orientation with respect to the writing surface. Another example which could produce false positives would be where there is a relatively large irregularity in the topography of the writing surface. If the pen tip rises over a bump on the board, the degree of interaction between a reflector in the radiation expanse will change creating the possibility that the processor will falsely determine that the pen has moved to a non-write mode.

Consequently, a detailed processing routine has been developed based on a great deal of empirical experimentation. The objective is to develop a processing structure which will be capable of discriminating between potential false positive events which are not in fact due to a real change in the writing status of the implement, while reliably and accurately determining movement of the implement into the non-write mode.

FIG. 4 shows an actual analog plot 80 with data stream 82. Threshold 84 is continuously set relative to a baseline amplitude established while the implement is in write mode. For a given point 86 along the analog data stream 82 a baseline 88 is set in accordance with the maximum amplitude taken from a set of readings during a selected window of time 90 spanning the time just before and the time just after the generation of point 86. The threshold 84 is then set a preselected magnitude 92 below baseline 88. If point 86 falls outside the area between baseline 88 and threshold 84, it is determined that the pen has moved to a non-write mode. Once that determination has been made, the digitized record will indicate that the pen stopped writing at point 94 which is closer toward the point where the pen-up movement began.

The following code routine is used in a preferred process structure to discriminate between writing and non-writing activity with a minimal occurrence of false positives due to variations in writing speed, style and board irregularities. ##SPC1##

The words shown in FIGS. 5 and 6 demonstrate application of the present invention to eliminate unwanted tracers between letters by showing digitally reproduced images from handwritten words, first without, then with pen-up/pen-down processing.

In FIG. 5, the word natural is digitally reproduced from a handwritten image in which the pen was lifted away from the writing surface between each of the letters. FIG. 5B was generated from the same digital record, however, with the addition of pen-up/pen-down processing. In FIG. 6, the operator printed the word "fast" in discrete letters. FIG. 6A shows that, without pen-up/pen-down processing which was used to generate FIG. 6B, all of the letters appear to be connected which is an inaccurate reproduction of the handwritten image.

FIG. 7 shows an example of a Chinese character which includes approximately 13 separately drawn lines. One can imagine that if each of those lines were connected by tracers, the symbol would look completely different and would almost certainly become uninterpretable for its intended meaning. Accordingly, it is believed that the invention disclosed and claimed in this application has critical applicability for the purpose of accurately tracking and reproducing complex symbols or characters such as the ones shown in FIG. 7, which require a relatively high frequency of pen-up/pen-down events.

The preferred embodiments of the invention have been described in detail. However, numerous variations of the described systems may be practiced without departing from the general principals of the invention which are claimed below. For example, the Z axis monitoring system of the present invention may be used in a setting where the objective is to use a finger or another type of non-writing implement to effectively trace over another image which already exists. The present invention may also be used to determine the variation in pressure which is applied on the implement during the write mode. For example, employing the principals previously described in this application, a pen may be designed which will produce a digitized reproduction of a drawn line which is thicker or thinner depending on the degree of pressure applied on the tip of the pen. The pen is equipped with a spring mechanism so that a reflective surface moves in the Z direction according to the amount of pressure applied to the pen tip. Thus, the analog signal corresponding to changes in the Z axis location of the reflector is relatable to the amount of pressure applied to the tip of the pen, and to the desired line width.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3184847 *Apr 14, 1961May 25, 1965Anelex CorpDigital coordinate resolver
US3457646 *Aug 29, 1966Jul 29, 1969Atomic Energy CommissionLaser beam operated x-y table
US3543240 *May 6, 1968Nov 24, 1970Rca CorpLight pen operating with remote graphic display
US3553680 *Apr 7, 1966Jan 5, 1971CiiElectronic computer input equipment
US3609237 *Jan 27, 1969Sep 28, 1971Gerber Scientific Instr CoLine or edge digitizing system with means for automatically outputting only data truly representative of the line or edge being digitized
US3613066 *Oct 22, 1968Oct 12, 1971CiiComputer input equipment
US3709602 *Nov 5, 1971Jan 9, 1973Ricoh KkOptical path length compensation in a copier
US3733979 *Jul 8, 1971May 22, 1973Monotype Corp LtdPhotocomposing apparatus
US3752558 *Jun 28, 1971Aug 14, 1973Decision ConsultantsDocument scanner
US3775560 *Feb 28, 1972Nov 27, 1973Univ IllinoisInfrared light beam x-y position encoder for display devices
US3783445 *Sep 11, 1972Jan 1, 1974E Systems IncVehicle locator system
US3818133 *Apr 6, 1973Jun 18, 1974Cotter WCoordinate digitizer incremental system
US3873770 *Mar 21, 1974Mar 25, 1975Bendix CorpDigital position measurement system with stylus tilt error compensation
US3898445 *Nov 26, 1973Aug 5, 1975Univ AustralianDigitizing device
US3944740 *Jul 22, 1974Mar 16, 1976Fujitsu LimitedCoordinate position information output device
US4078151 *Oct 18, 1976Mar 7, 1978Wisconsin Alumni Research FoundationElectronic graphics pad
US4104617 *Jan 21, 1977Aug 1, 1978Westinghouse Electric Corp.Control panel system
US4125743 *Jun 7, 1977Nov 14, 1978Bell Telephone Laboratories, IncorporatedGraphics transmission system
US4181952 *Nov 21, 1977Jan 1, 1980International Business Machines CorporationMethod and means for minimizing error between the manual digitizing of points and the actual location of said points on an _electronic data entry surface
US4198623 *Nov 13, 1978Apr 15, 1980Sanders Associates, Inc.Touch entry interactive cathode ray tube arrangement
US4205304 *Sep 22, 1977May 27, 1980General Electric CompanyTwo dimensional light beam selection system
US4206314 *Aug 14, 1978Jun 3, 1980Gtco CorporationGraphic digitizer
US4213005 *Dec 13, 1978Jul 15, 1980Cameron Eugene ADigitizer tablet
US4227044 *Jan 22, 1979Oct 7, 1980Talos Systems, Inc.Pen status system for digitizer pen
US4237617 *Feb 5, 1979Dec 9, 1980Goussios Constantine CPolytrack opto-digital drafting machine
US4277783 *Jul 2, 1979Jul 7, 1981Bell Telephone Laboratories, IncorporatedLight pen tracking method and apparatus
US4294543 *Nov 13, 1979Oct 13, 1981Command Control & Communications CorporationOptical system for developing point coordinate information
US4317956 *Nov 10, 1980Mar 2, 1982Bell Telephone Laboratories, IncorporatedRemote chalkboard automatic cursor
US4318096 *May 19, 1980Mar 2, 1982Xerox CorporationGraphics pen for soft displays
US4342910 *Sep 5, 1980Aug 3, 1982General Electric CompanyOptoelectronic absolute position encoder with an in-line gray code controlling vehicle acceleration
US4345313 *Apr 28, 1980Aug 17, 1982Xerox CorporationImage processing method and apparatus having a digital airbrush for touch up
US4380076 *Dec 31, 1980Apr 12, 1983International Business Machines CorporationApparatus for four side transverse irradiation of a region
US4386346 *Mar 27, 1981May 31, 1983International Business Machines CorporationCursor controller
US4501931 *Jun 24, 1983Feb 26, 1985Fujitsu LimitedColor information input system for electronic blackboard
US4504910 *Nov 27, 1981Mar 12, 1985Alps Electric Co., Ltd.To be mounted in a vehicle
US4553842 *May 9, 1983Nov 19, 1985Illinois Tool Works Inc.Two dimensional optical position indicating apparatus
US4558313 *Nov 1, 1984Dec 10, 1985International Business Machines CorporationIndicator to data processing interface
US4568182 *Dec 22, 1981Feb 4, 1986Summagraphics CorporationOptical system for determining the position of a cursor
US4642422 *Dec 16, 1985Feb 10, 1987International Business Machines CorporationCalibration of a scanning light interrupt type of data input interface
US4670751 *Jan 6, 1984Jun 2, 1987Fujitsu LimitedEraser for electronic blackboard
US4688900 *Sep 17, 1985Aug 25, 1987Kent State UniversityMicrodroplets
US4711977 *Jan 9, 1987Dec 8, 1987Wacom Co., Ltd.Electronic blackboard apparatus
US4772763 *Aug 25, 1987Sep 20, 1988International Business Machines CorporationData processing information input using optically sensed stylus features
US4777329 *Aug 24, 1987Oct 11, 1988Microfield Graphics, Inc.Determining position coordinate data of a mobile element
US4786891 *Apr 8, 1986Nov 22, 1988Yokogawa Electric CorporationAbsolute encoder for linear or angular position measurements
US4812833 *May 29, 1987Mar 14, 1989Hitachi, Ltd.Touch panel input device
US4812940 *Jun 16, 1987Mar 14, 1989Olympus Optical Co., Ltd.Dictation display for displaying present position and cue mark position information
US4832144 *May 23, 1988May 23, 1989Kabushiki Kaisha WacomPosition detector
US4901073 *Mar 30, 1988Feb 13, 1990Regent Of The University Of CaliforniaEncoder for measuring the absolute position of moving elements
US4938570 *Apr 7, 1986Jul 3, 1990Sony CorporationMethod and system for data display and input via display screen
US4944576 *Mar 21, 1988Jul 31, 1990Hughes Aircraft CompanyFilm with partial pre-alignment of polymer dispersed liquid crystals for electro-optical devices, and method of forming the same
US4994204 *Mar 20, 1989Feb 19, 1991Kent State UniversityLight modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase
US4998105 *Jun 15, 1988Mar 5, 1991Fanuc Ltd.Absolute position encoder
US5009044 *Apr 26, 1990Apr 23, 1991Allied-Signal Inc.Dual-pane thermal window with liquid crystal shade
US5015057 *Sep 21, 1989May 14, 1991Tektronix, Inc.Liquid crystal fiber optic attenuator and process for making same
US5023408 *Jun 13, 1989Jun 11, 1991Wacom Co., Ltd.Electronic blackboard and accessories such as writing tools
US5073954 *Feb 28, 1989Dec 17, 1991Electrocom Automation, Inc.Bar code location and recognition processing system
US5076690 *May 14, 1990Dec 31, 1991Spectra-Physics Laserplane, Inc.Computer aided positioning system and method
US5096282 *Mar 23, 1990Mar 17, 1992Hughes Aircraft Co.Polymer dispersed liquid crystal film devices
US5103080 *Dec 10, 1990Apr 7, 1992Symbol Technologies, Inc.Digitizer signal processing circuit for a bar code
US5121449 *Apr 24, 1990Jun 9, 1992Hitachi, Ltd.Information detecting system of scanning type
US5130795 *Feb 19, 1991Jul 14, 1992The United States Of America As Represented By The Secretary Of The ArmyPositive automatic target locator indentification system (ATLIS), for ATR system testing
US5137354 *Aug 1, 1991Aug 11, 1992Spectra-Physics, Inc.Computer aided three dimensional positioning sensing system and method
US5196835 *May 2, 1991Mar 23, 1993International Business Machines CorporationLaser touch panel reflective surface aberration cancelling
USRE33936 *Dec 8, 1989May 26, 1992Wacom Co., Ltd.Electronic blackboard apparatus
GB1575420A * Title not available
Non-Patent Citations
Reference
1 *Electronic Blackboard Technology; Manufactured by Digital Scanning Systems.
2 *Optical Devices: Lasers; National Aeronautics and Space Administration.
3 *Pinpointing Coordinates with Laser Beam Scanning; Position feedback opens up applications from the classroom to the surgical suite; by Gerald F. Marshall, Jagmohan S. Gadhok and John L. Junkins.
4 *Polyvision; manufactured by Polytronix, Inc.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5583323 *Nov 5, 1993Dec 10, 1996Microfield Graphics, Inc.Calibration of graphic data-acquisition tracking system
US5866856 *Feb 28, 1997Feb 2, 1999Electronics For Imaging, Inc.Marking device for electronic presentation board
US5877750 *Sep 17, 1996Mar 2, 1999International Business Machines CorporationMethod and apparatus for in-place line width selection for graphics applications
US6067080 *Feb 21, 1997May 23, 2000Electronics For ImagingRetrofittable apparatus for converting a substantially planar surface into an electronic data capture device
US6100877 *Mar 22, 1999Aug 8, 2000Virtual Ink, Corp.Method for calibrating a transcription system
US6104387 *May 14, 1998Aug 15, 2000Virtual Ink CorporationTranscription system
US6111565 *Mar 22, 1999Aug 29, 2000Virtual Ink Corp.Stylus for use with transcription system
US6124847 *Mar 22, 1999Sep 26, 2000Virtual Ink, Corp.Collapsible detector assembly
US6138523 *Sep 12, 1997Oct 31, 2000Lsi Logic CorporationMethod and apparatus for touch detection based on the current flow generated by object relative to a sensor panel
US6147681 *Mar 22, 1999Nov 14, 2000Virtual Ink, Corp.Detector for use in a transcription system
US6151014 *Apr 7, 1999Nov 21, 2000Pagasus Technologies Ltd.Systems and processing algorithms for ultrasound time-of-flight digitizer systems
US6177927Mar 22, 1999Jan 23, 2001Virtual Ink Corp.Transcription system kit
US6191778Mar 22, 1999Feb 20, 2001Virtual Ink Corp.Transcription system kit for forming composite images
US6211863Mar 22, 1999Apr 3, 2001Virtual Ink. Corp.Method and software for enabling use of transcription system as a mouse
US6266051 *Nov 19, 1999Jul 24, 2001Electronics For Imaging, Inc.Retrofittable apparatus for converting a substantially planar surface into an electronic data capture device
US6292177Mar 5, 1997Sep 18, 2001Tidenet, Inc.Marking device for electronic presentation board
US6310615Sep 21, 2000Oct 30, 2001Virtual Ink CorporationDual mode eraser
US6326565Feb 28, 1997Dec 4, 2001Electronics For Imaging, Inc.Marking device for electronic presentation board
US6343519Sep 5, 2000Feb 5, 2002Lsi Logic CorporationMethod and apparatus for touch detection based on the velocity of an object relative to a sensor panel
US6756970Nov 20, 1998Jun 29, 2004Microsoft CorporationPen-based computer system
US6875933May 10, 2002Apr 5, 2005Luidia Inc.Methods and apparatus for configuring a writing surface
US7032187Dec 11, 2001Apr 18, 2006Microsoft CorporationPen-based interface for a notepad computer
US7091960 *Nov 25, 2000Aug 15, 2006Silverbrook Research Pty LtdCode sensor attachment for pen
US7202860 *Oct 7, 2002Apr 10, 2007Eit Co., Ltd.Coordinate input device working with at least display screen and desk-top surface as the pointing areas thereof
US7222098 *Nov 12, 2002May 22, 2007Silverbrook Research Pty LtdMethod and system for online payments using sensor with identifier
US7414617Mar 5, 2007Aug 19, 2008Eit Co., Ltd.Coordinate input device working with at least display screen and desk-top surface as the pointing areas thereof
US7451115 *Nov 12, 2002Nov 11, 2008Silverbrook Research Pty LtdMethod and system for online payments using processing sensor
US7559037Jan 27, 2006Jul 7, 2009Microsoft CorporationPen-based interface for a notepad computer
US7593899Nov 25, 2000Sep 22, 2009Silverbrook Research Pty LtdMethod and system for online payments
US7649523Jul 19, 2006Jan 19, 2010Silverbrook Research Pty LtdMethod of estimating position of writing nib relative to an optical sensor
US7703047May 5, 2005Apr 20, 2010Microsoft CorporationPen-based interface for a notepad computer
US7703693Apr 2, 2004Apr 27, 2010Silverbrook Research Pty LtdAnonymous communication
US7721948 *May 23, 2000May 25, 2010Silverbrook Research Pty LtdMethod and system for online payments
US7760969Feb 8, 2007Jul 20, 2010Silverbrook Research Pty LtdMethod of providing information via context searching from a printed substrate
US7762453Feb 8, 2007Jul 27, 2010Silverbrook Research Pty LtdMethod of providing information via a printed substrate with every interaction
US7793824Feb 8, 2007Sep 14, 2010Silverbrook Research Pty LtdSystem for enabling access to information
US7821507Feb 8, 2007Oct 26, 2010Silverbrook Research Pty LtdMethod of providing information via a printed substrate and two-mode sensing device
US7825897May 5, 2005Nov 2, 2010Microsoft CorporationPen-based interface for a notepad computer
US7832626Apr 2, 2004Nov 16, 2010Silverbrook Research Pty LtdAnonymous competition entry
US7832630Jun 1, 2007Nov 16, 2010Silverbrook Research Pty LtdMethod and arrangement in a digital communication system
US7857201Sep 13, 2006Dec 28, 2010Silverbrook Research Pty LtdMethod and system for selection
US7891547Dec 16, 2008Feb 22, 2011Silverbrook Research Pty LtdMethod for initiating payment of bill
US7918405Apr 22, 2010Apr 5, 2011Silverbrook Research Pty LtdSystem for anonymous communication via interactive surface
US8028894Jul 15, 2010Oct 4, 2011Silverbrook Research Pty LtdSystem for providing information to user with every interaction with printed substrate
US8100329May 11, 2010Jan 24, 2012Silverbrook Research Pty LtdMethod of interacting with printed substrate
US8113950Apr 2, 2004Feb 14, 2012Silverbrook Research Pty LtdCompetition entry with limited return messaging
US8319745Dec 29, 2009Nov 27, 2012Silverbrook Research Pty LtdMethod of estimating nib position using images captured at different pen rotations
US8322607May 30, 2011Dec 4, 2012Silverbrook Research Pty LtdMethod of interacting with substrate in cursor and hyperlinking modes
US8328088Jul 13, 2010Dec 11, 2012Silverbrook Research Pty LtdSystem for providing information via context searching of printed substrate
US8330726 *Apr 23, 2004Dec 11, 2012Xiroku, Inc.Position detection apparatus using area image sensor
US8487884Jun 24, 2008Jul 16, 2013Freescale Semiconductor, Inc.Touch screen detection and diagnostics
US20070089915 *Apr 23, 2004Apr 26, 2007Xiroku, IncPosition detection apparatus using area image sensor
US20130176221 *Dec 4, 2012Jul 11, 2013Silverbrook Research Pty LtdSensing device having cursor and hyperlinking modes
EP0782092A1 *Dec 18, 1996Jul 2, 1997Symbios Logic Inc.Touch sensitive display apparatus and method
WO2003032138A2 *Sep 18, 2002Apr 17, 2003Koninkl Philips Electronics NvDevice having touch sensitivity functionality
Classifications
U.S. Classification178/19.01, 345/179, 178/18.09
International ClassificationB41J2/47, G06F3/03, G06F3/042, G06F3/033, G06F3/046, G02B26/12
Cooperative ClassificationG06F3/0317, B41J2/471, G02B26/125, G06F3/0423, G06F3/046
European ClassificationG06F3/03H3, B41J2/47B, G06F3/042B4, G02B26/12F, G06F3/046
Legal Events
DateCodeEventDescription
Feb 10, 2014ASAssignment
Owner name: STEELCASE INC., MICHIGAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POLYVISION CORPORATION;REEL/FRAME:032180/0786
Effective date: 20140210
Nov 27, 2006FPAYFee payment
Year of fee payment: 12
Jun 21, 2005ASAssignment
Owner name: MICROFIELD GRAPHICS, INC., OREGON
Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:016700/0553
Effective date: 20050613
Dec 29, 2004ASAssignment
Owner name: POLYVISION CORPORATION, GEORGIA
Free format text: MERGER;ASSIGNOR:GREENSTEEL, INC.;REEL/FRAME:015494/0333
Effective date: 20040102
Owner name: POLYVISION CORPORATION 3970 JOHNS CREEK COURT SUIT
Free format text: MERGER;ASSIGNOR:GREENSTEEL, INC. /AR;REEL/FRAME:015494/0333
Jan 17, 2003FPAYFee payment
Year of fee payment: 8
Jan 3, 2002ASAssignment
Owner name: GREENSTEEL, INC., PENNSYLVANIA
Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:012407/0763
Effective date: 20011113
Owner name: GREENSTEEL, INC. 29 LAING AVENUE DIXONVILLE PENNSY
Owner name: GREENSTEEL, INC. 29 LAING AVENUEDIXONVILLE, PENNSY
Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SILICON VALLEY BANK /AR;REEL/FRAME:012407/0763
Oct 30, 2000ASAssignment
Owner name: GREENSTEEL, INC., GEORGIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROFIELD GRAPHICS, INC.;REEL/FRAME:011204/0120
Effective date: 20001024
Owner name: GREENSTEEL, INC. 4888 SOUTH OLD PEACHTREE ROAD NOR
Jan 19, 1999FPAYFee payment
Year of fee payment: 4
Jan 3, 1997ASAssignment
Owner name: SILICON VALLEY BANK, CALIFORNIA
Free format text: SECURITY INTEREST;ASSIGNOR:MICROFIELD GRAPHICS, INC.;REEL/FRAME:008283/0612
Effective date: 19960909
Feb 3, 1994ASAssignment
Owner name: MICROFIELD GRAPHICS, INC., OREGON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILSON, SCOTT E.;MALLICOAT, SAMUEL W.;ZURSTADT, DONALD H.;REEL/FRAME:006881/0564
Effective date: 19931231