Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5466213 A
Publication typeGrant
Application numberUS 08/178,182
Publication dateNov 14, 1995
Filing dateJan 6, 1994
Priority dateJul 6, 1993
Fee statusPaid
Publication number08178182, 178182, US 5466213 A, US 5466213A, US-A-5466213, US5466213 A, US5466213A
InventorsNeville Hogan, Hermano I. Krebs, Andre Sharon, Jain Charnnarong
Original AssigneeMassachusetts Institute Of Technology
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Interactive robotic therapist
US 5466213 A
Abstract
An interactive robotic therapist interacts with a patient to shape the motor skills of the patient by guiding the patient's limb through a series of desired exercises with a robotic arm. The patient's limb is brought through a full range of motion to rehabilitate multiple muscle groups. A drive system coupled to the robotic arm is controlled by a controller which provides the commands to direct the robotic arm through the series of desired exercises.
Images(20)
Previous page
Next page
Claims(20)
What is claimed is:
1. An interactive robotic therapist system comprising at least one interactive robotic therapist including:
a robotic moveable member for interacting with a patient to shape the patient's motor skills, the moveable member including an end-effector with a limb coupler for securing a patient's limb to the moveable member at the end-effector, the moveable member being capable of guiding the patient's limb along a desired path through a series of desired exercises;
a drive system coupled to the moveable member for driving the moveable member, the drive system being configured such that force exerted by the patient's limb on the moveable member is capable of altering the desired path of the moveable member while the moveable member is guiding the patient's limb through the exercises without changing the series of the desired exercises wherein the patient can be safely connected with the moveable member since the patient can temporarily alter the desired path of the moveable member; and
a controller coupled to the drive system for providing the drive system with commands to direct the moveable member through the series of desired exercises.
2. The robotic therapist of claim 1 in which the moveable member is a robotic arm having a series of moveable joints.
3. The robotic therapist of claim 1 in which the controller has programming means for programming the series of exercises are.
4. The robotic therapist of claim 2 in which the drive system comprises at least one drive motor coupled to at least one joint in the robotic arm.
5. The robotic therapist of claim 1 in which the controller has memory means for storing the desired series of exercises.
6. The robotic therapist of claim 2 in which the robotic arm has more than one degree of freedom.
7. The robotic therapist of claim 1 in which the robotic therapist is a first robotic therapist and further comprising a second robotic therapist for controlling the movements of the first robotic therapist through command signals communicated over a communication line.
8. The robotic therapist of claim 1 further comprising educational video-games displayed on a monitor and playable by the patient through manipulation of the moveable member.
9. The robotic therapist of claim 1 in which the controller includes means for measuring and quantifying motor skill performance of the patient.
10. The robotic therapist of claim 1 in which only the end-effector has means for securing the patient's limb.
11. A method of shaping a patient's motor skills comprising the steps of providing an interactive robotic therapist system comprising at least one interactive robotic therapist including a robotic moveable member, a drive system coupled to the moveable member and a controller coupled to the drive system;
guiding a patient's limb along a desired path through a series of exercises with the moveable member secured to the patient's limb, the moveable member being driven by the drive system coupled to the moveable member;
controlling the drive system with a controller, a controller providing commands to direct the moveable member through the desired series of exercises; and
altering the desired path of moveable member while the moveable member is guiding the patient's limb through the exercises by exerting force on the moveable member with the patient's limb without changing the series of the desired exercises wherein the patient can be safely connected with the moveable member since the patient can temporarily alter the desired path of the moveable member.
12. The method of claim 11 further comprising the steps of:
teaching a series of exercises to the interactive therapy apparatus by guiding the moveable member through a series of motions; and
storing the guided series of motions in memory in the controller.
13. The method of claim 11 in which the series of exercises are predetermined.
14. The method of claim 11 in which the patient's limb is an arm.
15. The method of claim 13 in which the patient's arm is guided by the moveable member through a full range of motion.
16. The method of claim 11 further comprising the step of providing educational video games displayed on a monitor and playable by the patient through manipulation of the moveable member.
17. The method of claim 11 further comprising the step of measuring and quantifying motor skill performance of the patient with the controller.
18. The method of claim 11 in which the patient's motor skills are shaped with a first robotic therapist, the method further comprising the step of controlling the movements of the first robotic therapist with a second robotic therapist through command signals communicated over a communication line.
19. The method of claim 11 further comprising the step of providing the moveable member with more than one degree of freedom.
20. The method of claim 11 further comprising the step of coupling at least one drive motor to at least one joint in the moveable member to form the drive system.
Description

This invention was made with government support under Grant Number 8914032-BCS awarded by the National Science Foundation. The government has certain rights in the invention.

RELATED APPLICATION

This application is a Continuation-in-Part of U.S. patent application Ser. No. 08/087,666 filed on Jul. 6, 1993 now abandoned.

BACKGROUND OF THE INVENTION

When a patient undergoes massive trauma such as a stroke, head injury, or spinal cord injury, the patient's motor skills in multiple muscle groups are impaired and the patient loses the full range of motion in the limbs. The patient must undergo physical and occupational therapy (from now on referred as therapy) in order to rehabilitate the impaired motor skills. Current therapy machines having one degree of freedom for rehabilitating single muscle groups are limited in the rehabilitation process because the range of motions needed for rehabilitation require the rehabilitation of multiple muscle groups (Functional Rehabilitation). The therapist must interact one-on-one with the patient and lead the patient through exercises having full range of motion.

SUMMARY OF THE INVENTION

The problem with employing a therapist to work one-on-one with a patient is that the therapist can only work with one patient at a time and must physically lead the patient through the exercises. Additionally, during a session, the therapist must be physically present at all times when the patient requires therapy. Furthermore, a patient's progress is very difficult to determine and quantify. Accordingly, there is a need for a therapy apparatus which allows a therapist to rehabilitate multiple patients at once, train therapists, permit remote sessions or autonomous recapitulation of a session, does not require the therapist's attention at all times during therapy, and quantifies the patient's performance and progress, permitting the session to be tailored to the patient's needs using the therapeutical procedure that maximizes the rate of recovery.

The present invention provides an interactive robotic therapist and method including a moveable member for interacting with a patient to shape the patient's motor skills. The moveable member is capable of guiding a patient's limb through a series of desired exercises. The moveable member is driven by a drive system which is coupled to the moveable member. The power output of the drive system is controlled so that the patient can alter the path of the series of exercises guided by the moveable member. The drive system is controlled by a controller which provides the commands to direct the moveable member through the series of desired exercises.

In preferred embodiments, the moveable member is a robotic arm which has a series of moveable joints. The patient's arm is secured to the robotic arm. The drive system comprises at least one drive motor coupled to at least one joint in the robotic arm. The robotic arm is capable of guiding the person's arm through more than one degree of freedom. The desired series of exercises are predetermined and are entered and stored into the memory of the controller by guiding the robotic arm through a series of motions. The exercises can then be replayed to interact with a patient.

The present invention provides an interactive robotic therapist and method which allows a therapist to rehabilitate multiple patients at one time and does not require the physical presence or continuous attention of the therapist. Additionally, the therapist can provide a patient with therapy by controlling the robotic therapist with a remotely located robotic therapist.

The present invention provides an interactive robotic therapist and method which allows a simultaneous diagnosis or training of therapists through the interaction with a patient.

The present invention provides an interactive robotic therapist and method which allows the quantification of the patient recovery and progress. This is a fundamental tool to evaluate different therapeutical procedures and tailor the therapy to the patient needs.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of the drawings of the preferred embodiments. Reference characters refer to the same parts throughout the different drawings. The drawings are not necessarily to scale, emphasis instead being placed on illustrating the principles of the invention.

FIG. 1 is a schematic drawing of a patient interacting with the present invention interactive robotic therapist.

FIG. 2 is a flow chart for a preferred control system for the present invention.

FIGS. 3a-3c are preferred embodiments of the robotic arm for planar motion version (two dimensions -2D) or spatial motion version (three dimensions - 3D).

FIGS. 4a-4f show a patient's hand secured to an end-effector in various positions as seen from the side, front and top, as well as different possible attachment locations for the end-effector.

FIGS. 5a and 5b are schematic drawings of a first interactive robotic therapist controlled by a second interactive robotic therapist.

FIG. 6 is a schematic drawing of a classroom of therapy patients interacting with individual interactive robotic therapists which are controlled by a single interactive robotic therapist.

FIG. 7 is a schematic drawing of a classroom of therapists interacting with individual interactive robotic therapists and interacting with a single interactive robotic therapist attached to a patient.

FIGS. 8a and 8b are side views of a patient using his/her intact limb to teach the interactive robotic therapist an exercise, which is mirrored by the device and played back to the impaired limb of the patient.

FIGS. 9a-9c are schematic drawings of different modes of therapy for the therapy.

FIGS. 10a-10c are schematic drawings of the procedure for asynchronous diagnosis of patients.

FIGS. 11a-11d show different educational video-games to motivate and register patient performance during the exercise. FIGS. 11a-11d show the implemented concepts for range of motion, force, direction and dexterity exercises.

FIGS. 12a and 12b are side views showing different options for the video game screen position such as a standard vertical monitor or a horizontal monitor to facilitate the patient's visualization of the exercise and his/her hand.

FIG. 13 is a schematic drawing showing the interactive robotic therapist as a quantification and measuring device.

FIG. 14 is a schematic drawing showing the interactive robotic therapist as a quantification and measuring device with the additional Electromyographic implementation feature and with a Functional Electric Stimulation Implementation feature.

FIGS. 15a and 15b are schematic drawings showing the modules used during the teaching (intimate mode) and playback phases (autonomous and monitored modes).

FIG. 16 is a schematic drawing showing the modules used in telerobotic implementation.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In FIG. 1, interactive robotic therapist 10 2D-version has a robotic arm 14 which is controlled by direct drive motors M1, M2 and M3. Robotic arm 14 is secured to a column 28 by bracket 30. Column 28 provides robotic arm 14 with vertical adjustment. Bracket 30 is secured to motor M1, which controls motion of shoulder joint 20L. Robotic arm 14 comprises an arm member 16, which is connected to the forearm member 18 by elbow joint 22, which in turn is connected to an end-effector 24. Bracket 30 is also secured to motor M2, which controls motion of the joint 20U. Joint 20U is connected to member 76, which is connected to member 70 by joint 74. Member 70 is connected to the forearm member 18 by the elbow actuation joint 72. Shoulder joint 20L and elbow joint 22 provide robotic arm 14 with motion having two degrees of freedom.

Motor M2 controls movement at elbow actuation joint 72, and is secured to bracket 30 along the same vertical axis as motor M1 in order to reduce inertia effects on the movement of robotic arm 14. Alternatively, motor M2 can be located at elbow joint 22 or other suitable locations. The forearm 26 and hand 26a of patient 12 is secured to end-effector 24. End-effector 24 has three degrees of freedom and can exercise the full range of motion of the wrist of patient 12. End-effector 24 is driven by motor M3 which is mounted to end-effector 24.

Motors M1, M2 and M3 are preferably direct drive high torque DC motors, which are not connected to gear reducers but alternatively can be other suitable types of motors including motors connected to gear reducers or cables. Additionally, velocity, position and force sensors are located within joints 20U and 20L, as well as within end-effector 24 for providing feedback to controller 32. Controller 32 controls the motion of robotic therapist 10 and is connected to motors M1, M2 and M3 by electrical cable 34.

Presently, the position, velocity and force of the translational degrees of freedom of robotic arm 14, as well as the end-effector are measured by standard off-the-shelf components. The controller 32 is a personal computer which for example can be a 80486 CPU having standard 16 bit A/D and D/A cards, as well as a 32 bit DIO board.

Typically, in operation, the patient is first secured to robotic therapist 10. The human therapist then teaches the robotic therapist a series of motions by moving the robotic arm 14 and end-effector 24 through simple exercises such as stretching the arm and rotating the wrist. Robotic therapist 10 records the desired movements and stores them in memory within controller 32. Robotic therapist 10 can then replay the recorded motions while guiding patient 12 with varying degrees of firmness during which the human therapist may or may not choose to be present. The varying firmness can be programmed into and controlled by controller 32 and patient 12 can override or alter the programmed path of robotic arm 14 by exerting his or her strength on robotic arm 14. To promote learning, as motor skills are acquired, firmness may be progressively reduced, thereby reducing the degree of guidance and assistance provided to the patient. As the patient 12 regains lost motor skills, the dependence on the robotic interactive therapist 10 becomes reduced. Controller 32 can keep a record of a patient's performance at each session so that the patient's progress can be followed.

Referring to FIG. 2, the control system for robotic therapist 10 is composed of a sequence of layers. The control system is organized in a hierarchy with each layer interacting with the immediately adjacent layer. The highest layer corresponds to the designated high level controller 50 followed by a layer designated as task encoding or translator 52. The lower layer designated as low level controller 54 interacts with the hardware 56. A layer on the same level of the hardware corresponds to the work object 60 and both the hardware layer and the work object layer are deposited on the external environment layer 58. The arrows show the flow of information and energetic interaction.

Referring to FIG. 3a, one preferred embodiment of robotic arm 14 is a parallelogram linkage including arm member 16 which is connected to forearm member 18 by joint 22. Joint 20U is connected to arm member 76 which connects to forearm member 18 via joint 74, connecting member 70 and elbow actuation joint 72. Movement of arm member 16 is controlled by motor M1 and the movement of elbow actuation joint 72 is controlled by motor M2 via arm member 76, joint 74 and connecting member 70. End-effector 24 is secured to robotic arm 14 at end 18a of forearm member 18.

Referring to FIGS. 3b and 3c, the preferred embodiment of the robotic arm 14 of FIG. 3a has a modular concept. It can be assembled for 2D horizontal movement, in which case the arm 14 is assembled in the horizontal plane and the base 29 is fixed with respect to column 28 and bracket 30. It can also be assembled for 3D movement, in which case the arm 14 is assembled in the vertical plane and the base is a controlled rotational base with the motor M0.

Referring to FIG. 4a, the forearm 26 of patient 12 is secured to end-effector 24 by splint holder 88 and splint 88a. Splint 88a is made of plastic, carbon fiber (or Kevlarô) and foam. The user can remove his or her forearm 26 by pulling the splint holder out of the connector 90. Alternatively, patient 12 can pull his forearm 26 free from the splint holder 88 by unscrewing the butterfly of splint 88a. A wrist flexion/extension mechanism 80 is connected to hand 26a. Pad 80a rests upon the top of hand 26 and is connected to motor M3 via joint 82, member 85, joint 84 and member 86. The wrist flexion/extension mechanism 80 is capable of moving a patient's hand 26a in flexion and extension postures as shown by the arrows A.

Referring to FIG. 4b, hand 26a is capable of being moved in pronation/supination postures as indicated by the arrows B. Motor M3 has a built in potentiometer and tachometer and drives an eccentric crank 108. Crank 108 is connected to a four bar mechanism comprising vertical rods 92 and 94, horizontal beam 98 and splint holder 88. Splint holder 88, rod 92, rod 94 and beam 98 are moveably connected by joints 90, 96 and 100.

Referring to FIG. 4c, end-effector 24 is capable of moving the wrist in abduction and adduction postures as indicated by the arrows C. Member 86 is driven by motor M3 which moves hand 26a in the direction of the arrows.

Motor M3 is composed of a set of multiple motors or actuators capable of moving the wrist in 3 degrees of freedom. Additionally, end-effector 24 can be of other suitable configurations which can provide 3 degrees of freedom at the wrist.

Referring to FIGS. 4d, 4e and 4f, end-effector 24 was built according to a modular concept. It can be assembled in the 2D version, in the 3D version and in the stand-alone version.

Referring to FIGS. 5a and 5b, the robotic therapist 10 to which patient 12 is secured, can be controlled by a human physical therapist 112 who is interacting with robotic therapist 110. Robotic therapist 110 is connected to computer 132 by line 134 and computer 132 is connected to computer 32 by line 136 which can be a phone line or other communication medium. As a result, therapist 112 can remotely guide the patient 12.

Robotic therapists 10 and 110 can optionally include cameras and sound systems 200 so that patient 12 and therapist 112 can see and talk to each other. Additionally, robotic therapist can include a range system 220 for shutting down robotic therapist 10 if a portion of the body of patient 12 other than forearm 26 crosses plane 210, thereby providing a safety feature. The same system 220 can be also used as a measuring device providing space position information of the patient's arm. Referring to FIG. 6, a single human therapist 112 operating a robotic therapist 110 can teach a classroom of patients 12 by connecting multiple computers 32 to computer 132 via lines 136.

Referring to FIG. 7, several human therapists 112 operating robotic therapists 110 can be trained simultaneously by a human therapist instructor 112 interacting with a patient 12 connected to the robotic therapist 10 by connecting multiple computers 132 to computer 32 via lines 136.

Referring to FIGS. 8a and 8b, a patient 12 can exercise alone with the interactive robotic therapist 10 by teaching the robotic therapist 10 an exercise with his/her intact limb 27. The robotic therapist 10 creates a mirror exercise for the patient's impaired limb 26 and plays it back to the patient 12.

Referring to FIGS. 9a, 9b and 9c, the standard teach and playback procedure (intimate, monitored and autonomous modes) is illustrated. In the intimate mode the human therapist 112 teaches an exercise to the patient 12 with the robotic therapist 10 attached. The robotic therapist 10 plays back the exercise to the patient 12 with the therapist 112 still physically connected but not interfering (monitored mode). The robotic therapist 10 plays back the exercise with the therapist 112 only overseeing (autonomous).

Referring to FIGS. 10a, 10b and 10c, the robotic therapist 10 can be used for asyncronous diagnosis and evaluation of the patient 12. In the teach mode, the human therapist 112 preprograms an exercise for robotic therapist 10. In the autonomous mode, the robotic therapist 10 plays the exercise back and registers the patient 12 reaction. In the diagnosis mode, the robotic therapist 10 plays the patient reaction to the therapist 112. The therapist 112 can diagnose or evaluate the patient 12 performance.

Referring to FIG. 11a, several educational video-games can be used for the patient 12. The games have several purposes: motivation for continuing exercising, cognitive exercise, and recording patient performance during exercise. Several educational video-games were developed for range of motion, force, direction and dexterity control. The patient performance can be stored and evaluated.

One example of a game for developing the range of motion of a patient is depicted in FIG. 11a. Icon 300, representing the position of the hand 26a of patient 12, is positioned on screen 32a. Two targets 302 and 304, respecively, are located at positions away from icon 300. By moving hand 26a and attached robotic arm 14, patient 12 can move icon 300 over targets 302 and 304 (or be moved). The range of motion of patient 12 can be increased by locating more targets on screen 32a, by changing the target size, or by spacing the targets further apart.

FIG. 11b depicts one example of a game for developing force control. Patient 12 maneuvers icon 300 along a path 306 by moving robotic arm 14, while robotic arm 14 applies a variable force against hand 26a in the direction of the arrow.

FIG. 11c depicts one example of a game for developing direction control. A target 308 is located in a predetermined direction away from icon 300. Patient 12 must maneuver icon 300 with robotic arm 14 in the direction of target 308 and place icon 300 over target 308. Target 308 can be located anywhere on circle 310 to develop directional control in all directions.

FIG. 11d depicts one example of a game for developing dexterity. Icon 312 designates the location of the hand 26a of patient 12. Icon 312 has a shape which allows the rotational orientation of icon 312 to be seen. A target 314 having a shape indicating rotational orientation is positioned away from icon 312. In order for icon 312 to be placed over target 314, icon 312 must be moved and rotated by patient 12, so that icon 312 is placed over target 314 in the same rotational orientation as target 314.

Although several video games have been described for developing the range of motion, force, direction and dexterity control of patient 12, there are countless possibilities for video games. The patient's performance in the games can be quantified and stored for patient's evaluation.

Referring to FIGS. 12a and 12b, the interactive robotic therapist 10 can have only one computer screen or monitor. However, the preferred embodiment has two separate monitors. One for the robot control system 32 and one for the educational video-game 32b or 32c. The video-game monitor can be the standard 14" computer screen 32b, or it can be a 21" screen 32c mounted horizontally just below the patient workspace to facilitate and permit the patient at look simultaneously to his/her arm and video-game screen.

Referring to FIG. 13, the interactive robot therapist 10 can be used as a measuring device for therapy quantification. It provides position, velocity, force information at the patient's hand 26a. It can also provide the patient's arm position information through the off-the-shelf range system 220 and targets, which are located at the shoulder (Ts), elbow (Te), and wrist (Tw). It can register the patient 12 performance and permit the evaluation of different therapy procedures.

Referring to FIG. 14, the interactive robotic therapist 10 can also incorporate off-the-shelf electromyographic system for measuring muscle contraction, or off-the-shelf functional eletrical stimulation system to stimulate specific muscles. Both systems are illustrated by the electrodes E1, E2 and amplification or power source AB.

Referring to FIGS. 15a and 15b, the system flow chart is shown for the intimate and autonomous/monitored modes of FIGS. 9a-9c. In the intimate mode the sensor readings are encoded through a set of human-like motion primitives and stored. In the autonomous or monitored modes, the stored information is decoded and the desired motion characteristic is reconstructed. This desired motion characteristic is target motion that the real-time controller tries to achieve by sending commands to the actuators and using the sensors feedback to calculate the new set of commands.

Referring to FIG. 16, the system flow chart is shown for the telerobotic implementation. The sensor readings are used in two forms: to provide feedback for the local real-time controller and to encode the motion into human-like primitives, sent through a transmission line. At the other side of the transmission line, the message is decoded and the desired motion characteristic is used by the real-time controller to send commands to the actuators, and using the sensors feedback to calculate the new set of commands.

The interactive robotic therapist tries to mimic the human therapist. The controller schemes illustrated in the previous figures incorporate psycho-physical experimental results and hypothesis on primate motor control (humans and monkeys). This prior knowledge of human motor control is incorporated in different forms into the robotic therapist. The preferred controller of FIG. 2 incorporates the concept that motor behavior is hierarchically organized in the sequence of layers: volitional or object domain, kinematic domain (mapping of the task), and torque/force domain. The human-like motion primitives mentioned in the encoding scheme of FIGS. 15a through 16 incorporates the concept of encoding movement via a virtual trajectory. The virtual trajectory for unconstrained motions minimizes jerk, and the arm trajectory modification scheme incorporates the concept of virtual trajectory superposition. The resulting virtual trajectory and impedance estimates are then coded in a sequence of minimum jerk type components (or similar basis function, such as Gaussian or Wavelet functions). The concept of "stroke" will be used to aggregate these components. Stroke can be loosely defined as an action unit. A stroke will be represented by an episodic burst of information, whenever a new action is required.

Equivalents

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes and form and details may be made therein without departing from the spirit and scope of the invention as defined by the dependent claims. For example, various types of motors and actuators can be substituted for motors M0, M1, M2 and M3. Additionally, motors M0, M1, M2 and M3 can be positioned at other suitable locations and robotic arm 14 can be of various configurations. Furthermore, robotic therapist 10 can be employed to rehabilitate other parts of a patient's body such as the legs. Also, end-effector 24 does not have to provide three degrees of freedom at the wrist, but can be of other suitable configurations such as a handle which the patient grips.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3648143 *Aug 25, 1969Mar 7, 1972Harper Associates IncAutomatic work-repeating mechanism
US4046262 *Jan 24, 1974Sep 6, 1977The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationAnthropomorphic master/slave manipulator system
US4235437 *Jul 3, 1978Nov 25, 1980Book Wayne JRobotic exercise machine and method
US4689449 *Oct 3, 1986Aug 25, 1987Massachusetts Institute Of TechnologyTremor suppressing hand controls
US4740126 *Nov 22, 1985Apr 26, 1988Blomberg Robotertechnik GmbhGripping hand for a manipulator
US4837734 *Feb 26, 1987Jun 6, 1989Hitachi, Ltd.Method and apparatus for master-slave manipulation supplemented by automatic control based on level of operator skill
US4936299 *Sep 16, 1988Jun 26, 1990Metropolitan Center For High TechnologyMethod and apparatus for rehabilitation of disabled patients
US5020790 *Oct 23, 1990Jun 4, 1991Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical CollegePowered gait orthosis
US5078152 *Dec 25, 1988Jan 7, 1992Loredan Biomedical, Inc.Method for diagnosis and/or training of proprioceptor feedback capabilities in a muscle and joint system of a human patient
US5163451 *Jan 24, 1992Nov 17, 1992Sutter CorporationRehabilitation patient positioning method
US5186695 *Oct 26, 1990Feb 16, 1993Loredan Biomedical, Inc.Apparatus for controlled exercise and diagnosis of human performance
US5201772 *Jan 31, 1991Apr 13, 1993Maxwell Scott MSystem for resisting limb movement
US5391128 *Jul 20, 1993Feb 21, 1995Rahabilitation Institute Of MichiganObject delivery exercise system and method
SU676280A1 * Title not available
SU876131A1 * Title not available
WO1993013916A1 *Jan 14, 1993Jul 22, 1993Stanford Res Inst IntTeleoperator system and method with telepresence
Non-Patent Citations
Reference
1Adelstein, B. D. and Rosen, M. J., "A High Performance Two Degree-of-Freedom Kinesthetic Interface," Proceedings of the Eng. Foundation Conf. on Human Machine Interfaces for Teleoperators and Virtual Environments, 6 pages, (1990, Mar.).
2Adelstein, B. D. and Rosen, M. J., "A Two Degree-of-Freedom Loading Manipulandum for the Study of Human Arm Dynamics," 1987 Advances in Bioengineering, The American Society of Engineers, pp. 111-112 (1987, Dec.).
3 *Adelstein, B. D. and Rosen, M. J., A High Performance Two Degree of Freedom Kinesthetic Interface, Proceedings of the Eng. Foundation Conf. on Human Machine Interfaces for Teleoperators and Virtual Environments, 6 pages, (1990, Mar.).
4 *Adelstein, B. D. and Rosen, M. J., A Two Degree of Freedom Loading Manipulandum for the Study of Human Arm Dynamics, 1987 Advances in Bioengineering, The American Society of Engineers, pp. 111 112 (1987, Dec.).
5Rosen, M. J. and Adelstein, B. D., "Design of a Two-Degree-of-Freedom Manipulandum for Tremor Research," Frontiers of Engineering and Computing in Health Care-1984, IEEE Engineering in Medicine and Biology Society, pp. 47-51 (1984, Sep.).
6 *Rosen, M. J. and Adelstein, B. D., Design of a Two Degree of Freedom Manipulandum for Tremor Research, Frontiers of Engineering and Computing in Health Care 1984, IEEE Engineering in Medicine and Biology Society, pp. 47 51 (1984, Sep.).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5755645 *Jan 9, 1997May 26, 1998Boston Biomotion, Inc.Exercise apparatus
US5830160 *Apr 18, 1997Nov 3, 1998Reinkensmeyer; David J.Movement guiding system for quantifying diagnosing and treating impaired movement performance
US5848979 *Jul 18, 1996Dec 15, 1998Peter M. BonuttiFor effecting relative movement between bones in an arm of a patient
US6142910 *Jun 11, 1999Nov 7, 2000Heuvelman; John A.Method and therapy software system for preventing computer operator injuries
US6155993 *Mar 31, 1999Dec 5, 2000Queen's University At KingstonKinesiological instrument for limb movements
US6243624 *Mar 19, 1999Jun 5, 2001Northwestern UniversityNon-Linear muscle-like compliant controller
US6413190 *Jul 27, 1999Jul 2, 2002Enhanced Mobility TechnologiesRehabilitation apparatus and method
US6500094 *Nov 20, 2001Dec 31, 2002Unicorn Lake Enterprise Inc.Electric rehabilitation treatment machine
US6580417Mar 22, 2001Jun 17, 2003Immersion CorporationTactile feedback device providing tactile sensations from host commands
US6636161Jul 10, 2001Oct 21, 2003Immersion CorporationIsometric haptic feedback interface
US6636197Feb 14, 2001Oct 21, 2003Immersion CorporationHaptic feedback effects for control, knobs and other interface devices
US6661403Jul 19, 2000Dec 9, 2003Immersion CorporationMethod and apparatus for streaming force values to a force feedback device
US6671317 *Nov 23, 1999Dec 30, 2003Sony CorporationInformation processing unit, information processing method, and recording medium therewith
US6680729Sep 29, 2000Jan 20, 2004Immersion CorporationIncreasing force transmissibility for tactile feedback interface devices
US6683437Oct 31, 2001Jan 27, 2004Immersion CorporationCurrent controlled motor amplifier system
US6686901Jan 26, 2001Feb 3, 2004Immersion CorporationEnhancing inertial tactile feedback in computer interface devices having increased mass
US6689075Aug 27, 2001Feb 10, 2004Healthsouth CorporationPowered gait orthosis and method of utilizing same
US6693626May 12, 2000Feb 17, 2004Immersion CorporationHaptic feedback using a keyboard device
US6697043Jun 2, 2000Feb 24, 2004Immersion CorporationHaptic interface device and actuator assembly providing linear haptic sensations
US6697044Dec 19, 2000Feb 24, 2004Immersion CorporationHaptic feedback device with button forces
US6697048Dec 22, 2000Feb 24, 2004Immersion CorporationComputer interface apparatus including linkage having flex
US6697086Dec 11, 2000Feb 24, 2004Immersion CorporationDesigning force sensations for force feedback computer applications
US6701296Dec 27, 1999Mar 2, 2004James F. KramerStrain-sensing goniometers, systems, and recognition algorithms
US6703550Oct 10, 2001Mar 9, 2004Immersion CorporationSound data output and manipulation using haptic feedback
US6704001Nov 1, 1999Mar 9, 2004Immersion CorporationForce feedback device including actuator with moving magnet
US6704002May 15, 2000Mar 9, 2004Immersion CorporationPosition sensing methods for interface devices
US6704683Apr 27, 1999Mar 9, 2004Immersion CorporationDirect velocity estimation for encoders using nonlinear period measurement
US6707443Feb 18, 2000Mar 16, 2004Immersion CorporationHaptic trackball device
US6715045Jan 29, 2002Mar 30, 2004Immersion CorporationHost cache for haptic feedback effects
US6717573Jan 12, 2001Apr 6, 2004Immersion CorporationLow-cost haptic mouse implementations
US6750877Jan 16, 2002Jun 15, 2004Immersion CorporationControlling haptic feedback for enhancing navigation in a graphical environment
US6762745May 5, 2000Jul 13, 2004Immersion CorporationActuator control providing linear and continuous force output
US6801008Aug 14, 2000Oct 5, 2004Immersion CorporationForce feedback system and actuator power management
US6816148Sep 18, 2001Nov 9, 2004Immersion CorporationEnhanced cursor control using interface devices
US6817973Mar 16, 2001Nov 16, 2004Immersion Medical, Inc.Apparatus for controlling force for manipulation of medical instruments
US6821259 *Dec 21, 2001Nov 23, 2004The Nemours FoundationOrthosis device
US6833846Oct 23, 2002Dec 21, 2004Immersion CorporationControl methods for the reduction of limit cycle oscillations for haptic devices with displacement quantization
US6864877Sep 27, 2001Mar 8, 2005Immersion CorporationDirectional tactile feedback for haptic feedback interface devices
US6866643Dec 5, 2000Mar 15, 2005Immersion CorporationDetermination of finger position
US6878122Jan 29, 2002Apr 12, 2005Oregon Health & Science UniversityMethod and device for rehabilitation of motor dysfunction
US6880487Apr 5, 2002Apr 19, 2005The Regents Of The University Of CaliforniaRobotic device for locomotor training
US6895305Feb 27, 2002May 17, 2005Anthrotronix, Inc.Robotic apparatus and wireless communication system
US6903721May 11, 2000Jun 7, 2005Immersion CorporationMethod and apparatus for compensating for position slip in interface devices
US6904823Apr 3, 2002Jun 14, 2005Immersion CorporationHaptic shifting devices
US6906697Aug 10, 2001Jun 14, 2005Immersion CorporationHaptic sensations for tactile feedback interface devices
US6924787Apr 17, 2001Aug 2, 2005Immersion CorporationInterface for controlling a graphical image
US6928386Mar 18, 2003Aug 9, 2005Immersion CorporationHigh-resolution optical encoder with phased-array photodetectors
US6933920Sep 24, 2002Aug 23, 2005Immersion CorporationData filter for haptic feedback devices having low-bandwidth communication links
US6937033Jun 27, 2001Aug 30, 2005Immersion CorporationPosition sensor with resistive element
US6956558Oct 2, 2000Oct 18, 2005Immersion CorporationRotary force feedback wheels for remote control devices
US6965370Nov 19, 2002Nov 15, 2005Immersion CorporationHaptic feedback devices for simulating an orifice
US6982696Jun 30, 2000Jan 3, 2006Immersion CorporationMoving magnet actuator for providing haptic feedback
US6982700Apr 14, 2003Jan 3, 2006Immersion CorporationMethod and apparatus for controlling force feedback interface systems utilizing a host computer
US6995744Sep 28, 2001Feb 7, 2006Immersion CorporationDevice and assembly for providing linear tactile sensations
US7008288Jul 26, 2001Mar 7, 2006Eastman Kodak CompanyIntelligent toy with internet connection capability
US7024625Feb 21, 1997Apr 4, 2006Immersion CorporationMouse device with tactile feedback applied to housing
US7038667Aug 11, 2000May 2, 2006Immersion CorporationMechanisms for control knobs and other interface devices
US7041069Jul 23, 2002May 9, 2006Health South CorporationPowered gait orthosis and method of utilizing same
US7050955Sep 29, 2000May 23, 2006Immersion CorporationSystem, method and data structure for simulated interaction with graphical objects
US7056123Jul 15, 2002Jun 6, 2006Immersion CorporationInterface apparatus with cable-driven force feedback and grounded actuators
US7061466May 4, 2000Jun 13, 2006Immersion CorporationForce feedback device including single-phase, fixed-coil actuators
US7066896Nov 12, 2002Jun 27, 2006Kiselik Daniel RInteractive apparatus and method for developing ability in the neuromuscular system
US7070571Aug 5, 2002Jul 4, 2006Immersion CorporationGoniometer-based body-tracking device
US7084854Sep 27, 2001Aug 1, 2006Immersion CorporationActuator for providing tactile sensations and device for directional tactile sensations
US7084884Jul 24, 2001Aug 1, 2006Immersion CorporationGraphical object interactions
US7087008 *May 3, 2002Aug 8, 2006Board Of Regents, The University Of Texas SystemApparatus and methods for delivery of transcranial magnetic stimulation
US7091948Sep 4, 2001Aug 15, 2006Immersion CorporationDesign of force sensations for haptic feedback computer interfaces
US7104152Dec 29, 2004Sep 12, 2006Immersion CorporationHaptic shifting devices
US7106305Dec 16, 2003Sep 12, 2006Immersion CorporationHaptic feedback using a keyboard device
US7112737Jul 15, 2004Sep 26, 2006Immersion CorporationSystem and method for providing a haptic effect to a musical instrument
US7116317Apr 23, 2004Oct 3, 2006Immersion CorporationSystems and methods for user interfaces designed for rotary input devices
US7151432Sep 19, 2001Dec 19, 2006Immersion CorporationCircuit and method for a switch matrix and switch sensing
US7151527Jun 5, 2001Dec 19, 2006Immersion CorporationTactile feedback interface device including display screen
US7154470Jul 29, 2002Dec 26, 2006Immersion CorporationEnvelope modulator for haptic feedback devices
US7159008Jun 30, 2000Jan 2, 2007Immersion CorporationChat interface with haptic feedback functionality
US7161580Nov 22, 2002Jan 9, 2007Immersion CorporationHaptic feedback using rotary harmonic moving mass
US7168042Oct 9, 2001Jan 23, 2007Immersion CorporationForce effects for object types in a graphical user interface
US7182691Sep 28, 2001Feb 27, 2007Immersion CorporationDirectional inertial tactile feedback using rotating masses
US7191191Apr 12, 2002Mar 13, 2007Immersion CorporationHaptic authoring
US7193607Mar 17, 2003Mar 20, 2007Immersion CorporationFlexure mechanism for interface device
US7196688May 24, 2001Mar 27, 2007Immersion CorporationHaptic devices using electroactive polymers
US7198137Jul 29, 2004Apr 3, 2007Immersion CorporationSystems and methods for providing haptic feedback with position sensing
US7204814May 29, 2003Apr 17, 2007Muscle Tech Ltd.Orthodynamic rehabilitator
US7205981Mar 18, 2004Apr 17, 2007Immersion CorporationMethod and apparatus for providing resistive haptic feedback using a vacuum source
US7208671Feb 20, 2004Apr 24, 2007Immersion CorporationSound data output and manipulation using haptic feedback
US7209028Mar 14, 2005Apr 24, 2007Immersion CorporationPosition sensor with resistive element
US7209118Jan 20, 2004Apr 24, 2007Immersion CorporationIncreasing force transmissibility for tactile feedback interface devices
US7218310Jul 17, 2001May 15, 2007Immersion CorporationProviding enhanced haptic feedback effects
US7233315Jul 27, 2004Jun 19, 2007Immersion CorporationHaptic feedback devices and methods for simulating an orifice
US7233476Aug 10, 2001Jun 19, 2007Immersion CorporationActuator thermal protection in haptic feedback devices
US7236157Dec 19, 2002Jun 26, 2007Immersion CorporationMethod for providing high bandwidth force feedback with improved actuator feel
US7245202Sep 10, 2004Jul 17, 2007Immersion CorporationSystems and methods for networked haptic devices
US7252644Sep 29, 2005Aug 7, 2007Northwestern UniversitySystem and methods to overcome gravity-induced dysfunction in extremity paresis
US7253803Jan 5, 2001Aug 7, 2007Immersion CorporationForce feedback interface device with sensor
US7265750Mar 5, 2002Sep 4, 2007Immersion CorporationHaptic feedback stylus and other devices
US7280095Apr 30, 2003Oct 9, 2007Immersion CorporationHierarchical methods for generating force feedback effects
US7283120Jan 16, 2004Oct 16, 2007Immersion CorporationMethod and apparatus for providing haptic feedback having a position-based component and a predetermined time-based component
US7283123Apr 12, 2002Oct 16, 2007Immersion CorporationTextures and other spatial sensations for a relative haptic interface device
US7284374Feb 7, 2006Oct 23, 2007Massachusetts Institute Of TechnologyActuation system with fluid transmission for interaction control and high force haptics
US7289106May 7, 2004Oct 30, 2007Immersion Medical, Inc.Methods and apparatus for palpation simulation
US7299321Nov 14, 2003Nov 20, 2007Braun Adam CMemory and force output management for a force feedback system
US7307619Apr 19, 2006Dec 11, 2007Immersion Medical, Inc.Haptic interface for palpation simulation
US7327348Aug 14, 2003Feb 5, 2008Immersion CorporationHaptic feedback effects for control knobs and other interface devices
US7336260Nov 1, 2002Feb 26, 2008Immersion CorporationMethod and apparatus for providing tactile sensations
US7336266Feb 20, 2003Feb 26, 2008Immersion CorproationHaptic pads for use with user-interface devices
US7345672Feb 27, 2004Mar 18, 2008Immersion CorporationForce feedback system and actuator power management
US7367958Apr 19, 2007May 6, 2008Massachusetts Institute Of TechnologyMethod of using powered orthotic device
US7369115Mar 4, 2004May 6, 2008Immersion CorporationHaptic devices having multiple operational modes including at least one resonant mode
US7386415Jul 12, 2005Jun 10, 2008Immersion CorporationSystem and method for increasing sensor resolution using interpolation
US7396337Nov 21, 2003Jul 8, 2008Massachusetts Institute Of TechnologyPowered orthotic device
US7404716Dec 12, 2005Jul 29, 2008Immersion CorporationInterface apparatus with cable-driven force feedback and four grounded actuators
US7405729Jul 20, 2006Jul 29, 2008Immersion CorporationSystems and methods for user interfaces designed for rotary input devices
US7416537 *Jun 23, 1999Aug 26, 2008Izex Technologies, Inc.Rehabilitative orthoses
US7439951Apr 18, 2005Oct 21, 2008Immersion CorporationPower management for interface devices applying forces
US7446752Sep 29, 2003Nov 4, 2008Immersion CorporationControlling haptic sensations for vibrotactile feedback interface devices
US7450110Aug 17, 2004Nov 11, 2008Immersion CorporationHaptic input devices
US7453039Aug 18, 2006Nov 18, 2008Immersion CorporationSystem and method for providing haptic feedback to a musical instrument
US7454909Feb 7, 2006Nov 25, 2008Massachusetts Institute Of TechnologyImpedance shaping element for a control system
US7460105Jan 13, 2006Dec 2, 2008Immersion CorporationInterface device for sensing position and orientation and outputting force feedback
US7472047Mar 17, 2004Dec 30, 2008Immersion CorporationSystem and method for constraining a graphical hand from penetrating simulated graphical objects
US7477237Jun 3, 2004Jan 13, 2009Immersion CorporationSystems and methods for providing a haptic manipulandum
US7491183 *Apr 29, 2004Feb 17, 2009Jump & Joy AbPlaying rack having vibrating platform to stand on
US7500853Apr 26, 2006Mar 10, 2009Immersion CorporationMechanical interface for a computer system
US7502011Jun 25, 2002Mar 10, 2009Immersion CorporationHybrid control of haptic feedback for host computer and interface device
US7505030Mar 18, 2004Mar 17, 2009Immersion Medical, Inc.Medical device and procedure simulation
US7522152May 27, 2004Apr 21, 2009Immersion CorporationProducts and processes for providing haptic feedback in resistive interface devices
US7535454May 21, 2003May 19, 2009Immersion CorporationMethod and apparatus for providing haptic feedback
US7544172Jun 29, 2004Jun 9, 2009Rehabilitation Institute Of Chicago EnterprisesWalking and balance exercise device
US7548232Aug 17, 2004Jun 16, 2009Immersion CorporationHaptic interface for laptop computers and other portable devices
US7557794Oct 30, 2001Jul 7, 2009Immersion CorporationFiltering sensor data to reduce disturbances from force feedback
US7561142May 5, 2004Jul 14, 2009Immersion CorporationVibrotactile haptic feedback devices
US7567232Oct 23, 2002Jul 28, 2009Immersion CorporationMethod of using tactile feedback to deliver silent status information to a user of an electronic device
US7567243Jun 1, 2004Jul 28, 2009Immersion CorporationSystem and method for low power haptic feedback
US7618381Oct 27, 2004Nov 17, 2009Massachusetts Institute Of TechnologyWrist and upper extremity motion
US7623114Oct 9, 2001Nov 24, 2009Immersion CorporationHaptic feedback sensations based on audio output from computer devices
US7639232Nov 30, 2005Dec 29, 2009Immersion CorporationSystems and methods for controlling a resonant device for generating vibrotactile haptic effects
US7656388Sep 27, 2004Feb 2, 2010Immersion CorporationControlling vibrotactile sensations for haptic feedback devices
US7658704Oct 29, 2004Feb 9, 2010Board Of Regents, The University Of Texas SystemApparatus and methods for delivery of transcranial magnetic stimulation
US7676356Oct 31, 2005Mar 9, 2010Immersion CorporationSystem, method and data structure for simulated interaction with graphical objects
US7696978Sep 28, 2004Apr 13, 2010Immersion CorporationEnhanced cursor control using interface devices
US7701438Jun 20, 2006Apr 20, 2010Immersion CorporationDesign of force sensations for haptic feedback computer interfaces
US7742036Jun 23, 2004Jun 22, 2010Immersion CorporationSystem and method for controlling haptic devices having multiple operational modes
US7755602Jun 13, 2003Jul 13, 2010Immersion CorporationTactile feedback man-machine interface device
US7764268Sep 24, 2004Jul 27, 2010Immersion CorporationSystems and methods for providing a haptic device
US7769417Dec 8, 2002Aug 3, 2010Immersion CorporationMethod and apparatus for providing haptic feedback to off-activating area
US7803125Jun 9, 2009Sep 28, 2010Rehabilitation Institute Of Chicago EnterprisesWalking and balance exercise device
US7808488Mar 29, 2007Oct 5, 2010Immersion CorporationMethod and apparatus for providing tactile sensations
US7837599May 11, 2007Nov 23, 2010Rehabtronics Inc.Method and apparatus for automated delivery of therapeutic exercises of the upper extremity
US7854708May 22, 2007Dec 21, 2010Kai Yu TongMultiple joint linkage device
US7877243Jul 15, 2002Jan 25, 2011Immersion CorporationPivotable computer interface
US7916121Feb 3, 2009Mar 29, 2011Immersion CorporationHybrid control of haptic feedback for host computer and interface device
US7926269Feb 7, 2006Apr 19, 2011Massachusetts Institute Of TechnologyMethod for controlling a dynamic system
US7965276Mar 1, 2001Jun 21, 2011Immersion CorporationForce output adjustment in force feedback devices based on user contact
US7978186Sep 22, 2005Jul 12, 2011Immersion CorporationMechanisms for control knobs and other interface devices
US7986303Sep 25, 2007Jul 26, 2011Immersion CorporationTextures and other spatial sensations for a relative haptic interface device
US8002089Sep 10, 2004Aug 23, 2011Immersion CorporationSystems and methods for providing a haptic device
US8012107Feb 4, 2005Sep 6, 2011Motorika LimitedMethods and apparatus for rehabilitation and training
US8013847Aug 24, 2004Sep 6, 2011Immersion CorporationMagnetic actuator for providing haptic feedback
US8018434Jul 26, 2010Sep 13, 2011Immersion CorporationSystems and methods for providing a haptic device
US8073501May 25, 2007Dec 6, 2011Immersion CorporationMethod and apparatus for providing haptic feedback to non-input locations
US8077145Sep 15, 2005Dec 13, 2011Immersion CorporationMethod and apparatus for controlling force feedback interface systems utilizing a host computer
US8083694Apr 11, 2007Dec 27, 2011Muscle Tech Ltd.Multi joint orthodynamic rehabilitator, assistive orthotic device and methods for actuation controlling
US8112155 *Apr 28, 2005Feb 7, 2012Motorika LimitedNeuromuscular stimulation
US8125453Oct 20, 2003Feb 28, 2012Immersion CorporationSystem and method for providing rotational haptic feedback
US8154512Apr 20, 2009Apr 10, 2012Immersion CoporationProducts and processes for providing haptic feedback in resistive interface devices
US8159461Sep 30, 2010Apr 17, 2012Immersion CorporationMethod and apparatus for providing tactile sensations
US8164573Nov 26, 2003Apr 24, 2012Immersion CorporationSystems and methods for adaptive interpretation of input from a touch-sensitive input device
US8169402Jun 8, 2009May 1, 2012Immersion CorporationVibrotactile haptic feedback devices
US8177732Feb 5, 2006May 15, 2012Motorika LimitedMethods and apparatuses for rehabilitation and training
US8214029Apr 12, 2010Jul 3, 2012Kinetic Muscles, Inc.System and method for neuromuscular reeducation
US8248363Oct 24, 2007Aug 21, 2012Immersion CorporationSystem and method for providing passive haptic feedback
US8277396Nov 2, 2007Oct 2, 2012Queen's University At KingstonMethod and apparatus for assessing proprioceptive function
US8279172Mar 23, 2011Oct 2, 2012Immersion CorporationHybrid control of haptic feedback for host computer and interface device
US8308794Nov 4, 2005Nov 13, 2012IZEK Technologies, Inc.Instrumented implantable stents, vascular grafts and other medical devices
US8315652May 18, 2007Nov 20, 2012Immersion CorporationHaptically enabled messaging
US8347710 *May 1, 2008Jan 8, 2013Queen's University At KingstonRobotic exoskeleton for limb movement
US8359123 *Apr 28, 2007Jan 22, 2013The Hong Kong Polytechnic UniversityRobotic system and training method for rehabilitation using EMG signals to provide mechanical help
US8364342Jul 29, 2002Jan 29, 2013Immersion CorporationControl wheel with haptic feedback
US8441433Aug 11, 2004May 14, 2013Immersion CorporationSystems and methods for providing friction in a haptic feedback device
US8441437Nov 23, 2009May 14, 2013Immersion CorporationHaptic feedback sensations based on audio output from computer devices
US8485996May 2, 2004Jul 16, 2013Bioxtreme Ltd.Method and system for motion improvement
US8527873Aug 14, 2006Sep 3, 2013Immersion CorporationForce feedback system including multi-tasking graphical host environment and interface device
US8540652May 22, 2007Sep 24, 2013The Hong Kong Polytechnic UniversityRobotic training system with multi-orientation module
US8545420 *Feb 4, 2005Oct 1, 2013Motorika LimitedMethods and apparatus for rehabilitation and training
US8554408Oct 8, 2012Oct 8, 2013Immersion CorporationControl wheel with haptic feedback
US8574178May 26, 2009Nov 5, 2013The Hong Kong Polytechnic UniversityWearable power assistive device for helping a user to move their hand
US8576174Mar 14, 2008Nov 5, 2013Immersion CorporationHaptic devices having multiple operational modes including at least one resonant mode
US8585620Mar 18, 2009Nov 19, 2013Myomo, Inc.Powered orthotic device and method of using same
US8619031Jul 27, 2009Dec 31, 2013Immersion CorporationSystem and method for low power haptic feedback
US8638308Dec 22, 2010Jan 28, 2014Immersion Medical, Inc.Haptic interface for palpation simulation
US8648829Dec 22, 2011Feb 11, 2014Immersion CorporationSystem and method for providing rotational haptic feedback
US8660748Sep 10, 2013Feb 25, 2014Immersion CorporationControl wheel with haptic feedback
US8686941Dec 19, 2012Apr 1, 2014Immersion CorporationHaptic feedback sensations based on audio output from computer devices
US8717287Apr 19, 2010May 6, 2014Immersion CorporationForce sensations for haptic feedback computer interfaces
US8739033Oct 29, 2007May 27, 2014Immersion CorporationDevices using tactile feedback to deliver silent status information
US8749507Apr 6, 2012Jun 10, 2014Immersion CorporationSystems and methods for adaptive interpretation of input from a touch-sensitive input device
US8753296Feb 4, 2005Jun 17, 2014Motorika LimitedMethods and apparatus for rehabilitation and training
US8773356Jan 31, 2012Jul 8, 2014Immersion CorporationMethod and apparatus for providing tactile sensations
US8788253Oct 30, 2002Jul 22, 2014Immersion CorporationMethods and apparatus for providing haptic feedback in interacting with virtual pets
US8795207May 23, 2008Aug 5, 2014Fundacion FatronikPortable device for upper limb rehabilitation
US8800366Nov 13, 2012Aug 12, 2014Queen's University At KingstonRobotic exoskeleton for limb movement
US8803796Aug 26, 2004Aug 12, 2014Immersion CorporationProducts and processes for providing haptic feedback in a user interface
US20070299371 *Feb 4, 2005Dec 27, 2007Omer EinavMethods and Apparatus for Rehabilitation and Training
US20080242521 *Feb 4, 2005Oct 2, 2008Motorika, Inc.Methods and Apparatuses for Rehabilitation Exercise and Training
US20080304935 *May 1, 2008Dec 11, 2008Scott Stephen HRobotic exoskeleton for limb movement
US20090259338 *Apr 28, 2007Oct 15, 2009The Hong Kong Polytechnic UniversityRobotic system and training method for rehabilitation using emg signals to provide mechanical help
US20110165997 *Jan 21, 2011Jul 7, 2011Alton ReichRotary exercise equipment apparatus and method of use thereof
US20120022668 *Sep 23, 2011Jan 26, 2012Ossur HfProsthetic and orthotic systems usable for rehabilitation
USRE39906Jun 21, 2001Nov 6, 2007Immersion CorporationGyro-stabilized platforms for force-feedback applications
USRE42183Sep 8, 1999Mar 1, 2011Immersion CorporationInterface control
CN101185798BNov 16, 2006Sep 1, 2010财团法人自行车暨健康科技工业研究发展中心Track guiding type movement training system
CN101288620BJun 13, 2008Jun 2, 2010哈尔滨工程大学Three freedom shoulder, elbow joint force feedback type healing robot
DE102011052836A1Aug 19, 2011Feb 23, 2012Keba AgInteractive training system for rehabilitation of patients with movement impairments of extremities, has input and output units with part interacting with patient, so that physiotherapeutic training program is interactively completed
EP1000637A1 *May 26, 1999May 17, 2000Japan Science and Technology CorporationFeedforward exercise training machine and feedforward exercise evaluating system
EP1631421A2 *May 2, 2004Mar 8, 2006Nini BlumanMethod and system for motion improvement
EP1734912A2 *Feb 4, 2005Dec 27, 2006Motorika Inc.Methods and apparatus for rehabilitation and training
EP1734913A2 *Feb 4, 2005Dec 27, 2006Motorika Inc.Methods and apparatus for rehabilitation and training
WO2001007112A2 *Jul 27, 2000Feb 1, 2001Enhanced Mobility TechnologiesRehabilitation apparatus and method
WO2005074371A2 *Feb 4, 2005Aug 18, 2005Reability IncMethods and apparatus for rehabilitation and training
WO2005105203A1 *Apr 28, 2005Nov 10, 2005Reability IncNeuromuscular stimulation
WO2006047753A2 *Oct 27, 2005May 4, 2006Celestino JamesWrist and upper extremity motion
WO2007053795A2 *Oct 16, 2006May 10, 2007Hermano I KrebsConverting rotational motion into radial motion
WO2007131340A1May 11, 2007Nov 22, 2007Rehabtronics IncMethod and apparatus for automated delivery of therapeutic exercises of the upper extremity
WO2009141460A1May 23, 2008Nov 26, 2009Fundacion FatronikPortable device for upper limb rehabilitation
WO2011056152A1Nov 2, 2010May 12, 2011Univerza V LjubljaniDevice for exercising the musculoskeletal and nervous system
WO2012114274A2Feb 21, 2012Aug 30, 2012Humanware S.R.L.Haptic system and device for man-machine interaction
Classifications
U.S. Classification601/33, 482/4, 482/901
International ClassificationA61H1/02
Cooperative ClassificationY10S482/901, A61H1/02, A61H2201/5007
European ClassificationA61H1/02
Legal Events
DateCodeEventDescription
May 7, 2007FPAYFee payment
Year of fee payment: 12
May 13, 2003FPAYFee payment
Year of fee payment: 8
May 4, 1999FPAYFee payment
Year of fee payment: 4
Feb 6, 1996CCCertificate of correction
Mar 10, 1994ASAssignment
Owner name: MASSACHUSETTS INST. OF TECHNOLOGY, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOGAN, NEVILLE;KREBS, HERMANO IGO;SHARON, ANDRE;AND OTHERS;REEL/FRAME:006878/0810;SIGNING DATES FROM 19940224 TO 19940225