Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5485486 A
Publication typeGrant
Application numberUS 08/217,003
Publication dateJan 16, 1996
Filing dateMar 23, 1994
Priority dateNov 7, 1989
Fee statusPaid
Publication number08217003, 217003, US 5485486 A, US 5485486A, US-A-5485486, US5485486 A, US5485486A
InventorsKlein S. Gilhousen, Roberto Padovani, Lindsay A. Weaver, Jr.
Original AssigneeQualcomm Incorporated
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US 5485486 A
Abstract
A power control system for a cellular mobile telephone system in which system users communicate information signals between one another via at least one cell site using code division multiple access spread spectrum communication signals. The power control system controls transmission signal power for each cellular mobile telephone in the cellular mobile telephone system wherein each cellular mobile telephone has an antenna, transmitter and receiver and each cell-site also has an antenna, transmitter and receiver. Cell-site transmitted signal power is measured as received at the mobile unit. Transmitter power is adjusted at the mobile unit in an opposite manner with respect to increases and decreases in received signal power. A power control feedback scheme may also be utilized. At the cell-site communicating with the mobile unit, the mobile unit transmitted power is measured as received at the cell-site. A command signal is generated at the cell-site and transmitted to the mobile unit for further adjusting mobile unit transmitter power corresponding to deviations in the cell site received signal power. The feedback scheme is used to further adjust the mobile unit transmitter power so that mobile unit transmitted signals arrive at the cell-site at a desired power level. In a cell diversity situation, the mobile units transmitter power is adjusted to prevent unnecessary increases in mobile unit transmitter power level.
Images(7)
Previous page
Next page
Claims(30)
We claim:
1. In a cellular mobile telephone system in which system users communicate information signals between one another via a system controller and through at least one cell-site using code division multiple access (CDMA) spread spectrum communication signals between said cell-sites and mobile telephones, wherein each cell-site has a plurality of modules for communicating with mobile telephones in said cellular mobile telephone system and at least two cell-site modules of a cell-site are each in communication with a different mobile telephone, a power control system for adjusting cell-site module transmission signal power in response to a power adjustment request from a mobile telephone, wherein each mobile telephone has an antenna, transmitter and receiver and each cell-site has an antenna, at least one transmitter and at least one receiver, said power control system comprising:
means for determining transmission signal quality, at a mobile telephone for CDMA communication signals intended for said mobile telephone as transmitted from a cell-site module, with respect to a desired signal quality level, for generating a power adjustment request when said determined transmission signal quality is below said desired signal quality level, and for communicating said power adjustment request to said module;
means at said module for communicating said power adjustment request to a system controller;
means at said system controller responsive to said power adjustment request for generating and communicating a power adjustment command to each module of said cell-site;
means at each cell-site module for receiving said power adjustment command, said cell-site module responsive thereto for increasing transmission signal power in CDMA communication signals to said mobile telephone by a predetermined increment, and each other cell-site module responsive thereto for reducing transmission signal power in CDMA communication signals as communicated therefrom to a corresponding mobile telephone in communication therewith by a predetermined increment.
2. The power control system of claim 1 wherein said cell-site module transmission signal power increase increment is on the order of about 1 dB and each other module transmission signal power decrease increment is on the order of said module transmission signal power increase increment divided by n, where n is the number of other modules in communication with a corresponding mobile telephone.
3. The power control system of claim 1 wherein upon adjustment of said module and other module transmission power, the sum of cell-site module transmission power remains substantially the same.
4. The power control system of claim 1 wherein said system controller communicates a control message via at least one of said cell-site modules to corresponding mobile telephones, each mobile telephone means for determining transmission signal quality upon receiving said control message and responsive thereto for generating a signal quality response message and communicating said signal quality response message to each corresponding module, said means at said module for communicating also communicating said signal quality response message to said system controller, said system controller responsive to received signal quality response messages for generating and communicating a second power adjustment command command to each module of said cell-site and wherein said means at each cell-site module for receiving said power adjustment command also receives said second power adjustment command and is responsive thereto for adjusting transmission signal power in CDMA communication signals to each mobile telephone by a predetermined increment.
5. In a communication system having a central transmission station and a plurality of remote stations, a power control system for controlling signal power of information signals transmitted by said central transmission station to said plurality of remote stations comprising:
a plurality of communication modules located at said central transmission station for modulating said information signals and adjusting transmission signal power of said modulated information signals as transmitted to said plurality of remote stations; and
a controller system coupled to said plurality of communication modules for controlling transmission power of individual ones of said plurality of communication modules, wherein said controller system upon varying transmission power of one of said communication modules said controller system also varies transmission power of at least one other transmitter to maintain a constant total transmission power of said plurality of transmitters.
6. The system of claim 5 wherein said communication modules are further for receiving transmission quality signals from said plurality of remote stations.
7. The system of claim 6 wherein said controller system is responsive to said received transmission quality signals for varying transmission power of said individual ones of said plurality of communication modules.
8. In a digital cellular communication system in which a remote user and another user communicate information signals to one another via a relay station using spread spectrum modulated signals in the relay of said information signals between said relay station and said remote user, a system for controlling transmission power in said relay station transmitted spread spectrum signal comprising:
a relay station for spread spectrum modulating and transmitting a first information signal as a first spread spectrum signal at a first predetermined transmission level;
a remote user communication station for receiving and demodulating said first spread spectrum signal to recover said first information signal, generating power adjustment information indicative of signal quality of said first information signal, and spread spectrum modulating and transmitting said power adjustment information to said relay station in a second spread spectrum signal; and
wherein said relay station is further for receiving and demodulating said second spread spectrum signal to provide said power adjustment information, and in response to said power adjustment information adjusting said first predetermined transmission level to maintain a predetermined level of signal quality of said first information signal at said remote user communication station.
9. The system of claim 8 wherein said remote user communication station is further for determining signal quality of said first information signal and generating a power adjustment request as said power adjustment information when said determined signal quality is below a predetermined signal quality level.
10. In a cellular mobile telephone system in which system users communicate information signals between one another via a system controller and through at least one cell-site using code division multiple access (CDMA) spread spectrum communication signals between said cell-sites and mobile telephones, wherein each cell-site has a plurality of modules for communicating with mobile telephones in said cellular mobile telephone system, a power adjustment system for adjusting cell-site module transmission signal power in response to a power adjustment request from a mobile telephone, wherein each mobile telephone has an antenna, transmitter and receiver and each cell-site has an antenna, at least one transmitter and at least one receiver, said power adjustment system comprising:
means for determining transmission signal quality at a mobile telephone in a CDMA communication signal directed to said mobile telephone as transmitted from a cell-site module for generating a power adjustment request in accordance with said determined transmission signal quality, and for communicating said power adjustment request to said module;
means at said module for communicating said power adjustment request to a system controller;
means at said system controller responsive to said power adjustment request for generating and communicating a power adjustment command to said module;
means at said module for receiving said power adjustment command, said module responsive thereto for adjusting transmission signal power in said CDMA communication signal to said mobile telephone by a predetermined increment.
11. The power control system of claim 10 wherein said module transmission signal power adjustment increment is on the order of about 1 dB.
12. The power adjustment system of claim 10 wherein said system controller communicates a control message via said module to said mobile telephone, each mobile telephone means for determining transmission signal quality receiving said control message and responsive thereto for generating a signal quality response message and communicating said signal quality response message to said module, said means at said module for communicating also communicating said signal quality response message to said system controller, said system controller responsive to received signal quality response messages for generating and communicating a second power adjustment command to said module and wherein said means at said cell-site module for receiving said power adjustment command also receives said second power adjustment command and is responsive thereto for adjusting transmission signal power in CDMA communication signals to said mobile telephone by a predetermined increment.
13. In a cellular mobile telephone system in which system users communicate information signals between one another via a system controller and through at least one cell site using code division multiple access (CDMA) spread spectrum communication signals between said cell-sites and mobile telephones, wherein each cell-site has a plurality of modules for communicating with mobile telephones in said cellular mobile telephone system, a method for adjusting cell-site module transmission signal power in response to a power adjustment request from a mobile telephone, wherein each mobile telephone has an antenna, transmitter and receiver and each cell-site has an antenna, at least one transmitter and at least one receiver, said power adjustment method comprising the steps of:
determining, at a mobile telephone, transmission signal quality in a CDMA communication signal directed to said mobile telephone;
generating, at said mobile telephone, a power adjustment request when said determined transmission signal quality is below a predetermined signal quality level;
communicating said power adjustment request to said module;
communicating said power adjustment request from said module to a system controller;
generating a power adjustment command responsive to said power adjustment request at said system controller;
communicating said power adjustment command to said module;
receiving said power adjustment command at said cell-site module and
adjusting transmission signal power in CDMA communication signal to said mobile telephone by a predetermined increment.
14. The power adjustment method of claim 13 wherein said step of adjusting transmission signal power comprises adjusting transmission signal power on the order of about 1 dB.
15. The power adjustment method of claim 13 further comprising the steps of:
communicating from the system controller a control message via at least one of said cell-site modules to corresponding mobile telephones;
determining at each mobile telephone a level of transmission signal quality;
receiving at each mobile telephone said control message;
generating at each mobile telephone a signal quality response message responsive to said control message and said level of transmission signal quality;
communicating said signal quality response message from each mobile telephone to each corresponding module;
communicating from each of said at least one of said cell-site modules said signal quality response message to said system controller;
receiving at said system controller said signal quality response messages;
generating a second power adjustment command at said system controller responsive to said signal quality response messages;
communicating said second power adjustment command to each module of said cell site;
receiving at each module of said cell-site said second power adjustment command; and
adjusting transmission signal power by a predetermined increment in CDMA communication signals responsive to said second power adjustment command.
16. In a cellular mobile telephone system in which system users communicate information signals between one another via a system controller and through at least one cell-site using code division multiple access (CDMA) spread spectrum communication signals between said cell-sites and mobile telephones, wherein each cell-site has a plurality of modules for communicating with mobile telephones in said cellular mobile telephone system, a power control system for adjusting cell-site module transmission signal power in response to a power adjustment request from a mobile telephone, wherein each mobile telephone has an antenna, transmitter and receiver and each cell-site has an antenna, at least one transmitter and at least one receiver, said power control system comprising:
a mobile station receiver for receiving a signal from a cell base station;
a processor coupled to said receiver for determining a signal quality level for said received signal and providing a power adjustment request if said signal quality level falls below a predetermined value;
a transmitter coupled to said processor responsive to said power adjustment request for transmitting said power adjustment request;
a cell base station receiver for receiving said power adjustment request from said mobile station;
a system controller coupled to said cell base station for processing mobile station information; and
a cell base station transmitter coupled to said cell base station receiver and responsive to said power adjustment request for adjusting the transmission power of said signal.
17. A communication system comprising:
a first communication station for receiving and demodulating a first spread spectrum signal to recover an information signal, for determining signal quality of said information signal and generating corresponding power adjustment information, and for spread spectrum modulating and transmitting said power adjustment information as a second spread spectrum signal; and
a second communication station for spread spectrum modulating said information signal, transmitting said spread spectrum modulated information signal at a predetermined power level in said first spread spectrum signal, and for receiving and demodulating said second spread spectrum signal to recover said power adjustment information, and responsive thereto for modifying said predetermined power level to maintain a predetermined level of signal quality of said information signal at said first communication station.
18. The communication system of claim 17 wherein said second communication station modification of said predetermined power level comprises incremental changes in said power level on the order of about 1 dB.
19. The communication system of claim 17 further comprising n additional communication stations, where n is an integer, each for receiving and demodulating said first spread spectrum signal to recover a respective one of n additional information signals; and
wherein said second communication station is for spread spectrum modulating said n additional information signals, transmitting said spread spectrum modulated n additional information signals each at a respective predetermined power level in said first spread spectrum signal.
20. The communication system of claim 19 wherein said second communication station further comprises:
means for increasing said power level of said spread spectrum modulated information signal in said first spread spectrum signal by a predetermined increment; and
means for decreasing the power level of each of said spread spectrum modulated n additional information signals in said first spread spectrum signal by a predetermined amount to maintain an approximately constant level of transmission power in said first spread spectrum signal.
21. The communication system of claim 20 wherein said predetermined amount is approximately equal to said predetermined increment divided by said integer n.
22. The communication system of claim 20 wherein said second communication station includes a control message in said information signal, said first communication station responsive to said control message in said recovered information signal for generating and communicating a response message indicative of signal quality of said first information signal to said second communication station.
23. A method for controlling transmission power in a communication system comprising the steps of:
spread spectrum modulating an information signal;
transmitting said spread spectrum modulated information signal at a predetermined power level in a first spread spectrum signal from a first communication station;
receiving said first spread spectrum signal at a second communication station;
demodulating said received first spread spectrum signal to recover said information signal;
determining signal quality of said recovered information signal;
generating power adjustment information corresponding to said determined signal quality;
spread spectrum modulating said power adjustment information;
transmitting said spread spectrum modulated power adjustment information in a second spread spectrum signal from said second communication station;
receiving said second spread spectrum signal at said first communication station;
demodulating said second spread spectrum signal to recover said power adjustment information; and
modifying said predetermined power level according to said power adjustment information.
24. The method of claim 23 wherein said step of modifying said predetermined power level comprises increasing said power level on the order of about 1 dB.
25. The method of claim 23 further comprising the steps of:
spread spectrum modulating n additional information signals, where n is an integer; and
transmitting said spread spectrum modulated n additional information signals each at a respective predetermined power level in said first spread spectrum signal.
26. The method of claim 25 further comprising the step of modifying said power level of said spread spectrum modulated n additional spread spectrum signals, in cooperation with said modification of said power level of said spread spectrum modulated information signal, to keep a total amount of transmission power of said first spread spectrum signal approximately constant.
27. The method of claim 26 further comprising the steps of:
receiving said first spread spectrum signal at n additional communication stations; and
demodulating said received first spread spectrum signal at each of said n additional communication stations to recover a respective one of said n additional information signals.
28. The method of claim 26 further comprising the steps of:
including in at least one of said information signal and n information signals a control message;
generating in response to said control message at said at least one of said second communication station and said n additional communication stations a response message responsive to said second additional signal; and
communicating from each of said at least one of said second communication station and said n additional communication stations said response message.
29. In a cellular mobile telephone system in which system users communicate information signals between one another via a system controller and through at least one cell-site using code division multiple access (CDMA) spread spectrum communication signals between said cell-sites and mobile telephones, wherein each cell-site has a plurality of modules for communicating with mobile telephones in said cellular mobile telephone system, a power adjustment system for adjusting cell-site module transmission signal power in response to a power adjustment request from a mobile telephone, wherein each mobile telephone has an antenna, transmitter and receiver and each cell-site has an antenna, at least one transmitter and at least one receiver, said power adjustment system comprising:
means for determining transmission signal quality, at a mobile telephone for CDMA communication signals intended for said mobile telephones transmitted from a cell-site module, with respect to a desired signal quality level, for generating a power adjustment request when said determined transmission signal quality is below said desired signal quality level, and for communicating said power adjustment request to said module; and
means for adjusting module transmission signal power in CDMA communication signals transmitted to said mobile telephone by a predetermined increment in response to said power adjustment request.
30. The power adjustment system of claim 29 wherein said module transmission signal power adjustment increment is on the order of about 1 dB.
Description
BACKGROUND OF THE INVENTION

I. Field of the Invention

This is a Continuation of application Ser. No. 07/948,548, filed Sep. 23, 1992, now abandoned, which is continuation application of U.S. patent application Ser. No. 07/702,029, filed May 17, 1991, now U.S. Pat. No. 5,265,119, which is a continuation-in-part application of U.S. patent application Ser. No. 07/433,031, filed Nov. 7, 1989, entitled "METHOD AND APPARATUS FOR CONTROLLING TRANSMISSION POWER IN A CDMA CELLULAR TELEPHONE SYSTEM", now U.S. Pat. No. 5,056,109, and as such also relates telephone systems. More specifically, the present invention relates to a novel and improved method and apparatus for controlling transmitter power in a code division multiple access (CDMA) cellular mobile telephone system.

II. Description of the Related Art

The use of code division multiple access (CDMA) modulation techniques is one of several techniques for facilitating communications in which a large number of system users are present. Although other techniques such as time division multiple access (TDMA) frequency division multiple access (FDMA) and AM modulation schemes such as amplitude companded single sideband (ACSSB) are known, CDMA has significant advantages over these other techniques. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. patent application Ser. No. 06/921,261, filed Oct. 17, 1986, entitled "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS", now U.S. Pat. No. 4,901,307 assigned to the assignee of the present invention, the disclosure thereof incorporated by reference.

In the just mentioned patent, a multiple access technique is disclosed where a large number of mobile telephone system users each having a transceiver communicate through satellite repeaters or terrestrial base stations (also known as cell-sites stations, or for short cell-sites) using code division multiple access (CDMA) spread spectrum communication signals. In using CDMA communications, the frequency spectrum can be reused multiple times thus permitting an increase in system user capacity. The use of CDMA results in a much higher spectral efficiency than can be achieved using other multiple access techniques. In a CDMA system, increases in system capacity may be realized by controlling the transmitter power of each mobile user so as to reduce interference to other system users.

In the satellite application of the CDMA communication techniques, the mobile unit transceiver measures the power level of a signal received via a satellite repeater. Using this power measurement, along with knowledge of the satellite transponder downlink transmit power level and the sensitivity of the mobile unit receiver, the mobile unit transceiver can estimate the path loss of the channel between the mobile unit and the satellite. The mobile unit transceiver then determines the appropriate transmitter power to be used for signal transmissions between the mobile unit and the satellite, taking into account the path loss measurement, the transmitted data rate and the satellite receiver sensitivity.

The signals transmitted by the mobile unit to the satellite are relayed by the satellite to a Hub control system earth station. The Hub measures the received signal power from signals transmitted by each active mobile unit transceiver. The Hub then determines the deviation in the received power level from that which is necessary to maintain the desired communications. Preferably the desired power level is a minimum power level necessary to maintain quality communications so as to result in a reduction in system interference.

The Hub then transmits a power control command signal to each mobile user so as to adjust or "fine tune" the transmit power of the mobile unit. This command signal is used by the mobile unit to change the transmit power level closer to a minimum level required to maintain the desired communications. As channel conditions change, typically due to motion of the mobile unit, both the mobile unit receiver power measurement and the power control feedback from the Hub continually readjust the transmit power level so as to maintain a proper power level. The power control feedback from the Hub is generally quite slow due to round trip delays through the satellite requiring approximately 1/2 of a second of propagation time.

One important difference between satellite or terrestrial base stations systems are the relative distances separating the mobile units and the satellite or cell-site. Another important different in the satellite versus the terrestrial system is the type of fading that occurs in these channels. Thus, these differences require various refinements in the approach to system power control for the terrestrial system.

In the satellite/mobile unit channel, i.e. the satellite channel, the satellite repeaters are normally located in a geosynchronous earth orbit. As such, the mobile units are all at approximately the same distance from the satellite repeaters and therefore experience nearly the same propagation loss. Furthermore, the satellite channel has a propagation loss characteristic that follows approximately the inverse square law, i.e. the propagation loss is inversely proportional to the square of the distance between the mobile unit and the satellite repeater in use. Accordingly, in the satellite channel the variation in path loss due to distance variation is typically on the order of only 1-2 dB.

In contrast to the satellite channel, the terrestrial/mobile unit channel, i.e. the terrestrial channel, the distance between the mobile units and the cell sites can vary considerably. For example, one mobile unit may be located at a distance of five miles from the cell site while another mobile unit may be located only a few feet away. The variation in distance may exceed a factor of one hundred to one. The terrestrial channel experiences a propagation loss characteristic as did the satellite channel. However, in the terrestrial channel the propagation loss characteristic corresponds to an inverse fourth-power law, i.e. the path loss is proportional to the inverse of the path distance raised to the fourth power. Accordingly, path loss variations may be encountered which are on the order of over 80 dB in a cell having a radius of five miles.

The satellite channel typically experiences fading that is characterized as Rician. Accordingly the received signal consists of a direct component summed with a multiply reflected component having Rayleigh fading statistics. The power ratio between the direct and reflected component is typically on the order of 6-10 dB, depending upon the characteristics of the mobile unit antenna and the environment about the mobile unit.

Contrasting the satellite channel with the terrestrial channel, the terrestrial channel experiences signal fading that typically consists of the Rayleigh faded component without a direct component. Thus, the terrestrial channel presents a more severe fading environment than the satellite channel where Rician fading is the dominant fading characteristic.

The Rayleigh fading characteristics in the terrestrial channel signal is caused by the signal being reflected from many different features of the physical environment. As a result, a signal arrives almost simultaneously at a mobile unit receiver from many directions with different transmission delays. At the UHF frequency bands usually employed for mobile radio communications, including those of cellular mobile telephone systems, significant phase differences in signals traveling on different paths may occur. The possibility for destructive summation of the signals may result, with on occasion deep fades occurring.

Terrestrial channel fading is a very strong function of the physical position of the mobile unit. A small change in position of the mobile unit changes the physical delays of all the signal propagation paths, which further results in a different phase for each path. Thus, the motion of the mobile unit through the environment can result in a quite rapid fading process. For Example, in the 850 MHz cellular radio frequency band, this fading can typically be fast as one fade per second per mile per hour of vehicle speed. Fading on this order can be extremely disruptive to signals in the terrestrial channel resulting in poor communication quality. However, additional transmitter power can be used to overcome the problem of fading.

The terrestrial cellular mobile telephone system typically requires a full-duplex channel to be provided in order to allow both directions of the telephone conversation to be simultaneously active such as provided by the conventional wired telephone system. This full-duplex radio channel is normally provided by using one frequency band for the outbound link, i.e. transmissions from the cell-site transmitter to the mobile unit receivers. A different frequency band is utilized for the inbound link, i.e. transmissions from the mobile unit transmitters to the cell-site receivers. According, this frequency band separation allows a mobile unit transmitter and receiver to be active simultaneously without feedback or interference from the transmitter into the receiver.

The use of different frequency bands has significant implications in the power control of the cell-site and mobile unit transmitters. Use of different frequency bands causes the multipath fading to be independent processes for the inbound and outbound channels. A mobile unit cannot simply measure the outbound channel path loss and assume that the same path loss is present on the inbound channel.

Furthermore, in the terrestrial cellular mobile telephone the mobile phone is capable of communications through multiple cell-sites as disclosed in copending U.S. patent application Ser. No. 07/433,030, filed Nov. 7, 1989 entitled "METHOD AND SYSTEM FOR PROVIDING A SOFT HANDOFF IN COMMUNICATIONS IN A CDMA CELLULAR TELEPHONE SYSTEM" the disclosure of which is incorporated by reference, now U.S. Pat. No. 5,101,501. In communications with multiple cell-sites the mobile unit and cell-sites include a multiple receiver scheme as disclosed in the just mentioned application and further detailed in copending U.S. patent application Ser. No. 07/432,552, also filed Nov. 7, 1989 and entitled "DIVERSITY RECEIVER IN A CDMA CELLULAR TELEPHONE SYSTEM" the disclosure of which is also incorporated by reference; now U.S. Pat. No. 5,109,390.

In the cell diversity environment in which the mobile phone is communicating with another user through multiple cell-sites, mobile phone transmitter power must also be controlled so as to avoid adverse interference with other communications in all cells.

It is therefore, an object of the present invention to provide a novel and improved method and apparatus for controlling transmitter power in the terrestrial channel in a cell diversity environment so as to overcome deleterious fading without causing unnecessary system interference which can adversely affect overall system capacity.

SUMMARY OF THE INVENTION

In a terrestrial CDMA cellular mobile telephone system, it is desirable that the transmitter power of the mobile units be controlled so as to produce at the cell site receiver a nominal received signal power from each and every mobile unit transmitter operating within the cell. Should all of the mobile unit transmitters within an area of coverage of the cell-site have transmitter power controlled accordingly the total signal power received at the cell-site would be equal to the nominal receiver power of the mobile unit transmitted signal multiplied by the number of mobile units transmitting within the cell. To this is added the noise power received at the cell-site from mobile units in adjacent cells.

The CDMA receivers of the cell-site respectively operate by converting a wideband CDMA signal from a corresponding one of the mobile unit transmitters into a narrowband digital information carrying signal. At the same time, other received CDMA signals that are not selected remain as wideband noise signals. The bit-error-rate performance of the cell-site receiver is thus determined by the ratio of the power of the desired signal to that of the undesired signals received at the cell-site, i.e., the received signal power in the desired signal transmitted by the selected mobile unit transmitter to that of the received signal power in undesired signals transmitted by the other mobile unit transmitters. The bandwidth reduction processing, a correlation process which results in what is commonly called "processing gain", increases the signal to noise interference ratio from a negative value to a positive value thus allowing operation within an acceptable bit-error-rate.

In a terrestrial CDMA cellular mobile telephone system it is extremely desirable to maximize the capacity in terms of the number of simultaneous telephone calls that may be handled in a given system bandwidth. System capacity can be maximized if the transmitter power of each mobile unit is controlled such that the transmitted signal arrives at the cell-site receive at the minimal signal to noise interference ratio which allows acceptable data recovery. If a signal transmitted by a mobile unit arrives at the cell-site receiver at a power level that is too low, the bit-error-rate may be too high to permit high quality communications. On the other hand if the mobile unit transmitted signal is at a power level that is too high when received at the cell-site receiver, communication with this particular mobile unit will be acceptable. However, this high power signal acts as interference to other mobile unit transmitted signals that are sharing the same channel, i.e. bandwidth. This interference may adversely affect communications with other mobile units unless the total number of communicating mobile units is reduced.

The path loss of signals in the UHF frequency band of the cellular mobile telephone channel can be characterized by two separate phenomena, average path loss and fading. The average path loss can be described statistically by a log-normal distribution whose mean is proportional to the inverse fourth-power of the path distance, and whose standard deviation is approximately equal to 8 dB. The second phenomena is a fading process caused by multipath propagation of the signals which is characterized by a Rayleigh distribution. The average path loss, which is a log-normal distribution, can be considered to be the same for both the inbound and outbound frequency bands, as is for the conventional cellular mobile telephone systems. However, as mentioned previously Rayleigh fading is an independent phenomena for the inbound and outbound link frequency bands. The log-normal distribution of the average path loss is a relatively slow varying function of position. In contrast, the Rayleigh distribution varies relatively fast as a function of position.

In the present invention, a CDMA approach to multiple user access in a cellular mobile telephone system is implemented. In such a system all the cell-sites in a region transmit a "pilot" signal of the same frequency and code. The use of a pilot signal in CDMA systems is well known. In this particular application, the pilot signal is used by the mobile units for initial synchronization of the mobile unit receiver. The pilot signal is also used as a phase and frequency reference, and a time reference for demodulation of the digital speech signals transmitted by the cell-site.

In the present invention, each mobile unit estimates the path loss in signals transmitted from the cell-site to the mobile unit. In order to make this signal path loss estimate, the power level of the cell-site transmitted signals, as received at the mobile unit, are measured. The mobile unit thus measures the pilot signal power as received from the cell-site to which the mobile unit is communicating. The mobile unit also measures the power level sum of all cell-site transmitted signals as received at the mobile unit. The power level sum measurement as described in further detail later herein, is necessary to handle cases in which the mobile unit might temporarily obtain a better path to a more distant cell-site than to a normally preferred closest cell-site.

The outbound link path loss estimate may be filtered using a non-linear filter. The purpose of the non-linearity in the estimation process is to permit a rapid response to a sudden improvement in the channel while only allowing a much slower response to a sudden degradation in the channel. The mobile unit in response to a sudden improvement in the channel thus suddenly reduces mobile unit transmitter transmit power.

Should the channel for one mobile unit suddenly improve, then the signal as received at the cell-site from this mobile unit will suddenly increase in power. This sudden increase in power causes additional interference to all signals sharing the same wideband channel. A rapid response to the sudden improvement will thus reduce system interference.

A typical example of a sudden improvement in the channel occurs when a mobile unit is moving through an area that is shadowed by a large building or other obstruction and then drives out of the shadow. The channel improvement, as a result of the vehicle movement, can take place on the order of a few tens of milliseconds. As the mobile unit drives out of the shadow, the outbound link signal as received by the mobile unit will suddenly increase in strength.

The outbound link path loss estimate at the mobile unit is used by the mobile unit to adjust the mobile unit transmitter power. Thus, the stronger the received signal, the lower the mobile unit transmitter power will be. Reception of a strong signal from the cell-site indicates that the mobile unit is either close to the cell-site or else an unusually good path to the cell-site exists. Reception of a strong signal means that a relatively smaller mobile unit transmitter power level is required in nominal received power at the cell-site the mobile unit.

In the case where there is a temporary but yet sudden degradation in the channel it is desirable that a much slower increase in mobile unit transmitter power be permitted. This slow increase in mobile unit transmitter power is desired so as to prohibit an unnecessarily rapid increase in mobile unit transmit power which increases the interference to all other mobile units. Thus a temporary degradation in one mobile unit channel will be tolerated in order to prevent a degradation of all mobile unit channels.

In the case of a sudden degradation in the channel, the non-linear filter prevents the mobile transmitter power from being increased at a high rate in response to the sudden decrease in signal power in signals received at the mobile unit. The rate of increase of the mobile unit transmitter transmit power must generally be limited to the rate of a closed loop power adjustment command transmitted from the cell-site, as described below, can reduce the mobile unit transmitter transmit power. Using the cell-site generated power adjustment commands, the mobile unit transmitter power will be prevented from being increased to a level significantly higher than the level required for communications, particularly when a sudden channel degradation occurs in only the outbound link path and not in the inbound link path.

It should be noted that it is undesirable to simply use a slow response on the mobile unit transmitter power control in an attempt to separate the fast Rayleigh fading from the slow fading due to distance and terrain. A slow response in the mobile unit transmitter power control is undesirable because the possibility of sudden improvements and fades that affect the inbound and outbound channels equally. If the response to a sudden improvement were to be slowed down by a filter, then there would be frequent occasions when the mobile unit transmitter power would be quite excessive and cause interference to all other mobile users. Thus the present invention uses a two-time constant, non-linear approach in estimating the path loss.

In addition to measuring the received signal strength in the mobile unit, it is also desirable for the processor in the mobile unit to know the cell-site transmitter power and antenna gain (EIRP), the cell-site G/T (receive antenna gain G divided by receiver noise level T) the mobile unit antenna gain, and the number of calls active at this cell-site. This information allows the mobile unit processor to properly compute the reference power level for the local power setting function. This computation is done by calculating the cell-site to mobile link power budget, solving for the path loss. This path loss estimate is then used in the mobile cell-site link budget equation, solving for the mobile unit transmit power required to produce a desired signal level. This capability allows the system to have cell-sites with differing EIRP levels to correspond to the size of the cells. For example, a small radius cell need not transmit with as high a power level as a large radius cell. However, when the mobile unit is a certain distance from a low power cell, it would receive a weaker signal than from a high power cell. The mobile unit would respond with a higher transmit power than would be necessary for the short range. Hence, the desirability of having each cell-site transmit information as to its characteristics for power control.

The cell-site transmits information such as cell-site EIRP, G/T and number of active calls on a cell-site setup channel. The mobile unit receives this information when first obtaining system synchronization and continues to monitor this channel when idle for pages for calls originated within the public telephone switching network intended for the mobile unit. The mobile unit antenna gain is stored in a memory in the mobile unit at the time the mobile unit is installed in the vehicle.

As mentioned previously, mobile unit transmitter power is also controlled by a signal from one or more cell-sites. Each cell-site receiver measures the strength of the signal, as received at the cell-site, from each mobile unit to which the cell-site is in communication with. The measured signal strength is compared to a desired signal strength level for that particular mobile unit. A power adjustment command is generated and sent to the mobile unit in the outbound link data, or voice channel, addressed to that mobile unit. In response to the cell-site power adjustment command, the mobile unit increases or decreases the mobile unit transmitter power by a predetermined amount, nominally 1 dB. In the cell diversity situation, power adjustment commands are provided from both cell sites. The mobile unit acts upon these multiple cell-site provided power control commands, so as to avoid mobile unit transmitter power levels that may adversely interfere with other mobile unit communications with the cell-sites, and yet provide sufficient power to support communications between the mobile unit and at least one cell-site.

The power adjustment command is transmitted by the cell-site transmitter at a relatively high rate, typically on the order of about one command every millisecond. The rate of transmission of the power adjustment command must be high enough to permit Rayleigh fading on the inbound link path to be tracked. It is further desirable for the outbound link path Rayleigh fading impressed on the inbound link path signal to be tracked. One command per 1.25 millisecond is adequate to track the fading processes for vehicle speeds in the range of 25-50 miles per hour for 850 MHz band mobile communications. It is important that the latency in determining the power adjustment command and the transmission thereof be minimized so that channel conditions will not change significantly before the mobile unit receives and responds to the signal.

In summary, to account for the independence of the two Rayleigh fading paths (inbound and outbound), the mobile unit transmitter power is controlled by the power adjustment command from the cell-site. Each cell-site receiver measures the received signal strength from each mobile unit. The measured signal strength is compared to the desired signal strength for that mobile unit and a power adjustment command is generated. The power adjustment command is sent to the mobile unit in the outbound data or voice channel addressed to that mobile unit. This power adjustment command is combined with the mobile unit one way estimate to obtain the final value of the mobile unit transmitter power.

The power adjustment command signal is transmitted, in an exemplary embodiment, by overwriting one or more user data bits every millisecond. The modulation system employed in CDMA systems is capable of providing correction coding for user data bits. The overwrite by the power adjustment command is treated as a channel bit error or erasure and corrected by the error correction as decoded in the mobile unit receiver. Error correction coding on the power adjustment command bits in many cases may not be desirable because of the resulting increased latency in reception and response to the power adjustment command. It is also envisioned that time division multiplexing for transmission of the power adjustment command bits may be used without overwriting user data channel symbols.

The cell-site controller or processor can be used to determine the desired signal strength, as received at the cell-site, for signals transmitted by each mobile unit. The desired signal strength level values are provided to each of the cell-site receivers. The desired signal strength value is used for comparing with a measured signal strength value for generating the power adjustment command.

A system controller is utilized to command each cell-site processor as to the value of desired signal strength to use. The nominal power level can be adjusted up or down to accommodate variations in the average conditions of the cell. For example, a cell-site positioned in an unusually noisy location or geographic region might be allowed to use a higher than normal inbound power level. However, such a higher power level for in-cell operation will result in higher levels of interference to immediate neighbors of this cell. This interference can be compensated for by allowing the neighbor cells a small increase in inbound link power. Such an increase in inbound power in neighboring cells would be smaller than that of the increase given to the mobile users communicating in the high noise environment cell. It is further understood that the cell-site processor may monitor the average bit-error-rate. This data may be used by the system controller to command the cell-site processor to set an appropriate inbound link power level to assure acceptable quality communications.

It is also desirable to provide a means for controlling the relative power used in each data signal transmitted by the cell-site in response to control information transmitted by each mobile unit. The primary reason for providing such control is to accommodate the fact that in certain locations, the outbound channel link from the cell-site to the mobile unit may be unusually disadvantaged. Unless the power being transmitted to this mobile is increased, the quality may become unacceptable. An example of such a location is a point where the path loss to one or two neighboring cells is nearly the same as the path loss to the cell-site communicating with the mobile unit. In such a location, the total interference would be increased by three times over the interference seen by the mobile unit at a point relatively close to its cell-site. In addition, the interference coming from these neighboring cell-sites will not fade in unison with the desired signal as would be the case for interference coming from the desired cell-site. This situation may required 3-4 dB additional signal power to achieve adequate performance.

In another situation, the mobile unit may be located where several strong multi-path signals arrive, resulting in larger than normal interference. In such a situation, increasing the power of the desired signal relative to the interference may allow acceptable performance. At other times, the mobile unit may be located where the signal-to-interference ratio is unusually good. In such a case, the cell-site could transmit the desired signal using a lower than normal transmitter power, reducing interference to other signals being transmitted by the system.

To achieve the above objectives, the preferred embodiment includes a signal-to-interference measurement capability within the mobile unit receiver. This measurement is performed by comparing the power of the desired signal to the total interference and noise power. If the measured ratio is less than a predetermined value, the mobile transmits a request to the cell-site for additional power in cell-site transmissions. If the ratio exceeds the predetermined value the mobile unit transmits a request for a reduction in power.

The cell-site receives the power adjustment requests from each mobile and responds by adjusting the power allocated to the corresponding cell-site transmitted signal by a predetermined amount. The adjustment would usually be small, typically on the order of 0.5-1 dB, or around 12% more or less. Correspondingly the other cell-site transmitted signals are reduced by a factor of the increase divided by n, where n is the number of other channel units communicating to a mobile telephone. Typically the decrease in power may be on the order of 0.05 dB. The rate of change of power may be somewhat slower than that used for the inbound link from the mobile unit to cell-site, perhaps once per second. The dynamic range of the adjustment would also be limited to 4 dB less than nominal to about 6 dB greater than nominal. It should be understood the power increase and decrease levels are for purposes of example and that other levels may be readily selected depending on system parameters.

The cell-site must also consider the power demands being made on it by all the mobiles in deciding whether to comply with the requests of any particular mobile. For example, if the cell-site is loaded to capacity, requests for additional power might be granted but only by 6% or less, instead of the normal 12%. In this regime, a request for a reduction in power would still be granted at the normal 12% change.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters correspond throughout and wherein:

FIG. 1 is a schematic overview of an exemplary mobile cellular telephone system;

FIGS. 2A-2D illustrate, in a series of graphs, mobile unit received signal strength and transmit power as a function of distance;

FIG. 3 is a block diagram of a cell-site with particular reference to the power control features of the present invention;

FIG. 4 is a block diagram of the mobile unit with particular reference to the power control features of the present invention;

FIG. 5 is a block diagram illustrating in further detail the power control features of the mobile unit of FIG. 4;

FIG. 6 is a block diagram illustrating in further detail the power control features of the cell-site of FIG. 3; and

FIG. 7 is a block diagram of a cell-site/system controller configuration for cell-site transmitter power control.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An exemplary terrestrial cellular mobile telephone system in which the present invention is embodied is illustrated in FIG. 1. The system illustrated in FIG. 1 utilizes CDMA modulation techniques in communications between the system mobile user, and the cell-sites. Cellular systems in large cities may have hundreds of cell-site stations serving hundreds of thousands of mobile telephones. The use of CDMA techniques readily facilitates increases in user capacity in systems of this size as compared to conventional FM modulation cellular systems.

In FIG. 1, system controller and switch 10, typically includes appropriate interface and processing hardware for providing system control information to the cell-sites. Controller 10 controls the routing of telephone calls from the public switched telephone network (PSTN) to the appropriate cell-site for transmission to the appropriate mobile unit. Controller 10 also controls the routing of calls from the mobile units via at least one cell-site to the PSTN. Controller 10 may direct calls between mobile users via the appropriate cell-site stations since such mobile units do not typically communicate directly with one another.

Controller 10 may be coupled to the cell-sites by various means such as dedicated telephone lines, optical fiber links or by radio frequency communications. In FIG. 1, two exemplary cell-sites, 12 and 14, along with two exemplary mobile units 16 and 18 which include cellular telephones are illustrated. Arrows 20a-20b and 22a-22b respectively define the possible communication links between cell-site 12 and mobile units 16 and 18. Similarly, arrows 24a-24b and arrows 26a-26b respectively define the possible communication links between cell-site 14 and mobile units 18 and 16. Cell-sites 12 and 14 normally transmit using equal power.

Cell-sites 12 and 14 are in the typical case are terrestrial base stations which define cell service areas, however it should be understood that earth orbit relay satellites, such as satellites 13 and 15, may be used to provide more complete cellular coverage, particularly for remote areas. In the satellite case, signals are relayed between the mobile users and the terrestrial base stations using satellites 13 and 15. As in the terrestrial only case, the satellite case also provides the ability for communication between a mobile unit and one or more base stations via multiple transponders on the same satellite or through different satellites.

Mobile unit 16 measures the total received power in pilot signals transmitted by cell-sites 12 and 14 upon path 20a and 26a. Similarly, mobile unit 18 measures the total received power in pilot signal as transmitted by cell-sites 12 and 14 upon paths 22a and 24a. In each of mobile units 16 and 18, pilot signal power is measured in the receiver where the signal is a wideband signal. Accordingly, this power measurement is made prior to correlation of the received signal with a pseudonoise (PN) spectrum spreading signal.

When mobile unit 16 is closer to cell-site 12, the received signal power will be dominated by the signal traveling path 20a. When mobile unit 16 is nearer to cell-site 14, the received power will be dominated by the signal traveling on path 26a. Similarly, when mobile unit 18 is closer to cell-site 14, the received power will be dominated by the signal on path 24a. When mobile unit 18 is closer to cell-site 12, the received power will be dominated by the signal traveling on path 22a.

Each of mobile units 16 and 18 uses the resultant measurement, together with knowledge of the cell-site transmitter power and the mobile unit antenna gain to estimate the path loss to the closest cell-site. The estimated path loss, together with knowledge of the mobile antenna gain and the cell-site G/T is used to determine the nominal transmitter power required to obtain the desired carrier-to-noise ratio in the cell-site receiver. The knowledge by the mobile units of the cell-site parameters may be either fixed in memory or transmitted in cell-site information broadcast signals, setup channel, to indicate other than nominal conditions for a particular cell-site.

As a result of the determination of the mobile unit nominal transmit power, in the absence of Rayleigh fading and assuming perfect measurements, the mobile unit transmitted signals will arrive at the nearest cell-site precisely at the desired carrier-to-noise ratio. Thus the desired performance will be obtained with the minimum amount of mobile unit transmitter power. The minimization of the mobile unit transmitted power is important in a CDMA system because each mobile unit causes interference to every other mobile unit in the system. In minimizing the mobile unit transmitter power, system interference will be held to a minimum, thus allowing additional mobile users to share the frequency band. Accordingly, system capacity and spectral efficiency is maximized.

FIG. 2A illustrates the effect of both Rayleigh fading as a function of distance on the strength of the cell-site transmitted signal as received at a mobile unit. The average path loss, indicated by curve 30, is determined primarily by the fourth-power of the distance between the cell-site and the mobile unit, and by the shape of the terrain between them. As distance increases between the mobile unit and the cell-site, signal power decreases as received at the mobile unit for a constant power transmitted cell-site signal. The average path loss is the same for both directions of the link, and typically exhibits a log-normal distribution about the average path loss.

In addition to the slowly varying log-normal average path loss, the rapid fading up and down around the average path loss is caused by the existence of multiple path signal propagation. The signals arrive from these multiple paths in random phase and amplitude, resulting in the characteristic Rayleigh fading. Curve 32, as illustrated in FIG. 2A, represents the variation in signal path loss as a result of Rayleigh fading. The Rayleigh fading is typically independent for the two directions of the cell-site/mobile unit communication link, i.e. outbound and inbound channels. For example, when the outbound channel is fading, the inbound channel is not necessarily fading at the same time.

FIG. 2B illustrates the mobile unit transmitter power adjusted to correspond to the link path signal strength of FIG. 2A. In FIG. 2B, curve 34 represents the desired average transmit power corresponding to the average path loss of curve 30 of FIG. 2A. Similarly, curve 36 corresponds to the mobile unit transmitter power responding to the Rayleigh fading as represented by curve 32 of FIG. 2A. As the Rayleigh faded signal, curve 32 of FIG. 2A, decreases in signal strength, rapid increases in transmitter power result. These rapid upward excursions of transmitter power can result in deleterious effects in overall system performance. Therefore, the present invention envisions the use of an optional nonlinear filter to control rapid upward excursions, or increases, in transmitter power. Furthermore, the present invention also utilizes closed loop power adjustment feedback from the cell-site to adjust mobile unit transmitter power.

FIG. 2C illustrates the mobile unit transmitter power corresponding to FIG. 2A without taking into consideration the cell-site closed loop power adjustment feedback. In FIG. 2C the desired average transmit power, as represented by curve 34', corresponds to the mobile unit received signal strength of curve 30 of FIG. 2A. Curve 38 illustrates the transmitter power utilizing the optional non-linear filter in power control of the present invention.

The rapid upward excursions in transmitter power, as indicated by the dashed lines of FIG. 2C and correspond to the upward excursions in curve 36 of FIG. 2B, are significantly reduced. In curve 38, the upward excursions are significantly reduced by setting the rate of increase in transmit power to a fixed value. The resulting variation in transmitter power relative to the desired transmit power is both limited in dynamic range and in rate of change. This limitation allows the closed loop power adjustment feedback process to be easier to implement and to be more effective at a much lower control data rate. Transmit power, as indicated by curve 38, is permitted to decrease at a much greater rate than an increase.

As distance increases from the points marked D1 -D2, transmitter power decreases rather quickly corresponding to a sudden improvement in the channel. Between the distance points marked D2 -D3 the channel degrades with a corresponding increase in transmitter power. The change in degradation is not so significant such that the non-linear filter maximum rate limits the rate of increase in transmitter power.

As distance increases as from the distance points marked D3 -D4, the channel degrades much more rapidly than the nonlinear filter will permit an increase in transmitter power. During this period, transmitter power increases at the maximum rate permitted by the non-linear filter. During the distance change indicated by marks D4 -D5, the channel begins improving. However, as the quality of the channel improves the transmitter power continues to increase at the maximum rate until transmitter power is sufficient to meet the desired level such as at mark D5.

It certain conditions may be desirable to eliminate the upward excursions in transmitter power which may cause unnecessary system interference. Should a better path to another cell-site occur, which would result in unnecessary interference in the system, quality communications in the system may be maintained by limiting the rate of increase in transmitter power.

FIG. 2D is a graph illustrating the cell-site received signal power strength with respect to transmissions of the mobile unit as it travels from the cell-site. Curve 40 indicates the desired average received signal power at the cell-site for a signal transmitted from a mobile unit. It is desirable that the average received signal power be at a constant level, yet a minimum necessary to assure a quality communication link with the mobile unit. Corrections are made at the mobile unit to correct for Rayleigh fading in the cell-site transmitted signal.

The mobile unit transmitted signal experiences Rayleigh fading before arriving at the cell-site receiver. The signal received at the cell-site is therefore a signal of constant average received power level but still with the Rayleigh fading of the inbound channel impressed thereupon. Curve 42 represents the Rayleigh fading that occurs on the inbound signal. In the terrestrial channel a high speed power control process is utilized in the present invention to compensate for the Rayleigh fading. In the satellite repeater situation the speed at which the open loop control operates is slowed down.

Additionally, there is the possibility that the mobile unit may come to rest at a place where the outbound link is not faded but yet the inbound link is severely faded. Such a condition would disrupt communications unless an additional mechanism is employed to compensate for the inbound channel Rayleigh fading. The closed loop power adjustment command process employed at the cell-site is such a mechanism for adjusting the mobile unit transmitter power, so as to compensate for the Rayleigh fading on the inbound channel. In FIG. 2D, curve 44 illustrates the mobile unit transmitted signal power as received at the cell-site when compensating for average path loss and Rayleigh fading on both the inbound and outbound channels. As can be seen in FIG. 2D curve 44 follows close to curve 40 except for instances of severe fading where the fading process is minimized by the closed loop control.

In FIG. 3, antenna 52 is provided for receiving multiple mobile unit transmitted signals which are then provided to analog receiver 54 for amplification, frequency downconversion and IF processing of the received RF signal. The analog signals output from receiver 54 are provided to a plurality of receiver modules or channel units for, extraction of user directed information signals, generation of power adjustment commands, and modulation of user input information signals for transmission. One such module used in communications with a particular mobile unit, such as mobile unit N, is module 50N. Thus the output of receiver 54 is provided to a plurality of these modules including module 50N.

Module 50N comprises digital data receiver 56, user digital baseband circuit 58, received power measurement circuitry 60 and transmit modulator 62. Digital data receiver 56 receives the wideband spread spectrum signals for correlating and despreading the mobile unit N transmitted signal to a narrowband signal for transfer to an intended recipient communicating with mobile unit N. Digital data receiver 56 provides the narrowband digital signals to user digital baseband circuitry 58. Digital data receiver 56 also provides the narrowband signal to received power measurement circuitry 60.

Received power measurement circuitry 60 measures the power level in the received signal from mobile unit N. Received power measurement circuitry 60 in response to the measured level of power generates a power adjustment command which is input to transmit modulator 62 for transmission to mobile unit N. As previously discussed, the data bits in the power adjustment command are used by mobile unit N in adjusting mobile unit transmitter power.

When the received power measurement is greater than the preset level provided by a cell-site processor 61, an appropriate power adjustment command is generated. Should the received power measurement be less than the preset level, the power adjustment command data bits are generated and indicate that an increase in mobile unit transmitter power is necessary. Similarly, if the received measurement is greater than the preset level, the power adjustment command is generated such that the mobile unit transmitter power is reduced. The power adjustment command is utilized to maintain a nominal received power level at the cell-site.

The signal output from digital data receiver 56 is provided to user digital baseband circuitry 58 where it is interfaced for coupling to the intended recipient via the system controller and switch. Similarly, baseband circuitry 58 receives user information signals intended for mobile unit N and provides them to transmit modulator 62.

Transmit modulator 62 spread spectrum modulates the user addressable information signals for transmission to mobile unit N. Transmit modulator 62 also receives the power adjustment command data bits from received power measurement circuitry 60. The power adjustment command data bits are also spread spectrum modulated by transmit modulator 62 for transmission to mobile unit N. Transmit modulator 62 provides the spread spectrum modulated signal via transmit power control circuitry 63 to summer 64 where combined with spread spectrum signals from other module transmit modulators also located at the cell-site.

The combined spread spectrum signals are input to summer 66 where they are combined with a pilot signal provided by pilot signal generator 68. These combined signals are then provided to circuitry (not shown) for frequency upconversion from the IF frequency band to the RF frequency band and amplified. The RF signals are then provided to antenna 52 for transmission. Although not illustrated, transmit power control circuitry may be disposed between summer 66 and antenna 52. Circuitry 63, under control of the cell-site processor 61, is responsive to power adjustment command signals transmitted by the mobile unit which are demodulated at the cell-site receiver and provided to the cell-site control processor for coupling to the circuitry.

In FIG. 4, the mobile unit, such as mobile unit N, includes an antenna 70 for collecting cell site transmitted signals and radiating mobile unit generated CDMA signals. Typically antenna 70 is comprised of two separate antennas, one for transmission and another for reception. Mobile unit N receives the pilot signal, setup channel signals and the mobile unit N addressed signals using antenna 70, analog receiver 72 and digital data receiver system 74. Receiver 72 amplifies and frequency downconverts the received RF CDMA signals to IF, and filters the IF signals. The IF signals are output to digital data receiver 74 for digital processing. Receiver 72 also includes circuitry for performing an analog measurement of the combined power of the received signals. This power measurement is used to generate a feedback signal that is provided to transmit power control circuitry 76 for controlling transmit power.

Digital data receiver system 74 is comprised of multiple digital data receivers. One digital data receiver, receiver 74a is used to search for pilot signals that are transmitted by each cell-site. These pilot signals may be multipath signals of a same cell-site, pilot signals transmitted by different cell-sites, or a combination of both. The different cell-site transmitted pilot signals are each of a same spreading code but of at a different code phase offset for identification of the particular cell-site. Receiver 74a provides to control processor 78 signals indicative of the strongest pilot signals, whether they be multipath signals of a single cell-site or from different cell-sites. Control processor 78 uses the information provided from receiver 74a in establishing and maintaining communication with the cell-site or cell-site.

Digital data receiver system 74 is further comprised of digital data receivers 74b and 74c. Although only two receivers are illustrated, additional receivers may be provided. Receivers 74a and 74b are used for despreading and correlating the received signals addressed to mobile unit N from one cell-site or from multiple cell-sites for cell diversity mode communications. Receivers 74b and 74c are assigned to process different multipath signals from the same cell-site, or signals from different cell-sites when in a cell diversity mode. Under the control of control processor 78, receivers 74b and 74c process the assigned signal intended for the mobile user. Typically receivers 74b and 74c are assigned to process the spread spectrum digital user data signal which correspond to the strongest pilot signals identified by receiver 74a.

Receivers 74b and 74c provides demodulated user data such as digitized encoded speech to diversity combiner and decoder circuitry 75. Circuitry 75 coherently combines the different signals from receivers 74b and 74, whether they be multipath signals or cell diversity signal so as to provide a single user data signal. Circuitry 75 also performs decoding and error correction on the user data. The signal output from circuitry is provided to digital baseband circuitry 82 for interface with the user. Baseband circuitry 82 includes interface hardware for coupling receiver 74 and transmit modulator 82 to the user handset (not shown).

Receivers 74b and 74c also separate the digital user data from the power adjustment commands generated by the cell-site(s) and transmitted in the user data signals. The extracted power adjustment command data bits are sent to control processor 78. Processor 78 analyzes the power adjustment commands to so as to provide control over the mobile unit transmitter power.

In the single cell situation when either one or more (multipath) signals are the signals assigned to be processed by receivers 74b or/and 74c, the power adjustment commands are recognized as originating from a single cell-site. In this case, processor 78 is responsive to the power adjustment command data bits generates a transmit power control command that is provided to transmit power control circuitry 80. When the power adjustment commands indicate that additional mobile unit transmitter power is required, processor 78 provides a signal to transmit power control circuitry 76 to increase transmitter power. Similarly, when the power adjustment commands indicate that less mobile unit transmitter power is required, processor 78 provides a signal to transmit power control circuitry 76 to decrease transmitter power. However, in the cell diversity situation additional factors must be taken into consideration by processor 78.

In the cell diversity situation, the power adjustment commands are arriving from two different cell-sites. Mobile unit transmitter power as measured at these different sites may be different, and therefore care must be taken in controlling the mobile unit transmitter power to avoid transmitting at a level that would adversely affect communications between the cell-sites and other users. Since the cell-site power adjustment command generation process is independent from each other cell-site, the mobile unit must respond to the received commands in a manner that does not affect other users.

In the cell-diversity situation should both cell-sites provide power adjustment commands to the mobile unit requesting additional power, control processor operates in a logical AND function and generates a power control signal to transmit power control circuitry 76 indicative of an increase in transmitter power. In this example a request for a power increase request corresponds to a logical "1" while a power decrease request corresponds to a logical "0". Transmit power control circuitry 76 is responsive to this type of power control signal so as to increase the transmitter power. This situation may occur when the communication path to both cell-sites is degraded for one or more reasons.

In the case when one cell-site requests an increase in transmitter power but the other one requests a decrease, processor 78 again operates in the above mentioned logical AND function to generate a power control signal to transmit power control circuitry 76 indicative of an decrease in transmitter power. Transmit power control circuitry 76 is responsive to this type of power control signal so as to decrease the transmitter power. This situation may occur when the communication path to one cell-site is degraded while the communication path to the other cell-site becomes improved.

In summary, mobile unit transmitter power is increased only when all cell-sites in which the mobile unit is in communication with request an increase in power, and is decreased when any one or more of these cell-sites request a decrease in power. In this scheme, a mobile unit will not transmit at a power level that would unnecessarily increase the level of system interference for other users, but yet maintain a level that would facilitate communication with at least one cell-site.

Further discussion on the function of receiver system 74 in communications with multiple cell-sites is provided in previously mentioned copending U.S. patent application Ser. No. 07/432,552, entitled "DIVERSITY RECEIVER IN A CDMA CELLULAR TELEPHONE SYSTEM". The function is also further exemplified in previously mentioned copending U.S. patent application Ser. No. 07/433,030, entitled "METHOD AND SYSTEM FOR PROVIDING A SOFT HANDOFF IN COMMUNICATIONS IN A CDMA CELLULAR TELEPHONE SYSTEM", the disclosures of both applications incorporated by reference.

Processor 78 also provides a level set command to transmit power control circuitry 76 for use in setting transmitter power level in the with respect to the wideband power measurement from analog receiver 72. Further details on the interaction of receiver 72, transmit power control circuitry 76 and 80, and processor 78 are described in further detail with reference to FIG. 5.

Data to be transmitted is provided through baseband circuitry 82 where it is encoded and provided to transmit modulator 84. The data is spread spectrum modulated by transmit modulator 84 according to an assigned spreading code. The spread spectrum signals are output from transmit modulator 84 to transmit power control circuitry 80. The signal power is adjusted in accordance with the transmit power control command provided by control processor 78. This power adjusted signal is provided from transmit power control circuitry 80 to transmit power control circuitry 76 where the signal is adjusted in accordance with the analog measurement control signal. Although illustrated as two separate units for controlling the transmit power, the power level could be adjusted by a single variable gain amplifier with two input control signals combined before being applied to the variable gain amplifier. However in the illustrated exemplary embodiment the two control functions are shown as separate elements.

In the operation of the power control circuitry illustrated in FIG. 4, receiver 72 measures the combined power level of all signals received from all cell-sites. These power level measurement results are used in controlling the power level as set by transmit power control circuitry 76. Transmit power control circuitry 76 includes circuitry in which the rate of increase transmitter power is limited by an optional non-linear filter as previously discussed. The rate of increase is set to be no faster than the rate at which transmit power control circuitry 80 can turn the power down in response to a series of downward commands from the cell-site as processed by receiver 74 and processor 78.

FIG. 5 illustrates in further detail the power control aspect of mobile unit N discussed with reference to FIG. 4. In FIG. 5, received RF signals from the antenna are provided to frequency downconverter 90 where the received RF signals are converted to an IF frequency. The IF frequency signals are coupled to bandpass filter 92 where out of band frequency components are removed from the signals.

The filtered signals are output from filter 92 to variable gain IF amplifier 94 where the signals are amplified. The amplified signals are output from amplifier 94 to an analog to digital (A/D) converter (not shown) for digital signal processing operations on the signals. The output of amplifier 94 is also coupled to automatic gain control (AGC) detector circuit 96.

AGC detector circuit 96 generates a gain control signal which is coupled to a gain control input of amplifier 94. This gain control signal is used to control the gain of the amplifier 94 so as to maintain a constant average power level as output from amplifier 94 to the A/D converter.

AGC detector circuit 96 also provides an output to one input of comparator 98. The other input of comparator 98 is provided with a level set signal from the mobile unit processor (not shown). This level set signal is indicative of a desired transmitter reference power level. These input signals are compared by comparator 98 with the comparison signal provided to an optional non-linear filter circuit 100. This comparison signal corresponds to a deviation in the received power measurement from a desired mobile unit transmitter power level.

Filter 100 may be configured as a simple resistor-diode-capacitor circuit. For example, the input to the circuit is a common node shared by two resistors. The other end of each resistor is coupled to a respective diode. The diodes are reversed in their connection to the resistors and the other end of each diode coupled together at a common node as an output of the filter. A capacitor is coupled between the diode common node and ground. The filter circuit is designed to limit the rate of power increase to less than 1 dB per millisecond. The rate of power decrease is typically set to be about ten times faster than the rate of power increase, i.e. 10 dB per millisecond. The output of filter 100 is provided as a power level control signal input to the gain control input of variable gain IF amplifier 102.

AGC detector circuit 96, comparator 98 and filter 100 estimate received mobile unit signal power and the power correction necessary for the mobile unit transmitter. This correction is used to maintain a desired transmitter power level in conditions of fading on the outbound channel that are common to the inbound channel.

Transmit modulator circuit 84 of FIG. 4, provides a low power, IF frequency spread spectrum signal to an input of variable gain IF amplifier 104. Amplifier 104 is gain controlled by a power level control signal from processor 78 (FIG. 4). This power level control signal is derived from the closed loop power adjustment command signal transmitted by the cell-site and processed by the mobile unit as discussed with reference to FIG. 4.

The power adjustment command signal consists of a sequence of power-up and power-down commands that are accumulated in the mobile unit processor. The mobile unit control processor starts with the gain control level set to a nominal value. Each power-up command increases the value of a gain control command corresponding to a resultant approximate 1 dB increase in amplifier gain. Each power-down command decreases the value of the gain control command, corresponding to a resultant approximate 1 dB decrease in amplifier gain. The gain control command is converted to analog form by a digital to analog (D/A) converter (not shown) before applied to amplifier 104 as the power level control signal.

The mobile unit reference power level may be stored in the memory of the control processor. In the alternative, the mobile unit reference power level may be contained within a signal sent to the mobile unit. This signal command data is separated by the digital data receiver and interpreted by the control processor in setting the level. This signal as provided from the control processor is converted by a digital to analog (D/A) converter (not shown) before input to comparator 98.

The output of amplifier 104 is provided as an input to amplifier 102. Amplifier 102 as previously mentioned is also a variable gain IF amplifier with the gain determined according to the power level control signal output from filter 100. The signal for transmission is thus amplified in accordance with the gain set by the power level control signal. The amplified signal output from amplifier 102 and is further amplified and frequency translated to the RF frequency for transmission. The RF signal is then fed to the antenna for transmission.

FIG. 6 illustrates in further detail the power control scheme of the cell-site as illustrated in FIG. 3. In FIG. 6, a mobile unit transmitted signal is received at the cell-site. The received signal is processed by the cell-site analog receiver and cell-site corresponding to mobile unit N.

In the digital data receiver, receiver 56 of FIG. 3, the received analog signal is converted from analog to digital form by A/D converter 110. The digital signal output from A/D converter is provided to pseudorandom noise (PN) correlator 112 where the signal undergoes a correlation process with a PN signal provided from PN generator 114. The output of PN correlator 112 is provided to a fast Hadamard transform digital filter 114 where the signal is filtered. The output of filter 114 is provided to a user data decoder circuit 116 which provides user data to the user digital baseband circuitry. Decoder 116 provides the largest transform filter symbols to power averager circuit 118. Power averager circuit 118 averages the largest transform outputs over a one millisecond interval using well known digital techniques.

A signal indicative of each average power level is output from power averager 118 to comparator 120. Comparator 120 also receives a power level set signal indicative of the desired received power level. This desired received power level is set by the control processor for the cell-site. Comparator 120 compares the two input signals and provides an output signal indicative of the deviation of the average power level from the desired power level. This signal is provided output to power up/down command generator 122. Generator 122 in response to the comparison generates either a power-up or a power-down command. Power command generator 122 provides the power control commands to the cell-site transmit modulator for transmission and control of the transmitter power of mobile unit N.

If the received power at the cell-site is higher than that desired of mobile unit N, then a power-down command is generated and transmitted to mobile unit N. However, if the received power level at the cell-site is too low, then a power-up command is generated and transmitted. The up/down commands are transmitted at a high rate, nominally 800 commands per second in the exemplary embodiment. At one bit per command, the overhead of the power command is insignificant compared to the bit rate of a high quality digital voice signal.

The power adjustment command feedback compensates for changes in the inbound channel that are independent of the outbound channel. These independent inbound channel changes are not measured in the outbound channel signal. Therefore the path loss estimate based upon then outbound channel and the corresponding transmitter power adjustment do not reflect the changes in the inbound channel. Thus, the power adjustment command feedback is used to compensate for adjustments in the mobile unit transmitter power based on the inbound channel path losses that do not exist in the outbound channel.

In using a closed loop control process it is highly desirable for the command to arrive at the mobile unit before conditions change significantly. The present invention provides a novel and unique power control circuitry at the cell-site for minimizing delay and latency of measurement and transmission. The power control circuitry at the mobile unit, analog control and digital command response, provides a vastly improved power control process in the cellular mobile telephone system.

As mentioned previously, it is also desirable to control the cell-site transmission power in response to requests from the mobile unit. FIG. 7 illustrates the typical cell-site configuration in which multiple modules 50A-50Z are included. Modules 50A-50Z are each identical in construction with that of module 50N of FIG. 3. In FIG. 7, mobile unit N is considered to be in communication with module 50N for purposes of illustration.

Each of modules 50A-50Z are coupled to system controller 10 as was discussed with reference to FIG. 1. Through the link to system controller 10, each module 50A-50Z demodulates and relays the mobile unit power requests to system controller 10. System controller 10 in response to a mobile unit request for an increase in module transmitter power may reduce transmitter power for some or all other module transmitters by a small increment. System controller 10 would transmit a power control command to a cell-site, typically to the cell-site control processor. The cell-site control processor in response thereto reduces transmitter power of the cell-site other modules. The reduction in power of the other modules makes available an increase in power to the module servicing the requesting mobile user by n times the increment, where n is the number of modules reducing transmitter power. Using this technique there is no change in the total transmission power of the cell-site modules, i.e. no change in the sum of the individual module transmitter power.

Referring back to FIG. 3, module 50N transmits at a nominal power level as discussed above. The power level is set by a command from the cell-site control processor, with this command modified at the cell-site control processor by a command from the system controller. The command input to transmit power control circuitry 63 is used typically to decrease transmitter power. Transmit power control circuitry 63 may be configured as a variable gain amplifier as was discussed with reference to FIG. 5.

Referring to FIG. 4, at the mobile unit the quality of the received data signal is measured in the form of data frame errors. From this measurment the level of adequacy of the signal power is determined, where execessive frame errors are an indication of insufficient signal power. Frame error information may be generated from the known error correction circuitry such as through the normalization rate of a Viterbi decoder or Cyclic Redundancy Check/Code (CRC), or a combination thereof. Various other techniques that are well known in the art may be used for indirectly or directly measuring signal power. Other techniques include re-encoding the data and comparing with the originally transmitted data for an indication of errors. It should further be understood that the power of the data signal itself may be measured and used as an indication of link quality.

The frame error information is provided to processor 78. Processor 78 in response to a frame error rate exceeding a predetermined threshold level over a certain number of frames, such as 5 frames, generates a power increase request message that is output to transmit modulator 84. Transmit modulator 84 modulates the power request message for transmission to the cell-site.

It should be understood that the system controller through the cell-site modules may solicit a power level measurement or signal quality at the mobile units via a control message. Each mobile unit communicates its power level measurement or signal quality in a response message to cell-site modules to the system controller. In response thereto the system controller may adjust transmission power for the various cell-site modules for system optimization.

The previous description of the preferred embodiments are provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principals defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principals and novel features disclosed herein.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3925782 *Feb 28, 1975Dec 9, 1975Us ArmyAdaptive RF power output control for net radios
US4004224 *Sep 13, 1973Jan 18, 1977Siemens AktiengesellschaftMethod for fade correction of communication transmission over directional radio paths
US4112257 *Mar 24, 1977Sep 5, 1978Frost Edward GComprehensive automatic mobile radio telephone system
US4123718 *Sep 27, 1971Oct 31, 1978Siemens AktiengesellschaftSSMA receiver with synchronous demodulation and variable gain control
US4193031 *Mar 13, 1978Mar 11, 1980Purdue Research FoundationMethod of signal transmission and reception utilizing wideband signals
US4222115 *Mar 13, 1978Sep 9, 1980Purdue Research FoundationSpread spectrum apparatus for cellular mobile communication systems
US4225976 *Feb 28, 1978Sep 30, 1980Harris CorporationPre-calibration of gain control circuit in spread-spectrum demodulator
US4309771 *Jul 2, 1979Jan 5, 1982Farinon CorporationDigital radio transmission system
US4495648 *Dec 27, 1982Jan 22, 1985At&T Bell LaboratoriesTransmitter power control circuit
US4580262 *Dec 1, 1983Apr 1, 1986Racal-Ses LimitedRadio systems
US4613990 *Jun 25, 1984Sep 23, 1986At&T Bell LaboratoriesRadiotelephone transmission power control
US4641322 *Oct 18, 1984Feb 3, 1987Nec CorporationSystem for carrying out spread spectrum communication through an electric power line
US4672658 *Oct 23, 1986Jun 9, 1987At&T Company And At&T Bell LaboratoriesSpread spectrum wireless PBX
US4765753 *Mar 3, 1987Aug 23, 1988U.S. Philips CorporationMethod and apparatus for handing-over a radio connection from one radio cell to another radio cell of a digital radio transmission system
US4777653 *Dec 11, 1986Oct 11, 1988Telecommunications Radioelectriques Et Telephoniques T.R.T.Apparatus for controlling transmission power over a digital radio communication channel
US4811421 *Mar 12, 1987Mar 7, 1989Christophe HavelTransmission power control device in a radio communication transmitting/receiving station
US4868795 *Dec 9, 1987Sep 19, 1989Terra Marine Engineering, Inc.Power leveling telemetry system
US4870698 *Oct 27, 1987Sep 26, 1989Oki Electric Industry Co., Ltd.Output power control circuit for a mobile radio apparatus
US4901307 *Oct 17, 1986Feb 13, 1990Qualcomm, Inc.Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5056109 *Nov 7, 1989Oct 8, 1991Qualcomm, Inc.Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5093840 *Nov 16, 1990Mar 3, 1992Scs Mobilecom, Inc.Adaptive power control for a spread spectrum transmitter
US5107487 *May 28, 1991Apr 21, 1992Motorola, Inc.Power control of a direct sequence CDMA radio
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5566165 *May 11, 1995Oct 15, 1996Ntt Mobile Communications Network Inc.Transmission power control method and a communication system using the same
US5570343 *Jul 27, 1994Oct 29, 1996Motorola, Inc.Communications system
US5644590 *Feb 21, 1995Jul 1, 1997Sony CorporationSpread spectrum communication apparatus and signal intensity detection apparatus
US5712849 *Dec 18, 1995Jan 27, 1998U.S. Philips CorporationInformation transmission system comprising at least a base station and a satellite station, and station forming part of such a system
US5715521 *Apr 20, 1995Feb 3, 1998Oki Electric Industry Co., Ltd.Method of controlling synchronization signal power in a communication system
US5745521 *Mar 26, 1997Apr 28, 1998Sony CorporationSpread spectrum communication apparatus and signal intensity detection apparatus
US5751725 *Oct 18, 1996May 12, 1998Qualcomm IncorporatedMethod and apparatus for determining the rate of received data in a variable rate communication system
US5781859 *Sep 26, 1996Jul 14, 1998Pcs Solutions, LlcRF repeater arrangement with improved frequency reuse for wireless telephones
US5802110 *Feb 9, 1995Sep 1, 1998Matsushita Electric Industrial Co., Ltd.Wireless mobile system
US5828661 *May 22, 1996Oct 27, 1998Qualcomm IncorporatedMethod and apparatus for providing a cone of silence in a cellular communication system
US5886987 *Jul 17, 1996Mar 23, 1999Nec CorporationFDD/CDMA transmission/reception system
US5903596 *May 16, 1996May 11, 1999Nakano; TakayukiSpread spectrum demodulation unit
US5915216 *Nov 16, 1995Jun 22, 1999Dsc Communications CorporationApparatus and method of transmitting and receiving information in a wireless telecommunications system
US5926747 *Sep 5, 1996Jul 20, 1999Airnet Communications Corp.Method and apparatus for dynamically optimizing the forward-link transmit power of a broadband multi-carrier radio signal
US5933777 *Apr 24, 1997Aug 3, 1999Telefonaktiebolaget Lm Ericsson (Publ)System and method for allocating channel elements in a code division multiple access radio telecommunications network
US5940743 *Jun 5, 1997Aug 17, 1999Nokia Mobile Phones LimitedIn a telecommunications system
US5955986 *Nov 20, 1997Sep 21, 1999Eagle Eye Technologies, Inc.Low-power satellite-based geopositioning system
US5960330 *Jul 15, 1997Sep 28, 1999Nec CorporationDiversity gain controlled cell-site transmission to prevent traffic signals from propagating beyond reachable extent of control signals
US5978365 *Jul 7, 1998Nov 2, 1999Orbital Sciences CorporationCommunications system handoff operation combining turbo coding and soft handoff techniques
US5982760 *Jun 20, 1997Nov 9, 1999Qualcomm Inc.Method and apparatus for power adaptation control in closed-loop communications
US5991285 *Aug 10, 1998Nov 23, 1999Motorola, Inc.Method and apparatus for communicating signals of various channel types in CDMA communication system
US5995496 *Jun 16, 1997Nov 30, 1999Nokia Mobile Phones LimitedControl of transmission power in wireless packet data transfer
US6044277 *Mar 28, 1997Mar 28, 2000Nec CorporationDemand-assigned satellite communications system
US6061556 *Apr 24, 1997May 9, 2000Telefonaktiebolaget Lm Ericsson (Publ)System and method for secondary traffic charging in a radio telecommunications network
US6067315 *Dec 4, 1997May 23, 2000Telefonaktiebolaget Lm EricssonMethod and apparatus for coherently-averaged power estimation
US6067446 *Jul 11, 1996May 23, 2000Telefonaktiebolaget Lm EricssonPower presetting in a radio communication system
US6070084 *Mar 18, 1997May 30, 2000Nec CorporationCellular system
US6070085 *Aug 12, 1997May 30, 2000Qualcomm Inc.Method and apparatus for controlling transmit power thresholds based on classification of wireless communication subscribers
US6078817 *Apr 24, 1997Jun 20, 2000Telefonaktiebolaget Lm EricssonSystem and method of dynamically increasing the capacity of a code division multiple access radio telecommunications network
US6085106 *Jul 29, 1997Jul 4, 2000Nortel Networks LimitedForward link power control in a cellular radiotelephone system
US6085107 *Nov 20, 1997Jul 4, 2000Telefonaktiebolaget Lm EricssonPower presetting in a radio communication system
US6088828 *Sep 11, 1997Jul 11, 2000U.S. Philips CorporationTransmission system with improved lock detection
US6094427 *Aug 20, 1999Jul 25, 2000Lg Information And Communications, Ltd.Communications system handoff operation combining turbo coding and soft handoff techniques
US6097972 *Aug 29, 1997Aug 1, 2000Qualcomm IncorporatedMethod and apparatus for processing power control signals in CDMA mobile telephone system
US6101378 *Aug 15, 1996Aug 8, 2000Japan Radio Co., Ltd.Pre-paid cellular telephone system
US6119018 *Jun 6, 1997Sep 12, 2000Nec CorporationCDMA type mobile communication system capable of realizing soft handoff between cells having different cell diameters
US6122500 *Jan 24, 1996Sep 19, 2000Ericsson, Inc.Cordless time-duplex phone with improved hearing-aid compatible mode
US6163705 *Aug 4, 1997Dec 19, 2000Matsushita Electric Industrial Co., Ltd.Communication system and a communication apparatus
US6173162 *Jun 16, 1997Jan 9, 2001Telefonaktiebolaget Lm Ericsson (Publ)Multiple code channel power control in a radio communication system
US6175586 *Mar 26, 1999Jan 16, 2001Interdigital Technology CorporationAdjusting a transmitter power level for a spread spectrum transmitter
US6175744 *Nov 28, 1997Jan 16, 2001Hitachi, Ltd.Transmission power control method and apparatus for mobile communication system
US6181685Apr 23, 1998Jan 30, 2001Motorola, Inc.Method and apparatus for group calls in a wireless CDMA communication system
US6185431Mar 18, 1998Feb 6, 2001Oki Telecom, Inc.Mobile station closed loop output power stability system for weak signal conditions
US6230023 *Nov 22, 1999May 8, 2001Siemens AktiengesellschaftMethod and device for a transmit power control for connections between a base station and mobile stations of a radio communications system
US6236863Mar 17, 1998May 22, 2001Oki Telecom, Inc.Comprehensive transmitter power control system for radio telephones
US6253077 *May 15, 1998Jun 26, 2001Texas Instruments IncorporatedDownstream power control in point-to-multipoint systems
US6256502 *Dec 23, 1998Jul 3, 2001Nortel Networks LimitedWideband multicarrier power control for a cellular PCS basestation tranmitter
US6259723 *Mar 10, 1998Jul 10, 2001Fujitsu LimitedData communication system
US6259927Jun 6, 1997Jul 10, 2001Telefonaktiebolaget Lm EricssonTransmit power control in a radio communication system
US6269239 *May 19, 1999Jul 31, 2001Nortel Networks CorporationSystem and method to combine power control commands during soft handoff in DS/CDMA cellular systems
US6269250Jan 10, 2000Jul 31, 2001Qualcomm, Inc.Method and apparatus for controlling transmit power thresholds based on classification of wireless communication subscribers
US6272354 *Aug 16, 1996Aug 7, 2001Nokia Mobile Phones Ltd.Method for adjusting transmit power during call set-up, and a cellular radio system
US6278701Jul 10, 1998Aug 21, 2001Verizon Laboratories Inc.Capacity enhancement for multi-code CDMA with integrated services through quality of services and admission control
US6278742 *Nov 19, 1999Aug 21, 2001Siemens Information And Communication Mobile Llc.Method and system for power-conserving interference avoidance in communication between a mobile unit and a base unit in a wireless telecommunication system
US6285886 *Jul 8, 1999Sep 4, 2001Lucent Technologies Inc.Method for controlling power for a communications system having multiple traffic channels per subscriber
US6304563Apr 23, 1999Oct 16, 2001Qualcomm IncorporatedMethod and apparatus for processing a punctured pilot channel
US6308080 *May 15, 1998Oct 23, 2001Texas Instruments IncorporatedPower control in point-to-multipoint systems
US6310868 *Jun 17, 1997Oct 30, 2001Ntt Mobile Communications Network Inc.Signal transmission method, mobile station device, and base station device for CDMA mobile communication system
US6330271Oct 13, 1998Dec 11, 2001Telefonaktiebolaget Lm Ericsson (Publ)CDMA receiver that shares a tracking device among multiple rake branches
US6330272Nov 20, 2000Dec 11, 2001Interdigital Technology CorporationReceiving a spread spectrum data signal using determined weights
US6337978 *Feb 2, 1999Jan 8, 2002Mitsubishi Denki Kabushiki KaishaDedicated short-range communication mobile device for intelligent transport systems
US6347231Jun 16, 2000Feb 12, 2002Matsushita Electric Industrial Co., Ltd.Transmission power control method using both a value compensated according to control data contained in base station signal and measured power of base station signal
US6351651 *Mar 3, 1999Feb 26, 2002Nec CorporationMethod of controlling transmission power in a cellular type mobile communication system
US6366572 *Feb 4, 1999Apr 2, 2002Senora Trading CompanyWireless communication system with symmetric communication protocol
US6373823Jan 28, 1999Apr 16, 2002Qualcomm IncorporatedMethod and apparatus for controlling transmission power in a potentially transmission gated or capped communication system
US6373829Apr 23, 1998Apr 16, 2002Motorola, Inc.Method and apparatus for group calls in a wireless CDMA communication system using outbound traffic channels for individual group members
US6377699Nov 25, 1998Apr 23, 2002Iridian Technologies, Inc.Iris imaging telephone security module and method
US6385183Jun 30, 2000May 7, 2002Yrp Mobile Telecommunications Key Technology Research Laboratories Co., Ltd.CDMA power control system
US6396804 *Jul 1, 1997May 28, 2002Qualcomm IncorporatedHigh data rate CDMA wireless communication system
US6411799 *Dec 4, 1997Jun 25, 2002Qualcomm IncorporatedMethod and apparatus for providing ternary power control in a communication system
US6418320 *May 29, 1998Jul 9, 2002Nec CorporationMobile station and a method of reducing interference among radio channels in the mobile station
US6421332May 11, 1999Jul 16, 2002Hyundai Electronics Ind. Co., Ltd.Apparatus for measuring input and output levels of base station transmitters in a mobile communication system
US6424727Nov 9, 1999Jul 23, 2002Iridian Technologies, Inc.System and method of animal identification and animal transaction authorization using iris patterns
US6434135 *Aug 31, 1999Aug 13, 2002Interdigital Technology CorporationAdaptive RF amplifier prelimiter
US6462411 *Dec 4, 1998Oct 8, 2002Kokusai Electric Co., LtdSemiconductor wafer processing apparatus for transferring a wafer mount
US6477388Jul 30, 1999Nov 5, 2002Airnet Communications CorporationBroadband power management (power banking) within a broadband multi-carrier base station transceiver system
US6480481 *Jul 28, 1999Nov 12, 2002Samsung Electronics, Co., Ltd.Gated transmission in control hold state in CDMA communication system
US6483930May 12, 1999Nov 19, 2002Iridian Technologies, Inc.Iris imaging telephone security module and method
US6490257 *May 17, 1999Dec 3, 2002Matsushita Electric Industrial Co., Ltd.Mobile station apparatus and its transmission power method in wireless communication system
US6519239Nov 19, 1999Feb 11, 2003Motorola, Inc.Method and apparatus for providing dispatch service in a CDMA communication system
US6529709 *Aug 13, 1996Mar 4, 2003Telecommunications Research LaboratoriesClosed loop power control scheme for wireless communication systems
US6532298Sep 14, 1999Mar 11, 2003Iridian Technologies, Inc.Portable authentication device and method using iris patterns
US6546260Dec 5, 2000Apr 8, 2003Hitachi, Ltd.Transmission power control method and apparatus for mobile communication system
US6549525 *Feb 8, 2002Apr 15, 2003Qualcomm IncorporatedHigh data rate CDMA wireless communication system
US6560536Apr 11, 2001May 6, 2003Eagle-Eye, Inc.System and method for rapid telepositioning
US6584086 *Apr 21, 1998Jun 24, 2003Hyundai Electronics Ind. Co. Ltd.Method of controlling forward power of mobile communications system
US6594500Apr 5, 2001Jul 15, 2003Qualcomm IncorporatedMethod and apparatus for controlling transmit power thresholds based on classification of wireless communication subscribers
US6611548Oct 19, 2001Aug 26, 2003Interdigital Technology CorporationMultipath processor
US6628635 *Nov 19, 2001Sep 30, 2003Hitachi, Ltd.Spread spectrum communication system and transmission power control method therefor
US6628956 *Mar 15, 1999Sep 30, 2003Telefonaktiebolaget Lm Ericsson (Publ)Adaptive power control in a radio communications systems
US6628958 *Sep 15, 1999Sep 30, 2003Lucent Technologies Inc.Method for adjusting the transmit power level during soft handoff in wireless communication systems
US6658050 *Sep 11, 1998Dec 2, 2003Ericsson Inc.Channel estimates in a CDMA system using power control bits
US6671308Feb 7, 2002Dec 30, 2003Interdigital Technology CorporationSpread spectrum adaptive power control
US6671502Mar 29, 2000Dec 30, 2003Harada Industry Co., Ltd.Control device for radio repeater in communication field
US6671515Jun 6, 2000Dec 30, 2003Motorola, Inc.Method and apparatus for selecting communication cells in a wireless communication system
US6678531 *Mar 29, 1999Jan 13, 2004Nokia Networks OyMethod and apparatus for power control in a mobile telecommunication system
US6721349Jan 28, 1999Apr 13, 2004Qualcomm IncorporatedMethod and apparatus for reducing peak-to-average ratio in a CDMA communication system
US6721350Feb 7, 2002Apr 13, 2004Interdigital Technology CorporationSpread spectrum adaptive power control using a base station
US6744809Feb 8, 2002Jun 1, 2004Interdigital Technology CorporationEfficient multipath centroid tracking circuit for a code division multiple access (CDMA) system
US6760596 *Nov 22, 2000Jul 6, 2004Telefonaktiebolaget Lm Ericsson (Publ)Method and system for bit-rate adaptation to improve coverage
US6763483 *Jan 26, 2001Jul 13, 2004Dell Products L.P.Method of optimizing the use of radio devices in a computing system
US6778616 *Mar 3, 2000Aug 17, 2004Matsushita Electric Industrial Co., Ltd.Radio reception apparatus and received power amplification method
US6785247 *Mar 21, 2000Aug 31, 2004Lg Information & Communications, Ltd.Method and apparatus for controlling forward direction power ratio in W-CDMA wireless communication base station
US6788662 *Feb 21, 2001Sep 7, 2004Interdigital Technology CorporationMethod for adaptive reverse power control for spread-spectrum communications
US6788685Jan 28, 1999Sep 7, 2004Qualcomm, IncorporatedMethod and apparatus for controlling transmission power in a CDMA communication system
US6788941Dec 20, 2001Sep 7, 2004Motorola, Inc.Method and apparatus for mobile-initiated, CDMA-dispatch soft handoff
US6801516Aug 9, 2000Oct 5, 2004Interdigital Technology CorporationSpread-spectrum system for assigning information signals having different data rates
US6801783Dec 20, 2001Oct 5, 2004Motorola, Inc.Base site and method for quickly establishing a CDMA dispatch call
US6831905Aug 9, 2000Dec 14, 2004Interdigital Technology CorporationSpread spectrum system assigning information signals to message-code signals
US6859098Jan 17, 2003Feb 22, 2005M/A-Com, Inc.Apparatus, methods and articles of manufacture for control in an electromagnetic processor
US6862273Jan 10, 2001Mar 1, 2005Motorola, Inc.Method and apparatus for providing dispatch scan in a CDMA communication system
US6873613 *Oct 16, 2000Mar 29, 2005Ericsson Inc.Methods for wirelessly communicating time division multiple access (TDMA) data using adaptive multiplexing and coding
US6873645Apr 12, 2001Mar 29, 2005Interdigital Technology CorporationAutomatic power control system for a code division multiple access (CDMA) communications system
US6885875 *Oct 8, 1999Apr 26, 2005Siemens AktiengesellschaftMethod and radio communication system for regulating power between a base station and a subscriber station
US6920127Mar 4, 2002Jul 19, 2005Interdigital Technology CorporationUser equipment (UE) having an adaptive RF amplifier prelimiter
US6925309Dec 20, 2001Aug 2, 2005Motorola, Inc.Method and apparatus for quickly establishing a CDMA dispatch call
US6928063Mar 16, 2001Aug 9, 2005Motorola, Inc.Method and apparatus for providing a dispatch patch service in a CDMA communication system
US6948080 *Jan 9, 2002Sep 20, 2005Raytheon CompanySystem and method for minimizing upsets in digital microcircuits via ambient radiation monitoring
US6950406Jan 22, 2002Sep 27, 2005Qualcomm IncorporatedMethod and apparatus for controlling transmission power in a potentially transmission gated or capped communication system
US6956840Sep 21, 1998Oct 18, 2005Ipr Licensing, Inc.Power control protocol for highly variable data rate reverse link of a wireless communication system
US6961572Dec 20, 2001Nov 1, 2005Motorola, Inc.Code Division Multiple Access (CDMA); dispatch group call systems; talkgroups; wireless communications
US6963752 *Sep 18, 2000Nov 8, 2005Telefonaktiebolaget L M Ericsson (Publ)Method and apparatus for setting transmit power control command energy
US6963754 *Feb 21, 2002Nov 8, 2005Hitachi, Ltd.Transmission power control method of wireless communication terminal and a base station therefore
US6968202Mar 4, 2002Nov 22, 2005Interdigital Technology CorporationMethod for operating a user equipment by prelimiting an output signal
US6977967 *Jun 20, 2000Dec 20, 2005Qualcomm IncorporatedMethod and apparatus for performing fast power control in a mobile communication system
US6985467Jan 10, 2001Jan 10, 2006Interdigital Technology CorporationRapid acquisition spreading codes for spread-spectrum communications
US6990317May 28, 2002Jan 24, 2006Wireless InnovationInterference resistant wireless sensor and control system
US7002920Jun 22, 2001Feb 21, 2006Verizon Laboratories Inc.Capacity enhancement for multi-code CDMA with integrated services through quality of service and admission control
US7010066Aug 9, 2001Mar 7, 2006Skybitz, Inc.System and method for fast code phase and carrier frequency acquisition in GPS receiver
US7027486Sep 10, 2001Apr 11, 2006Skybitz, Inc.System and method for fast code phase and carrier frequency acquisition in GPS receiver
US7091778Sep 19, 2003Aug 15, 2006M/A-Com, Inc.Adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US7099290Dec 20, 2001Aug 29, 2006Motorola, Inc.Method and apparatus for CDMA-dispatch soft handoff
US7099683Feb 11, 2002Aug 29, 2006Telefonaktiebolaget Lm Ericsson (Publ)Method for controlling the signal level from terminals to a node in a network in point to multi-point radio-communication systems having time division multiple access
US7103029 *Nov 7, 2000Sep 5, 2006Fujitsu LimitedTransmitter gain stabilizing apparatus
US7106808 *Apr 5, 2001Sep 12, 2006Stmicroelectronics SaTuner of the type having zero intermediate frequency and corresponding control process
US7120134Feb 15, 2001Oct 10, 2006Qualcomm, IncorporatedReverse link channel architecture for a wireless communication system
US7120457Mar 3, 2003Oct 10, 2006Hitachi, Ltd.Transmission control method and apparatus for mobile communication system
US7151913Jun 30, 2003Dec 19, 2006M/A-Com, Inc.Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7184417Oct 14, 2005Feb 27, 2007Ipr Licensing, Inc.Power control protocol for highly variable data rate reverse link of a wireless communication system
US7215650 *Mar 6, 2000May 8, 2007Viasat, Inc.Adaptive data rate control for narrowcast networks
US7221915Jun 25, 2003May 22, 2007M/A-Com, Inc.Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7224745 *Jun 18, 2001May 29, 2007Siemens Communications, Inc.Method and system for power-conserving interference avoidance in communication between a mobile unit and a base unit in a wireless telecommunication system
US7230978Dec 28, 2001Jun 12, 2007Infineon Technologies AgChannel CODEC processor configurable for multiple wireless communications standards
US7254195Aug 25, 2003Aug 7, 2007M/A-Com, Inc.Apparatus, methods and articles of manufacture for dynamic differential delay correction
US7266142Feb 2, 2006Sep 4, 2007Skybitz, Inc.System and method for fast code phase and carrier frequency acquisition in GPS receiver
US7294334Mar 16, 2004Nov 13, 2007Advanced Cardiovascular Systems, Inc.Methods and compositions to treat myocardial conditions
US7308042Feb 27, 2004Dec 11, 2007Research In Motion LimitedMethod and apparatus for optimizing transmitter power efficiency
US7333563Feb 20, 2004Feb 19, 2008Research In Motion LimitedMethod and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US7345534May 31, 2005Mar 18, 2008M/A-Com Eurotec BvEfficient power amplification system
US7352729 *Mar 3, 2003Apr 1, 2008Ntt Docomo, Inc.Wireless communication system for multi-hop connection, source station, radio station and pilot signal used therein
US7361368Jun 28, 2002Apr 22, 2008Advanced Cardiovascular Systems, Inc.Applying in situ; biodegradation; cardiovascular disorders; anticancer agents
US7369871 *Aug 10, 2004May 6, 2008Skyworks Solutions, Inc.System and method for allowing a TDMA/CDMA portable transceiver to operate with closed loop power control
US7376107Jul 9, 2003May 20, 2008Fipa Frohwitter Intellectual Property AgSpread spectrum communication system and transmission power control method therefor
US7379478Nov 28, 2000May 27, 2008Soma Networks, Inc.System and method for allocating power
US7392021Aug 3, 2005Jun 24, 2008M/A-Com, Inc.Apparatus, system, and method for measuring power delivered to a load
US7418244Aug 4, 2003Aug 26, 2008Analog Devices, Inc.Radio transmitter with accurate power control
US7421283Oct 10, 2006Sep 2, 2008Hitachi Communication Technologies, Ltd.Transmission power control method and apparatus for mobile communication system
US7471657Aug 20, 2001Dec 30, 2008Qualcomm, IncorporatedMethod and apparatus for processing a punctured pilot channel
US7499427Oct 2, 2006Mar 3, 2009Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7505508Sep 3, 2007Mar 17, 2009Skybitz, Inc.System and method for fast code phase and carrier frequency acquisition in GPS receiver
US7551689Feb 4, 2008Jun 23, 2009Research In Motion LimitedMethod and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US7641643Apr 15, 2003Jan 5, 2010Abbott Cardiovascular Systems Inc.Methods and compositions to treat myocardial conditions
US7671699Aug 14, 2007Mar 2, 2010Pine Valley Investments, Inc.Coupler
US7697643Apr 7, 2004Apr 13, 2010Interdigital Technology CorporationSetting a transmission power level for a mobile unit
US7701903Feb 13, 2007Apr 20, 2010Ipr Licensing, Inc.Power control protocol for highly variable data rate reverse link of a wireless communication system
US7732190Jul 31, 2006Jun 8, 2010Advanced Cardiovascular Systems, Inc.Mixture comprising a first functionalized polymer in a first buffer; a second buffer at approximately physiological osmolality; a second functionalized polymer, a substance having at least one cell-adhesion site combined with the first mixture
US7751496Jun 25, 2003Jul 6, 2010Pine Valley Investments, Inc.Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7787566Jun 5, 2009Aug 31, 2010Research In Motion LimitedMethod and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US7826861 *Sep 29, 2003Nov 2, 2010Ntt Docomo, Inc.Base station apparatus of mobile communication system
US7826864 *Sep 9, 2005Nov 2, 2010M-Stack LimitedApparatus and method for power measurement summation in mobile telecommunications system user equipment
US7831272Apr 1, 2005Nov 9, 2010Qualcomm IncorporatedMethod and apparatus for performing fast power control in a mobile communication system
US7848282Sep 29, 2006Dec 7, 2010Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848283Sep 29, 2006Dec 7, 2010Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848284Sep 29, 2006Dec 7, 2010Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848285Oct 2, 2006Dec 7, 2010Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7854944Dec 17, 2004Dec 21, 2010Advanced Cardiovascular Systems, Inc.Positioning a drug delivery device providing vascular perfusion or myocardial injection within the vasculature in a mammalian body; introducing a cellular component to the necrosis area; to the adjacent border area introducing microparticle carriers of a factor to attract cellular components
US7873119Jun 14, 2007Jan 18, 2011Research In Motion LimitedInput drive control for switcher regulated power amplifier modules
US7907671Dec 3, 2004Mar 15, 2011Motorola Mobility, Inc.Method and system for scaling a multi-channel signal
US7907920Jun 14, 2007Mar 15, 2011Research In Motion LimitedControl of switcher regulated power amplifier modules
US7912505Jan 12, 2007Mar 22, 2011Interdigital Technology CorporationMethod for operating a base station by prelimiting an output signal station
US7916680May 4, 2007Mar 29, 2011Viasat, Inc.Adaptive data rate control for narrowcast networks
US7929908 *May 24, 2006Apr 19, 2011The Boeing CompanyMethod and system for controlling a network for power beam transmission
US7940720Jan 28, 2005May 10, 2011Qualcomm, IncorporatedReverse link channel architecture for a wireless communication system
US7953420 *Dec 27, 2004May 31, 2011Telecom Italia S.P.A.Hybrid locating method and system for locating a mobile terminal in a wireless communications network
US7961822 *Feb 25, 2010Jun 14, 2011Interdigital Technology CorporationSetting a transmission power level for a mobile unit
US7986749 *Dec 19, 2005Jul 26, 2011Qualcomm IncorporatedMethod and apparatus for performing fast power control in a mobile communication system
US7990904Dec 16, 2003Aug 2, 2011Qualcomm IncorporatedWireless network repeater
US7995531Sep 29, 2006Aug 9, 2011Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8000409Jul 30, 2010Aug 16, 2011Research In Motion LimitedMethod and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US8005042Oct 2, 2006Aug 23, 2011Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8009625Sep 29, 2006Aug 30, 2011Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8009639Dec 27, 2006Aug 30, 2011Wireless Technology Solutions LlcFeedback control in an FDD TDD-CDMA system
US8023885Oct 12, 2006Sep 20, 2011Qualcomm IncorporatedNon-frequency translating repeater with downlink detection for uplink and downlink synchronization
US8027642Apr 6, 2004Sep 27, 2011Qualcomm IncorporatedTransmission canceller for wireless local area network
US8038991Nov 1, 2007Oct 18, 2011Abbott Cardiovascular Systems Inc.High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8059727Jan 27, 2006Nov 15, 2011Qualcomm IncorporatedPhysical layer repeater configuration for increasing MIMO performance
US8060009Oct 15, 2003Nov 15, 2011Qualcomm IncorporatedWireless local area network repeater with automatic gain control for extending network coverage
US8064409Aug 25, 1999Nov 22, 2011Qualcomm IncorporatedMethod and apparatus using a multi-carrier forward link in a wireless communication system
US8068453Jun 25, 2003Nov 29, 2011Qualcomm IncorporatedMethod and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US8077655Sep 29, 2006Dec 13, 2011Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8078100Jan 27, 2006Dec 13, 2011Qualcomm IncorporatedPhysical layer repeater with discrete time filter for all-digital detection and delay generation
US8083726Sep 30, 2005Dec 27, 2011Advanced Cardiovascular Systems, Inc.Encapsulating cells and lumen
US8089913Apr 30, 2007Jan 3, 2012Qualcomm IncorporatedPhysical layer repeater with selective use of higher layer functions based on network operating conditions
US8089924Sep 29, 2006Jan 3, 2012Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8095067Oct 12, 2006Jan 10, 2012Qualcomm IncorporatedFrequency translating repeater with low cost high performance local oscillator architecture
US8098581Jan 28, 2005Jan 17, 2012Qualcomm IncorporatedReverse link channel architecture for a wireless communication system
US8111645Nov 17, 2003Feb 7, 2012Qualcomm IncorporatedWireless local area network repeater with detection
US8122134Oct 9, 2003Feb 21, 2012Qualcomm IncorporatedReducing loop effects in a wireless local area network repeater
US8140085 *Sep 30, 2008Mar 20, 2012Motorola Solutions, Inc.Method and apparatus for optimizing spectrum utilization by a cognitive radio network
US8160517May 21, 2010Apr 17, 2012Research In Motion LimitedControl of switcher regulated power amplifier modules
US8187621Jun 5, 2006May 29, 2012Advanced Cardiovascular Systems, Inc.Methods and compositions for treating post-myocardial infarction damage
US8189540Aug 21, 2009May 29, 2012Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8192760Dec 4, 2006Jun 5, 2012Abbott Cardiovascular Systems Inc.Self-reinforcing composite biomatrix; use in tissue repair of myocardial infarct for example; two-component gelation system, and a silk protein such as silk-elastin, silk-collagen, silk-laminin, optionally conjugated to a biopolymer
US8199696Mar 29, 2001Jun 12, 2012Qualcomm IncorporatedMethod and apparatus for power control in a wireless communication system
US8208864Feb 18, 2011Jun 26, 2012Viasat, Inc.Adaptive data rate control for narrowcast networks
US8255149Jan 28, 2005Aug 28, 2012Skybitz, Inc.System and method for dual-mode location determination
US8290085Jul 28, 2011Oct 16, 2012Research In Motion LimitedMethod and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US8295397May 21, 2010Oct 23, 2012Research In Motion LimitedInput drive control for switcher regulated power amplifier modules
US8295792Jan 17, 2012Oct 23, 2012Research In Motion LimitedControl of switcher regulated power amplifier modules
US8303972Feb 23, 2006Nov 6, 2012Advanced Cardiovascular Systems, Inc.Hydrogel bioscaffoldings and biomedical device coatings
US8311027Aug 3, 2006Nov 13, 2012Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8311491May 14, 2012Nov 13, 2012Viasat, Inc.Adaptive data rate control for narrowcast networks
US8326340 *Nov 21, 2008Dec 4, 2012Mediatek Inc.Transmit power controller
US8331975Nov 30, 2009Dec 11, 2012Interdigital Patent Holdings, Inc.Uplink power control for distributed wireless communication
US8340228Jun 1, 2011Dec 25, 2012Intel CorporationSetting a transmission power level for a mobile unit
US8351372Sep 29, 2006Jan 8, 2013Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8383158Apr 15, 2003Feb 26, 2013Abbott Cardiovascular Systems Inc.Methods and compositions to treat myocardial conditions
US8428181May 21, 2010Apr 23, 2013Research In Motion LimitedMethod and apparatus for optimizing transmitter power efficiency
US8457177Feb 27, 2009Jun 4, 2013Skybitz, Inc.System and method for fast code phase and carrier frequency acquisition in GPS receiver
US8465772May 15, 2012Jun 18, 2013Abbott Cardiovascular Systems Inc.Methods and compositions for treating tissue using silk proteins
US8465773May 15, 2012Jun 18, 2013Abbott Cardiovascular Systems Inc.Methods and compositions for treating tissue using silk proteins
US8486386Apr 7, 2010Jul 16, 2013Abbott Cardiovascular Systems Inc.Modified two-component gelation systems, methods of use and methods of manufacture
US8486387Apr 7, 2010Jul 16, 2013Abbott Cardiovascular Systems Inc.Modified two-component gelation systems, methods of use and methods of manufacture
US8498234Jun 11, 2003Jul 30, 2013Qualcomm IncorporatedWireless local area network repeater
US8500680Jan 11, 2008Aug 6, 2013Abbott Cardiovascular Systems Inc.Device and method for combining a treatment agent and a gel
US8521259Feb 18, 2004Aug 27, 2013Advanced Cardiovascular Systems, Inc.Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US8526401Dec 19, 2011Sep 3, 2013Ipr Licensing, Inc.Power control protocol for highly variable data rate reverse link of wireless communication system
US8559379Sep 21, 2007Oct 15, 2013Qualcomm IncorporatedMethod and apparatus for mitigating oscillation between repeaters
US8606199Sep 12, 2012Dec 10, 2013Blackberry LimitedControl of switcher regulated power amplifier modules
US8608661Mar 3, 2004Dec 17, 2013Advanced Cardiovascular Systems, Inc.Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US8609126May 25, 2012Dec 17, 2013Advanced Cardiovascular Systems, Inc.Methods and compositions for treating post-myocardial infarction damage
US8620238Jul 23, 2010Dec 31, 2013Blackberry LimitedMethod of power amplifier switching power control using post power amplifier power detection
US8630796Jan 10, 2005Jan 14, 2014Skybitz, Inc.System and method for fast acquisition position reporting
US8637069Jul 26, 2012Jan 28, 2014Abbott Cardiovascular Systems Inc.Device and method for combining a treatment agent and a gel
US8670503Sep 5, 2012Mar 11, 2014Blackberry LimitedMethod and apparatus for improving power amplifier efficiency in wireless communication systems having high peak to average power ratios
US8711761Apr 14, 2008Apr 29, 2014Fipa Frohwitter Intellectual Property AgSpread spectrum communication system and transmission power control method therefor
US8715265Jul 26, 2012May 6, 2014Abbott Cardiovascular Systems Inc.Device and method for combining a treatment agent and a gel
US8725132 *Jan 5, 2010May 13, 2014Piccata Fund Limited Liability CompanyProgram for adjusting channel interference between access points in a wireless network
US8738067 *Feb 15, 2011May 27, 2014Samsung Electronics Co., Ltd.Method and apparatus for controlling transmit power of base station in a wireless communication system
US8741326Nov 17, 2006Jun 3, 2014Abbott Cardiovascular Systems Inc.Modified two-component gelation systems, methods of use and methods of manufacture
US8747385May 10, 2012Jun 10, 2014Abbott Cardiovascular Systems Inc.Methods and compositions to treat myocardial conditions
US8761305Sep 12, 2012Jun 24, 2014Blackberry LimitedInput drive control for switcher regulated power amplifier modules
US8768371 *Feb 7, 2012Jul 1, 2014Motorola Solutions, Inc.Method and apparatus for optimizing spectrum utilization by a cognitive radio network
US20090196223 *Nov 21, 2008Aug 6, 2009Mediatek Inc.Transmit power controller
US20110201378 *Feb 15, 2011Aug 18, 2011Samsung Electronics Co. Ltd.Method and apparatus for controlling transmit power of base station in a wireless communication system
US20120225687 *Feb 29, 2012Sep 6, 2012John Peter NorairMethod and apparatus for power autoscaling in a resource-constrained network
US20120238309 *Feb 7, 2012Sep 20, 2012Motorola Solutions, Inc.Method and apparatus for optimizing spectrum utilization by a cognitive radio network
US20130095878 *Dec 6, 2012Apr 18, 2013Interdigital Patent Holdings, Inc.Uplink power control for distributed wireless communication
USRE36017 *Oct 15, 1993Dec 29, 1998Telefonaktiebolaget Lm EricssonCellular digital mobile radio system and method of transmitting information in a digital cellular mobile radio system
USRE36078 *Sep 26, 1997Feb 2, 1999Telefonaktiebolaget Lm EricssonHandover method for mobile radio system
USRE36079 *Sep 26, 1997Feb 2, 1999Telefonaktiebolaget Lm EricssonHandover method for mobile radio system
USRE37685Jan 11, 1999Apr 30, 2002Telefonaktiebolaget Lm Ericsson (Publ)Handover method for mobile radio system
USRE37787Jan 21, 1999Jul 9, 2002Telefonaktiebolaget Lm Ericsson (Publ)Handover method for mobile radio system
CN1077370C *Aug 29, 1997Jan 2, 2002日本电气株式会社Random access control for CDMA network
CN100405753CFeb 13, 1998Jul 23, 2008高通股份有限公司功率控制子系统
EP1049251A2 *Mar 28, 2000Nov 2, 2000Harada Industry Co., Ltd.Control device
EP1057294A1 *Jul 31, 1998Dec 6, 2000Motorola, Inc.Cdma dispatch system
EP1231721A1 *Feb 12, 2001Aug 14, 2002Telefonaktiebolaget Lm EricssonMethod for controlling receive signal levels at a network node in TDMA point to multi-point radio communications systems
EP1777900A2 *Nov 3, 1998Apr 25, 2007Qualcomm, IncorporatedMethod and apparatus for high rate packet data transmission
EP2202905A2Feb 14, 2002Jun 30, 2010Qualcom IncorporatedMethod and apparatus for reverse link channel architecture for a wireless communication system
WO1997049197A1 *Jun 16, 1997Dec 24, 1997Richard FehlmannControl of transmission power in wireless packet data transfer
WO1998007207A2 *Jul 1, 1997Feb 19, 1998Motorola IncMethod of controlling a communication system
WO1998012967A1Sep 24, 1997Apr 2, 1998Boston Scient CorpCatheter system and drive assembly thereof
WO1998012968A1Sep 24, 1997Apr 2, 1998Boston Scient CorpDevice for controlled longitudinal movement of an operative element within a catheter sheath and method
WO1998036606A2 *Feb 13, 1998Aug 20, 1998Qualcomm IncA power control subsystem
WO1998059432A2 *Jun 19, 1998Dec 30, 1998Qualcomm IncMethod and apparatus for power adaptation control in closed-loop communications
WO1999031798A2 *Dec 7, 1998Jun 24, 1999Koninkl Philips Electronics NvA communication system, device and method
WO2000007318A1 *Jul 30, 1999Feb 10, 2000Airnet Communications CorpBroadband power management (power banking) within a broadband multi-carrier base station transceiver system
WO2000007500A1Jul 30, 1999Feb 17, 2000Boston Scient LtdAutomatic/manual longitudinal position translator and rotary drive system for catheters
WO2000010265A1 *Jun 18, 1999Feb 24, 2000Motorola IncMethod and apparatus for communicating signals of various channel types in cdma communication systems
WO2001008561A1Jul 21, 2000Feb 8, 2001Boston Scient LtdRotational and translational drive coupling for catheter assembly
WO2002065665A1 *Feb 11, 2002Aug 22, 2002Ericsson Telefon Ab L MMethod for controlling receive signal levels at a network node in tdma point to multi-point radio communications systems
WO2005018106A2 *Aug 4, 2004Feb 24, 2005Analog Devices IncRadio transmitter with accurate power control
WO2010065527A1 *Dec 1, 2009Jun 10, 2010Interdigital Patent Holdings, Inc.Uplink power control for distributed wireless communication
Classifications
U.S. Classification370/335, 455/522, 455/69, 380/34
International ClassificationH04B7/005, H04B7/26, H04W52/02, H04W52/00, H04W52/34, H04W52/06, H04W52/52, H04W52/36, H04W52/40, H04W52/12, H04W52/10, H04W52/08
Cooperative ClassificationH04W52/343, H04W52/06, H04B7/2628, H04W52/362, H04W52/52, H04W52/367, H04W52/346, H04W52/10, H04W52/12, H04W52/08, H04W52/40
European ClassificationH04B7/26S, H04W52/36K, H04W52/36A, H04W52/34N, H04W52/34L, H04W52/06, H04W52/52
Legal Events
DateCodeEventDescription
Jun 21, 2007FPAYFee payment
Year of fee payment: 12
Jul 16, 2003FPAYFee payment
Year of fee payment: 8
Jul 15, 1999FPAYFee payment
Year of fee payment: 4